Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases
Abstract
:1. Introduction
2. Main Characteristics and Functions of Growth Factors
3. Overview of Hereditary Neurodegenerative Diseases (NDDs)
4. Growth Factors in the Therapy of Hereditary Neurodegenerative Diseases
4.1. Brain-Derived Neurotrophic Factor (BDNF)
4.2. Glial Cell Line-Derived Neurotrophic Factor (GDNF)
4.3. Insulin-Like Growth Factor 1 (IGF-1)
4.4. Vascular Endothelial Growth Factor A (VEGF-A)
4.5. Nerve Growth Factor (NGF)
4.6. Fibroblast Growth Factor-2 (FGF-2)
4.7. Ciliary Neurotrophic Factor (CNTF)
4.8. Transforming Growth Factor-Beta 1 (TGF-β1)
4.9. Hepatocyte Growth Factor (HGF)
5. Current Challenges/Limitations of Using Growth Factors in Therapy for Hereditary Neurodegenerative Diseases
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mansour, M.A.; Caputo, V.S.; Aleem, E. Highlights on selected growth factors and their receptors as promising anticancer drug targets. Int. J. Biochem. Cell Biol. 2021, 140, 106087. [Google Scholar] [CrossRef]
- Sherbet, G.V. Growth Factors and Their Receptors in Cell Differentiation, Cancer and Cancer Therapy; Elsevier: London, UK; Waltham, MA, USA, 2011; pp. 1–347. [Google Scholar] [CrossRef]
- Bafico, A.; Aaronson, S.A. Classification of Growth Factors and Their Receptors. 2003. Available online: https://www.ncbi.nlm.nih.gov/books/NBK12423/ (accessed on 6 August 2023).
- Deuel, T.F.; Chang, Y. Growth Factors. In Principles of Tissue Engineering, 4th ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 291–308. [Google Scholar] [CrossRef]
- Dignass, A.U.; Tsunekawa, S.; Podolsky, D.K. Fibroblast growth factors modulate intestinal epithelial cell growth and migration. Gastroenterology 1994, 106, 1254–1262. [Google Scholar] [CrossRef]
- Torres-Castro, P.; Abril-Gil, M.; Rodríguez-Lagunas, M.J.; Castell, M.; Pérez-Cano, F.J.; Franch, À. TGF-β2, EGF, and FGF21 Growth Factors Present in Breast Milk Promote Mesenteric Lymph Node Lymphocytes Maturation in Suckling Rats. Nutrients 2018, 10, 1171. [Google Scholar] [CrossRef] [PubMed]
- Skaper, S.D. (Ed.) Neurotrophic Factors; Humana: New York, NY, USA, 2018; Volume 1727. [Google Scholar] [CrossRef]
- Bass, J.; Oldham, J.; Sharma, M.; Kambadur, R. Growth factors controlling muscle development. Domest. Anim. Endocrinol. 1999, 17, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Bone Growth Factors. Clinical Orthopaedics and Related Research (1976–2007). Available online: https://journals.lww.com/corr/abstract/1991/02000/bone_growth_factors.4.aspx (accessed on 11 August 2023).
- Huat, T.J.; Khan, A.A.; Pati, S.; Mustafa, Z.; Abdullah, J.M.; Jaafar, H. IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells. BMC Neurosci. 2014, 15, 91. [Google Scholar] [CrossRef] [PubMed]
- Ofek, H.; DeLange, R.J.; Finerman, G.A.M. Bone Cell Differentiation and Growth Factors. Science (1979) 1983, 220, 680–686. [Google Scholar] [CrossRef]
- Leventhal, P.S.; Feldman, E.L. Insulin-like growth factors as regulators of cell motility: Signaling mechanisms. Trends Endocrinol. Metab. 1997, 8, 1–6. [Google Scholar] [CrossRef]
- Binoux, M. The IGF system in metabolism regulation. Diabete Metab. 1995, 21, 330–337. Available online: https://europepmc.org/article/med/8586149 (accessed on 8 August 2023).
- Ferrara, N.; Alitalo, K. Clinical applications of angiogenic growth factors and their inhibitors. Nat. Med. 1999, 5, 1359–1364. [Google Scholar] [CrossRef]
- Lohela, M.; Saaristo, A.; Veikkola, T.; Alitalo, K. Lymphangiogenic growth factors, receptors and therapies. Thromb. Haemost. 2003, 90, 167–184. [Google Scholar] [CrossRef]
- Lu, P.; Tuszynski, M.H. Growth factors and combinatorial therapies for CNS regeneration. Exp. Neurol. 2008, 209, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Rudland, P.S.; De Asua, L.J. Action of growth factors in the cell cycle. Biochim. Et Biophys. Acta (BBA)-Rev. Cancer 1979, 560, 91–133. [Google Scholar] [CrossRef]
- Perona, R. Cell signalling: Growth factors and tyrosine kinase receptors. Clin. Transl. Oncol. 2006, 8, 77–82. [Google Scholar] [CrossRef]
- Tunç, B.S.; Toprak, F.; Toprak, S.F.; Sozer, S. In vitro investigation of growth factors including MGF and IGF-1 in neural stem cell activation, proliferation, and migration. Brain Res. 2021, 1759, 147366. [Google Scholar] [CrossRef]
- Robb, L. Cytokine receptors and hematopoietic differentiation. Oncogene 2007, 26, 6715–6723. [Google Scholar] [CrossRef] [PubMed]
- Raza, Y.; Salman, H.; Luberto, C. Sphingolipids in Hematopoiesis: Exploring Their Role in Lineage Commitment. Cells 2021, 10, 2507. [Google Scholar] [CrossRef]
- Lin, X.; Zhu, L.; He, J. Morphogenesis, Growth Cycle and Molecular Regulation of Hair Follicles. Front. Cell Dev. Biol. 2022, 10, 899095. [Google Scholar] [CrossRef]
- Yerneni, S.S.; Adamik, J.; Weiss, L.E.; Campbell, P.G. Cell trafficking and regulation of osteoblastogenesis by extracellular vesicle associated bone morphogenetic protein 2. J. Extracell. Vesicles 2021, 10, e12155. [Google Scholar] [CrossRef]
- Geissler, A.; Ryzhov, S.; Sawyer, D.B. Neuregulins: Protective and reparative growth factors in multiple forms of cardiovascular disease. Clin. Sci. 2020, 134, 2623–2643. [Google Scholar] [CrossRef]
- Liu, G.; Wu, R.; Yang, B.; Shi, Y.; Deng, C.; Atala, A.; Mou, S.; Criswell, T.; Zhang, Y. A cocktail of growth factors released from a heparin hyaluronic-acid hydrogel promotes the myogenic potential of human urine-derived stem cells in vivo. Acta Biomater. 2020, 107, 50–64. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.S.; Monteiro, M.P.; Antonini, S.R.; Pignatelli, D. Apoptosis regulation in adrenocortical carcinoma. Endocr. Connect 2019, 8, R91–R104. [Google Scholar] [CrossRef]
- Panwar, D.; Rawal, L.; Ali, S. The potential role of the KFG and KITLG proteins in preventing granulosa cell apoptosis in Bubalus bubalis. J. Genet. Eng. Biotechnol. 2023, 21, 39. [Google Scholar] [CrossRef] [PubMed]
- Hicks, S.D.; Miller, M.W. Ethanol-induced DNA repair in neural stem cells is transforming growth factor β1-dependent. Exp. Neurol. 2019, 317, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xiang, W.; Xue, B.Z.; Yi, D.Y.; Zhao, H.Y.; Fu, P. Growth factors contribute to the mediation of angiogenic capacity of glioma-associated mesenchymal stem cells. Oncol. Lett. 2021, 21, 215. [Google Scholar] [CrossRef]
- Omorphos, N.P.; Gao, C.; Tan, S.S.; Sangha, M.S. Understanding angiogenesis and the role of angiogenic growth factors in the vascularisation of engineered tissues. Mol. Biol. Rep. 2021, 48, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, T.; Chong, J.J.H. Therapeutic Angiogenesis Using Growth Factors After Myocardial Infarction: From Recombinant Proteins to Gene Therapies and Beyond. Heart Lung Circ. 2023, 32, 798–807. [Google Scholar] [CrossRef]
- Ishihara, J.; Ishihara, A.; Starke, R.D.; Peghaire, C.R.; Smith, K.E.; McKinnon, T.A.J.; Tabata, Y.; Sasaki, K.; White, M.J.V.; Fukunaga, K.; et al. The heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healing. Blood 2019, 133, 2559–2569. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, C.; Goswami, S.; Basu, S.; Chakroborty, D. Angiogenesis Inhibition in Prostate Cancer: An Update. Cancers 2020, 12, 2382. [Google Scholar] [CrossRef] [PubMed]
- Ditoro, D.; Harbour, S.N.; Bando, J.K.; Benavides, G.; Witte, S.; Laufer, V.A.; Moseley, C.; Singer, J.R.; Frey, B.; Turner, H.; et al. Insulin-Like Growth Factors Are Key Regulators of T Helper 17 Regulatory T Cell Balance in Autoimmunity Article Insulin-Like Growth Factors Are Key Regulators of T Helper 17 Regulatory T Cell Balance in Autoimmunity. Immunity 2020, 52, 650–667.e10. [Google Scholar] [CrossRef]
- Weyand, C.M.; Watanabe, R.; Zhang, H.; Akiyama, M.; Berry, G.J.; Goronzy, J.J. Cytokines, growth factors and proteases in medium and large vessel vasculitis. Clin. Immunol. 2019, 206, 33–41. [Google Scholar] [CrossRef]
- Struik, D.; Dommerholt, M.B.; Jonker, J.W. Fibroblast growth factors in control of lipid metabolism. Curr. Opin. Lipidol. 2019, 30, 235–243. [Google Scholar] [CrossRef]
- Al-Mansoori, L.; Al-Jaber, H.; Prince, M.S.; Elrayess, M.A. Role of Inflammatory Cytokines, Growth Factors and Adipokines in Adipogenesis and Insulin Resistance. Inflammation 2022, 45, 31–44. [Google Scholar] [CrossRef]
- LeRoith, D.; Holly, J.M.P.; Forbes, B.E. Insulin-like growth factors: Ligands, binding proteins, and receptors. Mol. Metab. 2021, 52, 101245. [Google Scholar] [CrossRef]
- Growth Factors and the Control of Folliculogenesis—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/7542711/ (accessed on 13 January 2024).
- Erickson, G.F.; Shimasaki, S. The physiology of folliculogenesis: The role of novel growth factors. Fertil. Steril. 2001, 76, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Raheem, K.A. Cytokines, growth factors and macromolecules as mediators of implantation in mammalian species. Int. J. Vet. Sci. Med. 2017, 6, S6–S14. [Google Scholar] [CrossRef] [PubMed]
- Guzeloglu-Kayisli, O.; Kayisli, U.A.; Taylor, H.S. The role of growth factors and cytokines during implantation: Endocrine and paracrine interactions. Semin. Reprod. Med. 2009, 27, 62–79. [Google Scholar] [CrossRef]
- Yang, M.N.; Huang, R.; Liu, X.; Xu, Y.-J.; Wang, W.-J.; He, H.; Zhang, G.-H.; Zheng, T.; Fang, F.; Fan, J.-G.; et al. Fibroblast Growth Factor 19 in Gestational Diabetes Mellitus and Fetal Growth. Front. Endocrinol. 2022, 12, 805722. [Google Scholar] [CrossRef]
- Lin, M.; Hu, X.; Chang, S.; Chang, Y.; Bian, W.; Hu, R.; Wang, J.; Zhu, Q.; Qiu, J. Advances of Antisense Oligonucleotide Technology in the Treatment of Hereditary Neurodegenerative Diseases. Evid. Based Complement. Altern. Med. 2021, 2021, 6678422. [Google Scholar] [CrossRef]
- Tsuji, S. Genetics of neurodegenerative diseases: Insights from high-throughput resequencing. Hum. Mol. Genet. 2010, 19, R65. [Google Scholar] [CrossRef]
- Pihlstrøm, L.; Wiethoff, S.; Houlden, H. Genetics of neurodegenerative diseases: An overview. Handb. Clin. Neurol. 2017, 145, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cheng, Y.; Shang, H. The updated development of blood-based biomarkers for Huntington’s disease. J. Neurol. 2023, 270, 2483. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Nishiyama, A.; Warita, H.; Aoki, M. Genetics of amyotrophic lateral sclerosis: Seeking therapeutic targets in the era of gene therapy. J. Hum. Genet. 2023, 68, 131–152. [Google Scholar] [CrossRef]
- Andrade-Guerrero, J.; Santiago-Balmaseda, A.; Jeronimo-Aguilar, P.; Vargas-Rodríguez, I.; Cadena-Suárez, A.R.; Sánchez-Garibay, C.; Pozo-Molina, G.; Méndez-Catalá, C.F.; Cardenas-Aguayo, M.-D.; Diaz-Cintra, S.; et al. Alzheimer’s Disease: An Updated Overview of Its Genetics. Int. J. Mol. Sci. 2023, 24, 3754. [Google Scholar] [CrossRef] [PubMed]
- Mullagulova, A.; Shaimardanova, A.; Solovyeva, V.; Mukhamedshina, Y.; Chulpanova, D.; Kostennikov, A.; Issa, S.; Rizvanov, A. Safety and Efficacy of Intravenous and Intrathecal Delivery of AAV9-Mediated ARSA in Minipigs. Int. J. Mol. Sci. 2023, 24, 9204. [Google Scholar] [CrossRef]
- Forrest, S.L.; Kovacs, G.G. Current Concepts of Mixed Pathologies in Neurodegenerative Diseases. Can. J. Neurol. Sci. 2023, 50, 329–345. [Google Scholar] [CrossRef]
- Trojsi, F.; Christidi, F.; Migliaccio, R.; Santamaría-García, H.; Santangelo, G. Behavioural and Cognitive Changes in Neurodegenerative Diseases and Brain Injury. Behav. Neurol. 2018, 2018, 4935915. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, R.; Novella, J.L.; Laurent-Badr, S.; Boulahrouz, S.; Tran, D.; Morrone, I.; Jaïdi, Y. Cholinergic Antagonists and Behavioral Disturbances in Neurodegenerative Diseases. Int. J. Mol. Sci. 2023, 24, 6921. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Noor, S.; Alam, M.; Hassan, M.I. Editorial: Molecular dynamics of cognitive-motor impairment in neurodegenerative diseases. Front. Mol. Neurosci. 2023, 16, 1237769. [Google Scholar] [CrossRef]
- Pogoda-Wesołowska, A.; Dziedzic, A.; Maciak, K.; Stȩpień, A.; Dziaduch, M.; Saluk, J. Neurodegeneration and its potential markers in the diagnosing of secondary progressive multiple sclerosis. A review. Front. Mol. Neurosci. 2023, 16, 1210091. [Google Scholar] [CrossRef]
- Roberts, J.S.; Patterson, A.K.; Uhlmann, W.R. Genetic testing for neurodegenerative diseases: Ethical and health communication challenges. Neurobiol. Dis. 2020, 141, 104871. [Google Scholar] [CrossRef]
- Koníčková, D.; Menšková, K.; Tučková, L.; Hényková, E.; Strnad, M.; Friedecký, D.; Stejskal, D.; Matěj, R.; Kaňovský, P. Biomarkers of Neurodegenerative Diseases: Biology, Taxonomy, Clinical Relevance, and Current Research Status. Biomedicines 2022, 10, 1760. [Google Scholar] [CrossRef] [PubMed]
- Gammon, K. Neurodegenerative disease: Brain windfall. Nature 2014, 515, 299–300. [Google Scholar] [CrossRef] [PubMed]
- Mensah-Kane, P.; Sumien, N. The potential of hyperbaric oxygen as a therapy for neurodegenerative diseases. Geroscience 2023, 45, 747. [Google Scholar] [CrossRef] [PubMed]
- Agnello, L.; Ciaccio, M. Neurodegenerative Diseases: From Molecular Basis to Therapy. Int. J. Mol. Sci. 2022, 23, 12854. [Google Scholar] [CrossRef] [PubMed]
- Sivandzade, F.; Cucullo, L. Regenerative Stem Cell Therapy for Neurodegenerative Diseases: An Overview. Int. J. Mol. Sci. 2021, 22, 2153. [Google Scholar] [CrossRef] [PubMed]
- Temple, S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell 2023, 30, 512–529. [Google Scholar] [CrossRef] [PubMed]
- Jucker, M.; Walker, L.C. Alzheimer’s disease: From immunotherapy to immunoprevention. Cell 2023, 186, 4260–4270. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, U.; Kayed, R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog. Neurobiol. 2022, 214, 102270. [Google Scholar] [CrossRef] [PubMed]
- Study Details|A Study to Assess the Safety, Tolerability, and Pharmacokinetics of BIIB078 in Adults with C9ORF72-Associated Amyotrophic Lateral Sclerosis|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT03626012 (accessed on 15 January 2024).
- Keskin, S.; Brouwers, C.C.; Sogorb-Gonzalez, M.; Martier, R.; Depla, J.A.; Vallès, A.; van Deventer, S.J.; Konstantinova, P.; Evers, M.M. AAV5-miHTT Lowers Huntingtin mRNA and Protein without Off-Target Effects in Patient-Derived Neuronal Cultures and Astrocytes. Mol. Ther. Methods Clin. Dev. 2019, 15, 275–284. [Google Scholar] [CrossRef]
- Martier, R.; Konstantinova, P. Gene Therapy for Neurodegenerative Diseases: Slowing Down the Ticking Clock. Front. Neurosci. 2020, 14, 580179. [Google Scholar] [CrossRef] [PubMed]
- Krellman, J.W.; Mercuri, G. Cognitive Interventions for Neurodegenerative Disease. Curr. Neurol. Neurosci. Rep. 2023, 23, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Bartus, R.T.; Johnson, E.M. Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: Where have we been and what have we learned? Neurobiol. Dis. 2017, 97, 156–168. [Google Scholar] [CrossRef]
- Sidorova, Y.A.; Saarma, M. Can Growth Factors Cure Parkinson’s Disease? Trends Pharmacol. Sci. 2020, 41, 909–922. [Google Scholar] [CrossRef] [PubMed]
- Nam, Y.; Moon, G.J.; Kim, S.R. Therapeutic Potential of AAV1-Rheb(S16H) Transduction against Neurodegenerative Diseases. Int. J. Mol. Sci. 2021, 22, 3064. [Google Scholar] [CrossRef] [PubMed]
- Bartus, K.; Galino, J.; James, N.D.; Hernandez-Miranda, L.R.; Dawes, J.M.; Fricker, F.R.; Garratt, A.N.; McMahon, S.B.; Ramer, M.S.; Birchmeier, C.; et al. Neuregulin-1 controls an endogenous repair mechanism after spinal cord injury. Brain 2016, 139 Pt 5, 1394–1416. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Yang, X.; Sharma, V.K.; Abebe, D.; Loh, Y.P. Hippocampal delivery of neurotrophic factor-α1/carboxypeptidase E gene prevents neurodegeneration, amyloidosis, memory loss in Alzheimer’s Disease male mice. Mol. Psychiatry 2023, 28, 3332–3342. [Google Scholar] [CrossRef]
- Pollock, K.; Dahlenburg, H.; Nelson, H.; Fink, K.D.; Cary, W.; Hendrix, K.; Annett, G.; Torrest, A.; Deng, P.; Gutierrez, J.; et al. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington’s Disease Mouse Models. Mol. Ther. 2016, 24, 965. [Google Scholar] [CrossRef]
- Ochs, G.; Penn, R.D.; York, M.; Giess, R.; Beck, M.; Tonn, J.; Haigh, J.; Malta, E.; Traub, M.; Sendtner, M.; et al. A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler Other Motor Neuron Disord. 2000, 1, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Frim, D.M.; Uhler, T.A.; Galpern, W.R.; Beal, M.F.; Breakefield, X.O.; Isacson, O. Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc. Natl. Acad. Sci. USA 1994, 91, 5104. [Google Scholar] [CrossRef]
- Levivier, M.; Przedborski, S.; Bencsics, C.; Kang, U.J. Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J. Neurosci. 1995, 15, 7810–7820. [Google Scholar] [CrossRef] [PubMed]
- Lucidi-Phillipi, C.A.; Gage, F.H.; Shults, C.W.; Jones, K.R.; Reichardt, L.F.; Kang, U.J. Brain-derived neurotrophic factor-transduced fibroblasts: Production of BDNF and effects of grafting to the adult rat brain. J. Comp. Neurol. 1995, 354, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Mellesmoen, A.; Sheeler, C.; Ferro, A.; Rainwater, O.; Cvetanovic, M. Brain derived neurotrophic factor (BDNF) delays onset of pathogenesis in transgenic mouse model of spinocerebellar ataxia type 1 (SCA1). Front. Cell Neurosci. 2018, 12, 509. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.; Estirado, A.; Redondo, C.; Bueno, C.; Martínez, S. Human adipose stem cell-conditioned medium increases survival of Friedreich’s ataxia cells submitted to oxidative stress. Stem Cells Dev. 2012, 21, 2817–2826. [Google Scholar] [CrossRef] [PubMed]
- Katsu-Jiménez, Y.; Loría, F.; Corona, J.C.; Díaz-Nido, J. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency. Mol. Ther. 2016, 24, 877. [Google Scholar] [CrossRef]
- Zhao, Y.; Haney, M.J.; Jin, Y.S.; Uvarov, O.; Vinod, N.; Lee, Y.Z.; Langworthy, B.; Fine, J.P.; Rodriguez, M.; El-Hage, N.; et al. GDNF-expressing Macrophages Restore Motor Functions at a Severe Late-stage, and Produce Long-Term Neuroprotective Effects at an Early-stage of Parkinson’s Disease in Transgenic Parkin Q311X(A) Mice. J. Control Release 2019, 315, 139. [Google Scholar] [CrossRef]
- Elsworth, J.D.; Redmond, D.; Leranth, C.; Bjugstad, K.; Sladek, J.; Collier, T.; Foti, S.; Samulski, R.; Vives, K.; Roth, R. AAV2-mediated gene transfer of GDNF to the striatum of MPTP monkeys enhances the survival and outgrowth of co-implanted fetal dopamine neurons. Exp. Neurol. 2008, 211, 252–258. [Google Scholar] [CrossRef]
- Rocco, M.T.; Akhter, A.S.; Ehrlich, D.J.; Scott, G.C.; Lungu, C.; Munjal, V.; Aquino, A.; Lonser, R.R.; Fiandaca, M.S.; Hallett, M.; et al. Long-term safety of MRI-guided administration of AAV2-GDNF and gadoteridol in the putamen of individuals with Parkinson’s disease. Mol. Ther. 2022, 30, 3632–3638. [Google Scholar] [CrossRef]
- Tatarewicz, S.M.; Wei, X.; Gupta, S.; Masterman, D.; Swanson, S.J.; Moxness, M.S. Development of a maturing T-cell-mediated immune response in patients with idiopathic Parkinson’s disease receiving r-metHuGDNF via continuous intraputaminal infusion. J. Clin. Immunol. 2007, 27, 620–627. [Google Scholar] [CrossRef]
- Chebrolu, H.; Slevin, J.; Gash, D.; Gerhardt, G.; Young, B.; Given, C.; Smith, C. MRI volumetric and intensity analysis of the cerebellum in Parkinson’s disease patients infused with glial-derived neurotrophic factor (GDNF). Exp. Neurol. 2006, 198, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Terse, P.S.; Kells, A.P.; Noker, P.; Wright, J.F.; Bankiewicz, K.S. Safety Assessment of AAV2-hGDNF Administered Via Intracerebral Injection in Rats for Treatment of Parkinson’s Disease. Int. J. Toxicol. 2021, 40, 4–14. [Google Scholar] [CrossRef]
- Whone, A.; Luz, M.; Boca, M.; Woolley, M.; Mooney, L.; Dharia, S.; Broadfoot, J.; Cronin, D.; Schroers, C.; Barua, N.U.; et al. Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson’s disease. Brain 2019, 142, 512. [Google Scholar] [CrossRef]
- Patel, N.K.; Bunnage, M.; Plaha, P.; Svendsen, C.N.; Heywood, P.; Gill, S.S. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: A two-year outcome study. Ann. Neurol. 2005, 57, 298–302. [Google Scholar] [CrossRef]
- Su, X.; Kells, A.P.; Huang, E.J.; Lee, H.S.; Hadaczek, P.; Beyer, J.; Bringas, J.; Pivirotto, P.; Penticuff, J.; Eberling, J.; et al. Safety evaluation of AAV2-GDNF gene transfer into the dopaminergic nigrostriatal pathway in aged and parkinsonian rhesus monkeys. Hum. Gene Ther. 2009, 20, 1627–1640. [Google Scholar] [CrossRef] [PubMed]
- Nutt, J.G.; Burchiel, K.; Comella, C.; Jankovic, J.; Lang, A.; Laws, E.; Lozano, A.; Penn, R.; Simpson, R.; Stacy, M.; et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 2003, 60, 69–73. [Google Scholar] [CrossRef] [PubMed]
- McBride, J.L.; During, M.J.; Wuu, J.; Chen, E.Y.; Leurgans, S.E.; Kordower, J.H. Structural and functional neuroprotection in a rat model of Huntington’s disease by viral gene transfer of GDNF. Exp. Neurol. 2003, 181, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Pineda, J.R.; Rubio, N.; Akerud, P.; Urbán, N.; Badimon, L.; Arenas, E.; Alberch, J.; Blanco, J.; Canals, J.M. Neuroprotection by GDNF-secreting stem cells in a Huntington’s disease model: Optical neuroimage tracking of brain-grafted cells. Gene Ther. 2007, 14, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Selles, M.C.; Fortuna, J.T.S.; Zappa-Villar, M.F.; de Faria, Y.P.R.; Souza, A.S.; Suemoto, C.K.; Leite, R.E.P.; Rodriguez, R.D.; Grinberg, L.T.; Reggiani, P.C.; et al. Adenovirus-mediated transduction of insulin-like growth factor 1 protects hippocampal neurons from the toxicity of Aβ oligomers and prevents memory loss in an Alzheimer mouse model. Mol. Neurobiol. 2020, 57, 1473. [Google Scholar] [CrossRef]
- Sorenson, E.J.; Windbank, A.J.; Mandrekar, J.N.; Bamlet, W.R.; Appel, S.H.; Armon, C.; Barkhaus, P.E.; Bosch, P.; Boylan, K.; David, W.S.; et al. Subcutaneous IGF-1 is not beneficial in 2-year ALS trial. Neurology 2008, 71, 1770–1775. [Google Scholar] [CrossRef]
- Grunseich, C.; Miller, R.; Swan, T.; Glass, D.J.; El Mouelhi, M.; Fornaro, M.; Petricoul, O.; Vostiar, I.; Roubenoff, R.; Meriggioli, M.N.; et al. A randomized, placebo-controlled study to evaluate the safety, tolerability, and preliminary efficacy of an IGF-1 mimetic in patients with spinal and bulbar muscular atrophy. Lancet Neurol. 2018, 17, 1043. [Google Scholar] [CrossRef]
- Naia, L.; Ferreira, I.L.; Cunha-Oliveira, T.; Duarte, A.I.; Rosenstock, T.R.; Laço, M.N.; Ribeiro, M.J.; Oliveira, C.R.; Saudou, F.; Humbert, S.; et al. Activation of IGF-1 and Insulin Signaling Pathways Ameliorate Mitochondrial Function and Energy Metabolism in Huntington’s Disease Human Lymphoblasts. Mol. Neurobiol. 2015, 51, 331–348. [Google Scholar] [CrossRef]
- Sanz-Gallego, I.; Torres-Aleman, I.; Arpa, J. IGF-1 in Friedreich’s Ataxia—proof-of-concept trial. Cerebellum Ataxias 2014, 1, 10. [Google Scholar] [CrossRef]
- Kieslich, M.; Hoche, F.; Reichenbach, J.; Weidauer, S.; Porto, L.; Vlaho, S.; Schubert, R.; Zielen, S. Extracerebellar MRI-lesions in ataxia telangiectasia go along with deficiency of the GH/IGF-1 axis, markedly reduced body weight, high ataxia scores and advanced age. Cerebellum 2010, 9, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Hohman, T.J.; Bell, S.P.; Jefferson, A.L. The Role of Vascular Endothelial Growth Factor in Neurodegeneration and Cognitive Decline: Exploring Interactions with Biomarkers of Alzheimer’s Disease. JAMA Neurol. 2015, 72, 520. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Zhai, J.; Liu, Y.; Song, C.; Sun, C.; Li, Q.; Liu, J.; Jiang, H.; Liu, Y. scAAV9-VEGF alleviates symptoms of amyotrophic lateral sclerosis (ALS) mice through regulating aromatase. Exp. Brain Res. 2023, 241, 2817–2827. [Google Scholar] [CrossRef]
- Tian, Y.Y.; Tang, C.-J.; Wang, J.-N.; Feng, Y.; Chen, X.-W.; Wang, L.; Qiao, X.; Sun, S.-G. Favorable effects of VEGF gene transfer on a rat model of Parkinson disease using adeno-associated viral vectors. Neurosci. Lett. 2007, 421, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, T.; Shingo, T.; Kobayashi, K.; Takeuchi, A.; Yano, A.; Muraoka, K.; Matsui, T.; Miyoshi, Y.; Hamada, H.; Date, I. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson’s disease. Eur. J. Neurosci. 2004, 19, 1494–1504. [Google Scholar] [CrossRef]
- Zou, J.; Chen, Z.; Wei, X.; Chen, Z.; Fu, Y.; Yang, X.; Chen, D.; Wang, R.; Jenner, P.; Lu, J.-H.; et al. Cystatin C as a potential therapeutic mediator against Parkinson’s disease via VEGF-induced angiogenesis and enhanced neuronal autophagy in neurovascular units. Cell Death Dis. 2017, 8, e2854. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, M.A.; Malik, Y.S.; Xing, Z.; Guo, Z.; Tian, H.; Zhu, X.; Chen, X. Polylysine-modified polyethylenimine (PEI-PLL) mediated VEGF gene delivery protects dopaminergic neurons in cell culture and in rat models of Parkinson’s Disease (PD). Acta Biomater. 2017, 54, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Rafii, M.S.; Baumann, T.L.; Bakay, R.A.E.; Ostrove, J.M.; Siffert, J.; Fleisher, A.S.; Herzog, C.D.; Barba, D.; Pay, M.; Salmon, D.P.; et al. A phase1 study of stereotactic gene delivery of AAV2-NGF for Alzheimer’s disease. Alzheimers Dement. 2014, 10, 571–581. [Google Scholar] [CrossRef]
- Rafii, M.S.; Tuszynski, M.H.; Thomas, R.G.; Barba, D.; Brewer, J.B.; Rissman, R.A.; Siffert, J.; Aisen, P.S.; Mintzer, J.; Lerner, A.; et al. Adeno-Associated Viral Vector (Serotype 2)-Nerve Growth Factor for Patients with Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol. 2018, 75, 834–841. [Google Scholar] [CrossRef]
- Tuszynski, M.H.; Yang, J.H.; Barba, D.; U, H.-S.; Bakay, R.A.E.; Pay, M.M.; Masliah, E.; Conner, J.M.; Kobalka, P.; Roy, S.; et al. Nerve Growth Factor Gene Therapy Activates Neuronal Responses in Alzheimer’s Disease. JAMA Neurol. 2015, 72, 1139. [Google Scholar] [CrossRef] [PubMed]
- Karami, A.; Eyjolfsdottir, H.; Vijayaraghavan, S.; Lind, G.; Almqvist, P.; Kadir, A.; Linderoth, B.; Andreasen, N.; Blennow, K.; Wall, A.; et al. Changes in CSF cholinergic biomarkers in response to cell therapy with NGF in patients with Alzheimer’s disease. Alzheimers Dement. 2015, 11, 1316–1328. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.; Westman, E.; Eyjolfsdottir, H.; Almqvist, P.; Lind, G.; Linderoth, B.; Seiger, A.; Blennow, K.; Karami, A.; Darreh-Shori, T.; et al. Brain changes in Alzheimer’s disease patients with implanted encapsulated cells releasing nerve growth factor. J. Alzheimers Dis. 2015, 43, 1059–1072. [Google Scholar] [CrossRef]
- Zhang, H.; Petit, G.H.; Gaughwin, P.M.; Hansen, C.; Ranganathan, S.; Zuo, X.; Smith, R.; Roybon, L.; Brundin, P.; Mobley, W.C.; et al. NGF rescues hippocampal cholinergic neuronal markers, restores neurogenesis, and improves the spatial working memory in a mouse model of Huntington’s Disease. J. Huntingtons Dis. 2013, 2, 69–82. [Google Scholar] [CrossRef]
- Wang, T.H.; Feng, Z.T.; Wei, P.; Li, H.; Shi, Z.J.; Li, L.Y. Effects of pcDNA3-beta-NGF gene-modified BMSC on the rat model of Parkinson’s disease. J. Mol. Neurosci. 2008, 35, 161–169. [Google Scholar] [CrossRef]
- Li, J.T.; Dong, S.Q.; Qian, T.; Yang, W.B.; Chen, X.J. Mouse Nerve Growth Factor Injection and Progression Rate in Patients With Amyotrophic Lateral Sclerosis: An Observational Study. Front. Neurol. 2022, 13, 829569. [Google Scholar] [CrossRef]
- Katsouri, L.; Ashraf, A.; Birch, A.M.; Lee, K.K.L.; Mirzaei, N.; Sastre, M. Systemic administration of fibroblast growth factor-2 (FGF2) reduces BACE1 expression and amyloid pathology in APP23 mice. Neurobiol. Aging 2015, 36, 821–831. [Google Scholar] [CrossRef]
- Kiyota, T.; Ingraham, K.L.; Jacobsen, M.T.; Xiong, H.; Ikezu, T. FGF2 gene transfer restores hippocampal functions in mouse models of Alzheimer’s disease and has therapeutic implications for neurocognitive disorders. Proc. Natl. Acad. Sci. USA 2011, 108, E1339–E1348. [Google Scholar] [CrossRef] [PubMed]
- Alam, R.; Mrad, Y.; Hammoud, H.; Saker, Z.; Fares, Y.; Estephan, E.; Bahmad, H.F.; Harati, H.; Nabha, S. New insights into the role of fibroblast growth factors in Alzheimer’s disease. Mol. Biol. Rep. 2022, 49, 1413–1427. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhang, H.; Gao, J.; Xu, Y. Silencing of miR-497-5p inhibits cell apoptosis and promotes autophagy in Parkinson’s disease by upregulation of FGF2. Environ. Toxicol. 2021, 36, 2302–2312. [Google Scholar] [CrossRef]
- Kumar, R.; Donakonda, S.; Müller, S.A.; Bötzel, K.; Höglinger, G.U.; Koeglsperger, T. FGF2 Affects Parkinson’s Disease-Associated Molecular Networks Through Exosomal Rab8b/Rab31. Front. Genet. 2020, 11, 572058. [Google Scholar] [CrossRef]
- Thau, N.; Jungnickel, J.; Knippenberg, S.; Ratzka, A.; Dengler, R.; Petri, S.; Grothe, C. Prolonged survival and milder impairment of motor function in the SOD1 ALS mouse model devoid of fibroblast growth factor 2. Neurobiol. Dis. 2012, 47, 248–257. [Google Scholar] [CrossRef]
- Bongioanni, P.; Reali, C.; Sogos, V. Ciliary neurotrophic factor (CNTF) for amyotrophic lateral sclerosis or motor neuron disease. Cochrane Database Syst. Rev. 2009, 2004, CD004302. [Google Scholar] [CrossRef] [PubMed]
- Cedarbaum, J.M. A phase I study of recombinant human ciliary neurotrophic factor (rHCNTF) in patients with amyotrophic lateral sclerosis. Clin. Neuropharmacol. 1995, 18, 515–532. [Google Scholar] [CrossRef]
- Miller, R.G.; Bryan, W.; Dietz, M.; Munsat, T.; Petajan, J.; Smith, S.; Goodpasture, J. Toxicity and tolerability of recombinant human ciliary neurotrophic factor in patients with amyotrophic lateral sclerosis. Neurology 1996, 47, 1329–1331. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.G.; Petajan, J.H.; Bryan, W.W.; Armon, C.; Barohn, R.J.; Goodpasture, J.C.; Hoagland, R.J.; Parry, G.J.; Ross, M.A.; Stromatt, S.C.; et al. A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis. rhCNTF ALS Study Group. Ann. Neurol. 1996, 39, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Cedarbaum, J.M.; Brooks, B.R. A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. Neurology 1996, 46, 1244–1249. [Google Scholar] [CrossRef]
- Aebischer, P.; Schluep, M.; Déglon, N.; Joseph, J.-M.; Hirt, L.; Heyd, B.; Goddard, M.; Hammang, J.P.; Zurn, A.D.; Kato, A.C.; et al. Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nat. Med. 1996, 2, 696–699. [Google Scholar] [CrossRef]
- Nam, J.H.; Park, E.S.; Won, S.-Y.; Lee, Y.A.; Kim, K.I.; Jeong, J.Y.; Baek, J.Y.; Cho, E.J.; Jin, M.; Chung, Y.C.; et al. TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s disease via CNTF. Brain 2015, 138, 3610–3622. [Google Scholar] [CrossRef]
- Dickson, M.; Perry, R.; Wiener, H.; Go, R. Association studies of transforming growth factor-β1 and Alzheimer’s disease. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2005, 139B, 38–41. [Google Scholar] [CrossRef]
- Tesseur, I.; Nguyen, A.; Chang, B.; Li, L.; Woodling, N.S.; Wyss-Coray, T.; Luo, J. Deficiency in Neuronal TGF-β Signaling Leads to Nigrostriatal Degeneration and Activation of TGF-β Signaling Protects against MPTP Neurotoxicity in Mice. J. Neurosci. 2017, 37, 4584–4592. [Google Scholar] [CrossRef]
- Endo, F.; Komine, O.; Fujimori-Tonou, N.; Katsuno, M.; Jin, S.; Watanabe, S.; Sobue, G.; Dezawa, M.; Wyss-Coray, T.; Yamanaka, K. Astrocyte-Derived TGF-β1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells. Cell Rep. 2015, 11, 592–604. [Google Scholar] [CrossRef]
- Si, Y.; Kim, S.; Cui, X.; Zheng, L.; Oh, S.J.; Anderson, T.; AlSharabati, M.; Kazamel, M.; Volpicelli-Daley, L.; Bamman, M.M.; et al. Transforming Growth Factor Beta (TGF-β) Is a Muscle Biomarker of Disease Progression in ALS and Correlates with Smad Expression. PLoS ONE 2015, 10, e0138425. [Google Scholar] [CrossRef]
- Zhao, L.-J.; Wang, Z.-T.; Ma, Y.-H.; Zhang, W.; Dong, Q.; Yu, J.-T.; Tan, L.; Initiative, A.D.N. Associations of the cerebrospinal fluid hepatocyte growth factor with Alzheimer’s disease pathology and cognitive function. BMC Neurol. 2021, 21, 387. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.W.; Harding, J.W. Small molecule activation of the neurotrophin hepatocyte growth factor to treat Alzheimer disease. Neurosciences 2021, 8, 70–80. [Google Scholar] [CrossRef]
- Meng, H.; Jin, J.; Wang, H.; Wang, L.; Wu, C. Recent advances in the therapeutic efficacy of hepatocyte growth factor gene-modified mesenchymal stem cells in multiple disease settings. J. Cell. Mol. Med. 2022, 26, 4745–4755. [Google Scholar] [CrossRef]
- Giacobbo, B.L.; Doorduin, J.; Klein, H.C.; Dierckx, R.A.J.O.; Bromberg, E.; de Vries, E.F.J. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol. Neurobiol. 2019, 56, 3295. [Google Scholar] [CrossRef]
- Li, Y.; Li, F.; Qin, D.; Chen, H.; Wang, J.; Wang, J.; Song, S.; Wang, C.; Wang, Y.; Liu, S.; et al. The role of brain derived neurotrophic factor in central nervous system. Front. Aging Neurosci. 2022, 14, 986443. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.S.; Kavalali, E.T.; Monteggia, L.M. BDNF Signaling in Context: From Synaptic Regulation to Psychiatric Disorders. Cell 2022, 185, 62. [Google Scholar] [CrossRef]
- Laing, K.R.; Mitchell, D.; Wersching, H.; Czira, M.E.; Berger, K.; Baune, B.T. Brain-derived neurotrophic factor (BDNF) gene: A gender-specific role in cognitive function during normal cognitive aging of the MEMO-Study? Age 2012, 34, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Moya-Alvarado, G.; Gonzalez, A.; Stuardo, N.; Bronfman, F.C. Brain-Derived Neurotrophic Factor (BDNF) Regulates Rab5-Positive Early Endosomes in Hippocampal Neurons to Induce Dendritic Branching. Front. Cell. Neurosci. 2018, 12, 493. [Google Scholar] [CrossRef] [PubMed]
- Buj-Bello, A.; Buchman, V.L.; Horton, A.; Rosenthal, A.; Davies, A.M. GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron 1995, 15, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Sariola, H.; Saarma, M. Novel functions and signalling pathways for GDNF. J. Cell Sci. 2003, 116 Pt 19, 3855–3862. [Google Scholar] [CrossRef]
- Uesaka, T.; Nagashimada, M.; Enomoto, H. GDNF signaling levels control migration and neuronal differentiation of enteric ganglion precursors. J. Neurosci. 2013, 33, 16372–16382. [Google Scholar] [CrossRef]
- Sariola, H.; Sariola, S.M. GDNF and its receptors in the regulation of the ureteric branching. Int. J. Dev. Biol. 1999, 43, 413–418. [Google Scholar]
- Doretto, L.B.; Butzge, A.J.; Nakajima, R.T.; Martinez, E.R.M.; de Souza, B.M.; da Silva Rodrigues, M.; Rosa, I.F.; Ricci, J.M.B.; Tovo-Neto, A.; Costa, D.F.; et al. Gdnf Acts as a Germ Cell-Derived Growth Factor and Regulates the Zebrafish Germ Stem Cell Niche in Autocrine- and Paracrine-Dependent Manners. Cells 2022, 11, 1295. [Google Scholar] [CrossRef]
- Laron, Z. Insulin-like growth factor 1 (IGF-1): A growth hormone. Mol. Pathol. 2001, 54, 311. [Google Scholar] [CrossRef]
- Bailes, J.; Soloviev, M. Insulin-Like Growth Factor-1 (IGF-1) and Its Monitoring in Medical Diagnostic and in Sports. Biomolecules 2021, 11, 217. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, H.-H.; Lee, C.-E. IGF-1 Potentiation of IL-4-induced CD23/FceRII Expression in Human B Cells. Mol. Cells 2003, 15, 307–312. Available online: https://www.molcells.org/journal/view.html?spage=307&volume=15&number=3 (accessed on 28 January 2024). [CrossRef] [PubMed]
- Wang, L.; Wang, J.; Wang, F.; Liu, C.; Yang, X.; Yang, J.; Ming, D. VEGF-Mediated Cognitive and Synaptic Improvement in Chronic Cerebral Hypoperfusion Rats Involves Autophagy Process. Neuromolecular Med. 2017, 19, 423–435. [Google Scholar] [CrossRef]
- Yang, J.; Yang, C.; Liu, C.; Zhang, T.; Yang, Z. Paradoxical effects of VEGF on synaptic activity partially involved in notch1 signaling in the mouse hippocampus. Hippocampus 2016, 26, 589–600. [Google Scholar] [CrossRef]
- Echeverria, V.; Barreto, G.E.; Avila-Rodriguezc, M.; Tarasov, V.V.; Aliev, G. Is VEGF a Key Target of Cotinine and Other Potential Therapies Against Alzheimer Disease? Curr. Alzheimer Res. 2017, 14, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Nampoothiri, S.S.; Rajanikant, G.K. miR-9 Upregulation Integrates Post-ischemic Neuronal Survival and Regeneration In Vitro. Cell. Mol. Neurobiol. 2019, 39, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xu, J.; Rao, Z.; Deng, R.; Xu, Y.; Qiu, S.; Long, H.; Zhu, Q.; Liu, X.; Bai, Y.; et al. Facilitate Angiogenesis and Neurogenesis by Growth Factors Integrated Decellularized Matrix Hydrogel. Tissue Eng. Part A 2021, 27, 771–787. [Google Scholar] [CrossRef]
- Basu, S.; Choudhury, I.N.; Nazareth, L.; Chacko, A.; Shelper, T.; Vial, M.-L.; Ekberg, J.A.K.; John, J.A.S. In vitro modulation of Schwann cell behavior by VEGF and PDGF in an inflammatory environment. Sci. Rep. 2022, 12, 662. [Google Scholar] [CrossRef]
- Maes, M.; Rachayon, M.; Jirakran, K.; Sodsai, P.; Sughondhabirom, A. Lower Nerve Growth Factor Levels in Major Depression and Suicidal Behaviors: Effects of Adverse Childhood Experiences and Recurrence of Illness. Brain Sci. 2023, 13, 1090. [Google Scholar] [CrossRef]
- Barker, P.A.; Mantyh, P.; Arendt-Nielsen, L.; Viktrup, L.; Tive, L. Nerve Growth Factor Signaling and Its Contribution to Pain. J. Pain Res. 2020, 13, 1223–1241. [Google Scholar] [CrossRef]
- Testa, G.; Cattaneo, A.; Capsoni, S. Understanding pain perception through genetic painlessness diseases: The role of NGF and proNGF. Pharmacol. Res. 2021, 169, 105662. [Google Scholar] [CrossRef]
- Lehigh, K.M.; West, K.M.; Ginty, D.D. Retrogradely Transported TrkA Endosomes Signal Locally within Dendrites to Maintain Sympathetic Neuron Synapses. Cell Rep. 2017, 19, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Ricci, V.; de Berardis, D.; Martinotti, G.; Maina, G. Neurotrophic Factors in Cannabis-Induced Psychosis: An Update. Curr. Top. Med. Chem. 2023, 23, 1–16. [Google Scholar] [CrossRef]
- Ciafrè, S.; Ferraguti, G.; Tirassa, P.; Iannitelli, A.; Ralli, M.; Greco, A.; Chaldakov, G.N.; Rosso, P.; Fico, E.; Messina, M.P.; et al. Nerve growth factor in the psychiatric brain. Riv. Psichiatr. 2020, 55, 4–15. [Google Scholar] [CrossRef]
- Monaco, C.F.; Plewes, M.R.; Przygrodzka, E.; George, J.W.; Qiu, F.; Xiao, P.; Wood, J.R.; Cupp, A.S.; Davis, J.S. Basic fibroblast growth factor induces proliferation and collagen production by fibroblasts derived from the bovine corpus luteum. Biol. Reprod. 2023, 109, 367–380. [Google Scholar] [CrossRef]
- Fu, L.; Li, R.; Whitelock, J.M.; Lord, M.S. Tuning the intentional corona of cerium oxide nanoparticles to promote angiogenesis via fibroblast growth factor 2 signalling. Regen. Biomater. 2022, 9, rbac081. [Google Scholar] [CrossRef]
- Farooq, M.; Khan, A.W.; Kim, M.S.; Choi, S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells 2021, 10, 3242. [Google Scholar] [CrossRef]
- Firooz, M.; Hosseini, J.; Mobayen, M.; Mobayen, M.; Karkhah, S. The future for the application of fibroblast growth factor 2 in modern wound healing. Burns 2022, 49, 247–492. [Google Scholar] [CrossRef]
- Fu, X.F.; Zhao, H.-C.; Yang, C.-L.; Chen, C.-Z.; Wang, K.; Gao, F.; Tian, Y.-Z.; Zhao, H.-L. MicroRNA-203-3p inhibits the proliferation, invasion and migration of pancreatic cancer cells by downregulating fibroblast growth factor 2. Oncol. Lett. 2021, 22, 626. [Google Scholar] [CrossRef]
- Klimaschewski, L.; Claus, P. Fibroblast Growth Factor Signalling in the Diseased Nervous System. Mol. Neurobiol. 2021, 58, 3884–3902. [Google Scholar] [CrossRef] [PubMed]
- Lamus, F.; Martín, C.; Carnicero, E.; Moro, J.; Fernández, J.; Mano, A.; Gato, Á.; Alonso, M. FGF2/EGF contributes to brain neuroepithelial precursor proliferation and neurogenesis in rat embryos: The involvement of embryonic cerebrospinal fluid. Dev. Dyn. 2020, 249, 141–153. [Google Scholar] [CrossRef]
- Li, S.; Lu, Y.; Ding, D.; Ma, Z.; Xing, X.; Hua, X.; Xu, J. Fibroblast growth factor 2 contributes to the effect of salidroside on dendritic and synaptic plasticity after cerebral ischemia/reperfusion injury. Aging 2020, 12, 10951. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Zhang, T.; Jin, Y.; Huang, S.; Xu, M.; Pan, J. The fibroblast growth factor system in cognitive disorders and dementia. Front. Neurosci. 2023, 17, 1136266. [Google Scholar] [CrossRef]
- Dulz, S.; Bassal, M.; Flachsbarth, K.; Riecken, K.; Fehse, B.; Schlichting, S.; Bartsch, S.; Bartsch, U. Intravitreal Co-Administration of GDNF and CNTF Confers Synergistic and Long-Lasting Protection against Injury-Induced Cell Death of Retinal Ganglion Cells in Mice. Cells 2020, 9, 2082. [Google Scholar] [CrossRef]
- Flachsbarth, K.; Jankowiak, W.; Kruszewski, K.; Helbing, S.; Bartsch, S.; Bartsch, U. Pronounced synergistic neuroprotective effect of GDNF and CNTF on axotomized retinal ganglion cells in the adult mouse. Exp. Eye Res. 2018, 176, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, J.; Chohan, M.O.; Li, B.; Liu, F.; Iqbal, K.; Grundke-Iqbal, I. Beneficial effect of a CNTF tetrapeptide on adult hippocampal neurogenesis, neuronal plasticity, and spatial memory in mice. J. Alzheimers Dis. 2010, 21, 1185–1195. [Google Scholar] [CrossRef]
- Jia, C.; Keasey, M.P.; Lovins, C.; Hagg, T. Inhibition of astrocyte FAK-JNK signaling promotes subventricular zone neurogenesis through CNTF. Glia 2018, 66, 2456. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.L.; Faideau, M.; Aiba, I.; Pannasch, U.; Escartin, C.; Rouach, N.; Bonvento, G.; Shuttleworth, C.W. Ciliary neurotrophic factor (CNTF) activation of astrocytes decreases spreading depolarization susceptibility and increases potassium clearance. Glia 2015, 63, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Stankoff, B.; Aigrot, M.S.; Noël, F.; Wattilliaux, A.; Zalc, B.; Lubetzki, C. Ciliary Neurotrophic Factor (CNTF) Enhances Myelin Formation: A Novel Role for CNTF and CNTF-Related Molecules. J. Neurosci. 2002, 22, 9221–9227. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, X.; Wang, H.; Liu, Y.; Wang, X.; Wu, M.; Zhan, H.; Li, S.; Sun, Y. TGF-β1 mediated Smad signaling pathway and EMT in hepatic fibrosis induced by Nano NiO in vivo and in vitro. Environ. Toxicol. 2020, 35, 419–429. [Google Scholar] [CrossRef]
- Barrera, A.D.; García, E.V.; Miceli, D.C. Effect of exogenous transforming growth factor β1 (TGF-β1) on early bovine embryo development. Zygote 2018, 26, 232–241. [Google Scholar] [CrossRef]
- Li, M.O.; Wan, Y.Y.; Sanjabi, S.; Robertson, A.-K.L.; Flavell, R.A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 2006, 24, 99–146. [Google Scholar] [CrossRef]
- Ding, A.; Bian, Y.; Zhang, Z. SP1/TGF-β1/SMAD2 pathway is involved in angiogenesis during osteogenesis. Mol. Med. Rep. 2020, 21, 1581–1589. [Google Scholar] [CrossRef]
- Eid, B.G.; Alhakamy, N.A.; Fahmy, U.A.; Ahmed, O.A.; Shadab; Abdel-Naim, A.B.; Caruso, G.; Caraci, F. Melittin and diclofenac synergistically promote wound healing in a pathway involving TGF-β1. Pharmacol. Res. 2022, 175, 105993. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, J.; Zhou, H.; Xiong, Y.; Wen, Y.; Li, H. Functional importance of the TGF-β1/Smad3 signaling pathway in oxygen-glucose-deprived (OGD) microglia and rats with cerebral ischemia. Int. J. Biol. Macromol. 2018, 116, 537–544. [Google Scholar] [CrossRef]
- Abdel-Rahman, R.F.; Alqasoumi, S.I.; Ogaly, H.A.; Abd-Elsalam, R.M.; El-Banna, H.A.; Soliman, G.A. Propolis ameliorates cerebral injury in focal cerebral ischemia/reperfusion (I/R) rat model via upregulation of TGF-β1. Saudi Pharm. J. 2020, 28, 116–126. [Google Scholar] [CrossRef]
- Rong, J.; Yang, Y.; Liang, M.; Zhong, H.; Li, Y.; Zhu, Y.; Sha, S.; Chen, L.; Zhou, R. Neonatal inflammation increases hippocampal KCC2 expression through methylation-mediated TGF-β1 downregulation leading to impaired hippocampal cognitive function and synaptic plasticity in adult mice. J. Neuroinflamm. 2023, 20, 15. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Nawa, K.; Ichihara, A. Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem. Biophys. Res. Commun. 1984, 122, 1450–1459. [Google Scholar] [CrossRef] [PubMed]
- Takeuchia, K.; Shibamotoa, S.; Hayakawaa, M.; Horia, T.; Miyazawab, K.; Kitamurab, N.; Itoa, F. Hepatocyte growth factor (HGF)-induced cell migration is negatively modulated by epidermal growth factor through tyrosine phosphorylation of the HGF receptor. Exp. Cell Res. 1996, 223, 420–425. [Google Scholar] [CrossRef]
- Matsumoto, K.; Nakamura, T. Emerging Multipotent Aspects of Hepatocyte Growth Factor. J. Biochem. 1996, 119, 591–600. [Google Scholar] [CrossRef]
- Benkhoucha, M.; Santiago-Raber, M.-L.; Schneiter, G.; Chofflon, M.; Funakoshi, H.; Nakamura, T.; Lalive, P.H. Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+ Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 2010, 107, 6424–6429. [Google Scholar] [CrossRef]
- Okunishi, K.; Dohi, M.; Fujio, K.; Nakagome, K.; Tabata, Y.; Okasora, T.; Seki, M.; Shibuya, M.; Imamura, M.; Harada, H.; et al. Hepatocyte growth factor significantly suppresses collagen-induced arthritis in mice. J. Immunol. 2007, 179, 5504–5513. [Google Scholar] [CrossRef] [PubMed]
- Maraldi, T.; Beretti, F.; Guida, M.; Zavatti, M.; De Pol, A. Role of Hepatocyte Growth Factor in the Immunomodulation Potential of Amniotic Fluid Stem Cells. Stem Cells Transl. Med. 2015, 4, 539–547. [Google Scholar] [CrossRef]
- Ebens, A.; Brose, K.; Leonardo, E.; Hanson, M.G., Jr.; Bladt, F.; Birchmeier, C.; A Barres, B.; Tessier-Lavigne, M. Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 1996, 17, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- Barde, Y.A.; Edgar, D.; Thoenen, H. Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1982, 1, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Notaras, M.; Hill, R.; Van Den Buuse, M. The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: Progress and controversy. Mol. Psychiatry 2015, 20, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Notaras, M.; van den Buuse, M. Brain-Derived Neurotrophic Factor (BDNF): Novel Insights into Regulation and Genetic Variation. Neuroscientist 2019, 25, 434–454. [Google Scholar] [CrossRef] [PubMed]
- Colucci-D’amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int. J. Mol. Sci. 2020, 21, 7777. [Google Scholar] [CrossRef]
- Albini, M.; Krawczun-Rygmaczewska, A.; Cesca, F. Astrocytes and brain-derived neurotrophic factor (BDNF). Neurosci. Res. 2023, 197, 42–51. [Google Scholar] [CrossRef]
- Moya-Alvarado, G.; Tiburcio-Felix, R.; Ibáez, M.R.; A Aguirre-Soto, A.; Guerra, M.V.; Wu, C.; Mobley, W.C.; Perlson, E.; Bronfman, F.C. BDNF/TrkB signaling endosomes in axons coordinate CREB/mTOR activation and protein synthesis in the cell body to induce dendritic growth in cortical neurons. Elife 2023, 12, e77455. [Google Scholar] [CrossRef]
- Leal, G.; Comprido, D.; Duarte, C.B. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 2014, 76 Pt C, 639–656. [Google Scholar] [CrossRef]
- Zuccato, C.; Cattaneo, E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog. Neurobiol. 2007, 81, 294–330. [Google Scholar] [CrossRef]
- Speidell, A.; Abid, N.B.; Yano, H. Brain-Derived Neurotrophic Factor Dysregulation as an Essential Pathological Feature in Huntington’s Disease: Mechanisms and Potential Therapeutics. Biomedicines 2023, 11, 2275. [Google Scholar] [CrossRef]
- Deng, P.; Fink, K.D.; Torrest, A.; Pollock, K.; Dahlenburg, H.; Annett, G.; Nolta, J. Clinical trial perspective for adult and juvenile Huntington’s disease using genetically-engineered mesenchymal stem cells. Neural Regen. Res. 2016, 11, 702. [Google Scholar] [CrossRef]
- Deng, C.; Chen, H. Brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling in spinal muscular atrophy and amyotrophic lateral sclerosis. Neurobiol. Dis. 2024, 190, 106377. [Google Scholar] [CrossRef]
- Hennlein, L.; Ghanawi, H.; Gerstner, F.; García, E.P.; Yildirim, E.; Saal-Bauernschubert, L.; Moradi, M.; Deng, C.; Klein, T.; Appenzeller, S.; et al. Plastin 3 rescues cell surface translocation and activation of TrkB in spinal muscular atrophy. J. Cell Biol. 2023, 222, e202204113. [Google Scholar] [CrossRef]
- Ponomarev, A.S.; Chulpanova, D.S.; Yanygina, L.M.; Solovyeva, V.V.; Rizvanov, A.A. Emerging Gene Therapy Approaches in the Management of Spinal Muscular Atrophy (SMA): An Overview of Clinical Trials and Patent Landscape. Int. J. Mol. Sci. 2023, 24, 13743. [Google Scholar] [CrossRef] [PubMed]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhang, H.; Wang, C.; Ming, F.; Shi, X.; Yang, M. Serum level of brain-derived neurotrophic factor in Parkinson’s disease: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 88, 168–174. [Google Scholar] [CrossRef]
- Patterson, C.G.; Joslin, E.; Gil, A.B.; Spigle, W.; Nemet, T.; Chahine, L.; Christiansen, C.L.; Melanson, E.; Kohrt, W.M.; Mancini, M.; et al. Study in Parkinson’s disease of exercise phase 3 (SPARX3): Study protocol for a randomized controlled trial. Trials 2022, 23, 855. [Google Scholar] [CrossRef] [PubMed]
- Palasz, E.; Wysocka, A.; Gasiorowska, A.; Chalimoniuk, M.; Niewiadomski, W.; Niewiadomska, G. BDNF as a Promising Therapeutic Agent in Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 1170. [Google Scholar] [CrossRef]
- Lalonde, R.; Hernandez, M.; Strazielle, C. BDNF and Cerebellar Ataxia. Curr. Drug Res. Rev. 2023, 15, 300–307. [Google Scholar] [CrossRef]
- Sheeler, C.; Rosa, J.G.; Borgenheimer, E.; Mellesmoen, A.; Rainwater, O.; Cvetanovic, M. Post-symptomatic Delivery of Brain Derived Neurotrophic Factor (BDNF) Ameliorates Spinocerebellar Ataxia Type 1 (SCA1) Pathogenesis. Cerebellum 2021, 20, 420. [Google Scholar] [CrossRef]
- Misiorek, J.O.; Schreiber, A.M.; Urbanek-Trzeciak, M.O.; Jazurek-Ciesiołka, M.; Hauser, L.A.; Lynch, D.R.; Napierala, J.S.; Napierala, M. A Comprehensive Transcriptome Analysis Identifies FXN and BDNF as Novel Targets of miRNAs in Friedreich’s Ataxia Patients. Mol. Neurobiol. 2020, 57, 2639. [Google Scholar] [CrossRef]
- Ayanlaja, A.A.; Zhang, B.; Ji, G.; Gao, Y.; Wang, J.; Kanwore, K.; Gao, D. The reversible effects of glial cell line–derived neurotrophic factor (GDNF) in the human brain. Semin Cancer Biol. 2018, 53, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-F.H.; Doherty, D.H.; Lile, J.D.; Bektesh, S.; Collins, F. GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993, 260, 1130–1132. [Google Scholar] [CrossRef]
- Tong, S.Y.; Wang, R.-W.; Li, Q.; Liu, Y.; Yao, X.-Y.; Geng, D.-Q.; Gao, D.-S.; Ren, C. Serum glial cell line-derived neurotrophic factor (GDNF) a potential biomarker of executive function in Parkinson’s disease. Front. Neurosci. 2023, 17, 1136499. [Google Scholar] [CrossRef]
- Yasuhara, T.; Shingo, T.; Date, I. Glial cell line-derived neurotrophic factor (GDNF) therapy for Parkinson’s disease. Acta Med. Okayama 2007, 61, 51–56. [Google Scholar] [CrossRef]
- Tenenbaum, L.; Humbert-Claude, M. Glial Cell Line-Derived Neurotrophic Factor Gene Delivery in Parkinson’s Disease: A Delicate Balance between Neuroprotection, Trophic Effects, and Unwanted Compensatory Mechanisms. Front. Neuroanat. 2017, 11, 29. [Google Scholar] [CrossRef]
- Treanor, J.J.S.; Goodman, L.; de Sauvage, F.; Stone, D.M.; Poulsen, K.T.; Beck, C.D.; Gray, C.; Armanini, M.P.; Pollock, R.A.; Hefti, F.; et al. Characterization of a multicomponent receptor for GDNF. Nature 1996, 382, 80–83. [Google Scholar] [CrossRef]
- Barker, R.A.; Burchiel, K.; Comella, C.; Jankovic, J.; Lang, A.; Laws, E.; Lozano, A.; Penn, R.; Simpson, R.; Stacy, M.; et al. GDNF and Parkinson’s Disease: Where Next? A Summary from a Recent Workshop. J. Park. Dis. 2020, 10, 875. [Google Scholar] [CrossRef]
- Eslamboli, A.; Cummings, R.M.; Ridley, R.M.; Baker, H.F.; Muzyczka, N.; Burger, C.; Mandel, R.J.; Kirik, D.; Annett, L.E. Recombinant adeno-associated viral vector (rAAV) delivery of GDNF provides protection against 6-OHDA lesion in the common marmoset monkey (Callithrix jacchus). Exp. Neurol. 2003, 184, 536–548. [Google Scholar] [CrossRef]
- Rinderknecht, E.; Humbel, R. The Amino Acid Sequence of Human Insulin-like Growth Factor I and Its Structural Homology with Proinsulin. J. Biol. Chem. 1978, 253, 2769–2776. [Google Scholar] [CrossRef]
- Rinderknecht, E.; Humbel, R.E. Polypeptides with nonsuppressible insulin-like and cell-growth promoting activities in human serum: Isolation, chemical characterization, and some biological properties of forms I and II. Proc. Natl. Acad. Sci. USA 1976, 73, 2365. [Google Scholar] [CrossRef]
- Castilla-Cortázar, I.; Aguirre, G.A.; Femat-Roldán, G.; Martín-Estal, I.; Espinosa, L. Is insulin-like growth factor-1 involved in Parkinson’s disease development? J. Transl. Med. 2020, 18, 70. [Google Scholar] [CrossRef]
- Allard, J.B.; Duan, C. IGF-Binding Proteins: Why Do They Exist and Why Are There So Many? Front. Endocrinol. 2018, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Prager, D.; Melmed, S. Insulin and insulin-like growth factor I receptors: Are there functional distinctions? Endocrinology 1993, 132, 1419–1420. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Vagic, D.; Swartz, S.A.; Soczynska, J.K.; Woldeyohannes, H.O.; Voruganti, L.P.; Konarski, J.Z. Insulin, insulin-like growth factors and incretins: Neural homeostatic regulators and treatment opportunities. CNS Drugs 2008, 22, 443–453. [Google Scholar] [CrossRef]
- Ivan, D.C.; Berve, K.C.; Walthert, S.; Monaco, G.; Borst, K.; Bouillet, E.; Ferreira, F.; Lee, H.; Steudler, J.; Buch, T.; et al. Insulin-like growth factor-1 receptor controls the function of CNS-resident macrophages and their contribution to neuroinflammation. Acta Neuropathol. Commun. 2023, 11, 35. [Google Scholar] [CrossRef]
- Saleh, N.; Moutereau, S.; Azulay, J.-P.; Verny, C.; Simonin, C.; Tranchant, C.; El Hawajri, N.; Bachoud-Lévi, A.-C.; Maison, P. High insulinlike growth factor I is associated with cognitive decline in Huntington disease. Neurology 2010, 75, 57–63. [Google Scholar] [CrossRef]
- Amirifar, P.; Ranjouri, M.R.; Lavin, M.; Abolhassani, H.; Yazdani, R.; Aghamohammadi, A. Ataxia-telangiectasia: Epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Expert Rev. Clin. Immunol. 2020, 16, 859–871. [Google Scholar] [CrossRef]
- Rauniyar, K.; Bokharaie, H.; Jeltsch, M. Expansion and collapse of VEGF diversity in major clades of the animal kingdom. Angiogenesis 2023, 26, 437–461. [Google Scholar] [CrossRef]
- Ribatti, D. The contribution of Harold F. Dvorak to the study of tumor angiogenesis and stroma generation mechanisms. Endothelium 2007, 14, 131–135. [Google Scholar] [CrossRef]
- Bokhari, S.M.Z.; Hamar, P. Vascular Endothelial Growth Factor-D (VEGF-D): An Angiogenesis Bypass in Malignant Tumors. Int. J. Mol. Sci. 2023, 24, 13317. [Google Scholar] [CrossRef]
- Peach, C.J.; Mignone, V.W.; Arruda, M.A.; Alcobia, D.C.; Hill, S.J.; Kilpatrick, L.E.; Woolard, J. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int. J. Mol. Sci. 2018, 19, 1264. [Google Scholar] [CrossRef] [PubMed]
- Wiszniak, S.; Schwarz, Q. Exploring the Intracrine Functions of VEGF-A. Biomolecules 2021, 11, 128. [Google Scholar] [CrossRef]
- Vila, E.; Solé, M.; Masip, N.; Puertas-Umbert, L.; Amaro, S.; Dantas, A.P.; Unzeta, M.; D’Ocon, P.; Planas, A.M.; Chamorro, Á.; et al. Uric acid treatment after stroke modulates the Krüppel-like factor 2-VEGF-A axis to protect brain endothelial cell functions: Impact of hypertension. Biochem. Pharmacol. 2019, 164, 115–128. [Google Scholar] [CrossRef]
- Elahi, F.M.; Casaletto, K.B.; La Joie, R.; Walters, S.M.; Harvey, D.; Wolf, A.; Edwards, L.; Rivera-Contreras, W.; Karydas, A.; Cobigo, Y.; et al. Plasma biomarkers of astrocytic and neuronal dysfunction in early- and late-onset Alzheimer’s disease. Alzheimers Dement. 2020, 16, 681. [Google Scholar] [CrossRef]
- Theis, V.; Theiss, C. VEGF—A Stimulus for Neuronal Development and Regeneration in the CNS and PNS. Curr. Protein Pept. Sci. 2018, 19, 589–597. [Google Scholar] [CrossRef]
- Petrelis, A.M.; Stathopoulou, M.G.; Kafyra, M.; Murray, H.; Masson, C.; Lamont, J.; Fitzgerald, P.; Dedoussis, G.; Yen, F.T.; Visvikis-Siest, S. VEGF-A-related genetic variants protect against Alzheimer’s disease. Aging 2022, 14, 2524. [Google Scholar] [CrossRef]
- Moore, A.M.; Mahoney, E.; Dumitrescu, L.; De Jager, P.L.; Koran, M.E.I.; Petyuk, V.A.; Robinson, R.A.; Ruderfer, D.M.; Cox, N.J.; Schneider, J.A.; et al. APOE ε4-specific associations of VEGF gene family expression with cognitive aging and Alzheimer’s disease. Neurobiol. Aging 2020, 87, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Salomon-Zimri, S.; Glat, M.J.; Barhum, Y.; Luz, I.; Boehm-Cagan, A.; Liraz, O.; Ben-Zur, T.; Offen, D.; Michaelson, D.M. Reversal of ApoE4-Driven Brain Pathology by Vascular Endothelial Growth Factor Treatment. J. Alzheimers Dis. 2016, 53, 1443–1458. [Google Scholar] [CrossRef]
- Calvo, P.M.; Hernández, R.G.; Pastor, A.M.; de la Cruz, R.R. VEGF and Neuronal Survival. Neuroscientist 2024, 30, 71–86. [Google Scholar] [CrossRef]
- Alastra, G.; Aloe, L.; Baldassarro, V.A.; Calzà, L.; Cescatti, M.; Duskey, J.T.; Focarete, M.L.; Giacomini, D.; Giardino, L.; Giraldi, V.; et al. Nerve Growth Factor Biodelivery: A Limiting Step in Moving Toward Extensive Clinical Application? Front. Neurosci. 2021, 15, 695592. [Google Scholar] [CrossRef]
- Cohen, S.; Levi-Montalcini, R. Purification and properties of a nerve growth-promoting factor isolated from mouse sarcoma 180. Cancer Res. 1957, 17, 15–20. [Google Scholar]
- Prize, N. The Nobel Prize in Physiology or Medicine 1986. Available online: https://www.nobelprize.org/prizes/medicine/1986/press-release/ (accessed on 5 January 2024).
- Sirmakesyan, S.; Hajj, A.; Hamouda, A.; Cammisotto, P.; Campeau, L. Synthesis and secretion of Nerve Growth Factor is regulated by Nitric Oxide in bladder cells in vitro under a hyperglycemic environment. Nitric Oxide 2023, 140–141, 30–40. [Google Scholar] [CrossRef]
- Mirzahosseini, G.; Ismael, S.; Salman, M.; Kumar, S.; Ishrat, T. Genetic and Pharmacological Modulation of P75 Neurotrophin Receptor Attenuate Brain Damage After Ischemic Stroke in Mice. Mol. Neurobiol. 2024, 61, 276–293. [Google Scholar] [CrossRef]
- Castelli, V.; D’angelo, M.; Zazzeroni, F.; Vecchiotti, D.; Alesse, E.; Capece, D.; Brandolini, L.; Cattani, F.; Aramini, A.; Allegretti, M.; et al. Intranasal delivery of NGF rescues hearing impairment in aged SAMP8 mice. Cell Death Dis. 2023, 14, 605. [Google Scholar] [CrossRef]
- Carmo, S.D.; Kannel, B.; Cuello, A.C. The Nerve Growth Factor Metabolic Pathway Dysregulation as Cause of Alzheimer’s Cholinergic Atrophy. Cells 2022, 11, 16. [Google Scholar] [CrossRef]
- Issa, S.S.; Shaimardanova, A.A.; Valiullin, V.V.; Rizvanov, A.A.; Solovyeva, V.V. Mesenchymal Stem Cell-Based Therapy for Lysosomal Storage Diseases and Other Neurodegenerative Disorders. Front. Pharmacol. 2022, 13, 859516. [Google Scholar] [CrossRef]
- Castle, M.J.; Baltanás, F.C.; Kovacs, I.; Nagahara, A.H.; Barba, D.; Tuszynski, M.H. Postmortem Analysis in a Clinical Trial of AAV2-NGF Gene Therapy for Alzheimer’s Disease Identifies a Need for Improved Vector Delivery. Hum. Gene Ther. 2020, 31, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Tuszynski, M.H.; Thal, L.; Pay, M.; Salmon, D.P.; U, H.S.; Bakay, R.; Patel, P.; Blesch, A.; Vahlsing, H.L.; Ho, G.; et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat. Med. 2005, 11, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Eyjolfsdottir, H.; Koenig, T.; Karami, A.; Almqvist, P.; Lind, G.; Linderoth, B.; Wahlberg, L.; Seiger, Å.; Darreh-Shori, T.; Eriksdotter, M.; et al. Fast Alpha Activity in EEG of Patients with Alzheimer’s Disease Is Paralleled by Changes in Cognition and Cholinergic Markers During Encapsulated Cell Biodelivery of Nerve Growth Factor. Front Aging Neurosci. 2022, 14, 756687. [Google Scholar] [CrossRef]
- Mitra, S.; Behbahani, H.; Eriksdotter, M. Innovative Therapy for Alzheimer’s Disease-With Focus on Biodelivery of NGF. Front. Neurosci. 2019, 13, 38. [Google Scholar] [CrossRef]
- Tasset, I.; Sánchez-López, F.; Agüera, E.; Fernández-Bolaños, R.; Sánchez, F.M.; Cruz-Guerrero, A.; Gascón-Luna, F.; Túnez, I. NGF and nitrosative stress in patients with Huntington’s disease. J. Neurol. Sci. 2012, 315, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Santaella, A.; Kuiperij, H.B.; van Rumund, A.; Esselink, R.A.J.; van Gool, A.J.; Bloem, B.R.; Verbeek, M.M. Inflammation biomarker discovery in Parkinson’s disease and atypical parkinsonisms. BMC Neurol. 2020, 20, 26. [Google Scholar] [CrossRef]
- Maple-Grødem, J.; Ushakova, A.; Pedersen, K.F.; Tysnes, O.B.; Alves, G.; Lange, J. Identification of diagnostic and prognostic biomarkers of PD using a multiplex proteomics approach. Neurobiol. Dis. 2023, 186, 106281. [Google Scholar] [CrossRef]
- Pehar, M.; Cassina, P.; Vargas, M.R.; Castellanos, R.; Viera, L.; Beckman, J.S.; Estévez, A.G.; Barbeito, L. Astrocytic production of nerve growth factor in motor neuron apoptosis: Implications for amyotrophic lateral sclerosis. J. Neurochem. 2004, 89, 464–473. [Google Scholar] [CrossRef]
- Kim, M.J.; Vargas, M.R.; Harlan, B.A.; Killoy, K.M.; Ball, L.E.; Comte-Walters, S.; Gooz, M.; Yamamoto, Y.; Beckman, J.S.; Barbeito, L.; et al. Nitration and Glycation Turn Mature NGF into a Toxic Factor for Motor Neurons: A Role for p75NTR and RAGE Signaling in ALS. Antioxid. Redox Signal. 2018, 28, 1587–1602. [Google Scholar] [CrossRef] [PubMed]
- Stansberry, W.M.; Pierchala, B.A. Neurotrophic factors in the physiology of motor neurons and their role in the pathobiology and therapeutic approach to amyotrophic lateral sclerosis. Front. Mol. Neurosci. 2023, 16, 1238453. [Google Scholar] [CrossRef] [PubMed]
- Bartold, M.; Ivanovski, S. Biological processes and factors involved in soft and hard tissue healing. Periodontol 2000 2024. online ahead of print. [Google Scholar] [CrossRef]
- Ribatti, D.; Vacca, A.; Rusnati, M.; Presta, M. The discovery of basic fibroblast growth factor/fibroblast growth factor-2 and its role in haematological malignancies. Cytokine Growth Factor Rev. 2007, 18, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Benington, L.; Rajan, G.; Locher, C.; Lim, L.Y. Fibroblast Growth Factor 2—A Review of Stabilisation Approaches for Clinical Applications. Pharmaceutics 2020, 12, 508. [Google Scholar] [CrossRef]
- Nickle, A.; Ko, S.; Merrill, A.E. Fibroblast growth factor 2. Differentiation 2023, 100733, online ahead of print. [Google Scholar] [CrossRef]
- Gale, K. Fibroblast growth factors and seizure induced neuroprotection. In Epilepsy Research Progress; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2008; pp. 23–55. [Google Scholar]
- Sluzalska, K.D.; Slawski, J.; Sochacka, M.; Lampart, A.; Otlewski, J.; Zakrzewska, M. Intracellular partners of fibroblast growth factors 1 and 2-implications for functions. Cytokine Growth Factor Rev. 2021, 57, 93–111. [Google Scholar] [CrossRef]
- Cheng, Y.; Lin, K.H.; Young, T.H.; Cheng, N.C. The influence of fibroblast growth factor 2 on the senescence of human adipose-derived mesenchymal stem cells during long-term culture. Stem Cells Transl. Med. 2020, 9, 518. [Google Scholar] [CrossRef]
- Kefalakes, E.; Sarikidi, A.; Bursch, F.; Ettcheto, M.; Schmuck, M.; Rumpel, R.; Grothe, C.; Petri, S. Isoform-selective as opposed to complete depletion of fibroblast growth factor 2 (FGF-2) has no major impact on survival and gene expression in SOD1G93A amyotrophic lateral sclerosis mice. Eur. J. Neurosci. 2019, 50, 3028–3045. [Google Scholar] [CrossRef] [PubMed]
- Rose-John, S. Interleukin-6 Family Cytokines. Cold Spring Harb. Perspect. Biol. 2018, 10, a028415. [Google Scholar] [CrossRef] [PubMed]
- Manthorpe, M.; Skaper, S.; Adler, R.; Landa, K.; Varon, S. Cholinergic Neuronotrophic Factors: Fractionation Properties of an Extract from Selected Chick Embryonic Eye Tissues. J. Neurochem. 1980, 34, 69–75. [Google Scholar] [CrossRef]
- Sendtner, M.; Carrol, P.; Holtmann, B.; Hughes, R.A.; Thoenen, H. Ciliary neurotrophic factor. J. Neurobiol. 1994, 25, 1436–1453. [Google Scholar] [CrossRef]
- Dobrea, G.M.; Unnerstall, J.R.; Rao, M.S. The expression of CNTF message and immunoreactivity in the central and peripheral nervous system of the rat. Dev. Brain Res. 1992, 66, 209–219. [Google Scholar] [CrossRef]
- Ohta, M.; Ohi, T.; Nishimura, M.; Itoh, N.; Hayashi, K.; Ohta, K. Distribution of and age-related changes in ciliary neurotrophic factor protein in rat tissues. Biochem. Mol. Biol. Int. 1996, 40, 671–678. [Google Scholar] [CrossRef]
- Modi, K.K.; Jana, M.; Mondal, S.; Pahan, K. Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Upregulates Ciliary Neurotrophic Factor in Astrocytes and Oligodendrocytes. Neurochem. Res. 2015, 40, 2333–2347. [Google Scholar] [CrossRef]
- Kruttgen, A.; Grötzinger, J.; Kurapkat, G.; Weis, J.; Simon, R.; Thier, M.; Schröder, M.; Heinrich, P.; Wollmer, A.; Comeau, M.; et al. Human ciliary neurotrophic factor: A structure-function analysis. Biochem. J. 1995, 309, 215–220. [Google Scholar] [CrossRef]
- El Ouaamari, Y.; Van den Bos, J.; Willekens, B.; Cools, N.; Wens, I. Neurotrophic Factors as Regenerative Therapy for Neurodegenerative Diseases: Current Status, Challenges and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 3866. [Google Scholar] [CrossRef]
- Nasrolahi, A.; Mahmoudi, J.; Akbarzadeh, A.; Karimipour, M.; Sadigh-Eteghad, S.; Salehi, R.; Farhoudi, M. Neurotrophic factors hold promise for the future of Parkinson’s disease treatment: Is there a light at the end of the tunnel? Rev. Neurosci. 2018, 29, 475–489. [Google Scholar] [CrossRef]
- Mirzaei, S.; Paskeh, M.D.A.; Saghari, Y.; Zarrabi, A.; Hamblin, M.R.; Entezari, M.; Hashemi, M.; Aref, A.R.; Hushmandi, K.; Kumar, A.P.; et al. Transforming growth factor-beta (TGF-β) in prostate cancer: A dual function mediator? Int. J. Biol. Macromol. 2022, 206, 435–452. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.B.; A Anzano, M.; Lamb, L.C.; Smith, J.M.; Sporn, M.B. New class of transforming growth factors potentiated by epidermal growth factor: Isolation from non-neoplastic tissues. Proc. Natl. Acad. Sci. USA 1981, 78, 5339–5343. [Google Scholar] [CrossRef]
- Roberts, A.B.; Anzano, M.A.; Meyers, C.A.; Wideman, J.; Blacher, R.; Pan, Y.C.; Stein, S.; Lehrman, S.R.; Smith, J.M.; Lamb, L.C.; et al. Purification and Properties of a Type β Transforming Growth Factor from Bovine Kidney. Biochemistry 1983, 22, 5692–5698. [Google Scholar] [CrossRef] [PubMed]
- Batlle, E.; Massagué, J. Transforming Grown Factor-β Signaling in Immunity and Cancer. Immunity 2019, 50, 924–940. [Google Scholar] [CrossRef]
- Luo, J. TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines 2022, 10, 1206. [Google Scholar] [CrossRef] [PubMed]
- Devan, A.R.; Pavithran, K.; Nair, B.; Murali, M.; Nath, L.R. Deciphering the role of transforming growth factor-beta 1 as a diagnostic-prognostic-therapeutic candidate against hepatocellular carcinoma. World J. Gastroenterol. 2022, 28, 5250–5264. [Google Scholar] [CrossRef]
- Matsuoka, T.; Yashiro, M. The Role of the Transforming Growth Factor-β Signaling Pathway in Gastrointestinal Cancers. Biomolecules 2023, 13, 1551. [Google Scholar] [CrossRef]
- Schuster, N.; Krieglstein, K. Mechanisms of TGF-β-mediated apoptosis. Cell Tissue Res. 2002, 307, 1–14. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Yu, C.; Li, J.; Liu, W.; Luo, B. Epstein-Barr Virus-Encoded Latent Membrane Protein 2A Downregulates GCNT3 via the TGF-β1/Smad-mTORC1 Signaling Axis. J. Virol. 2021, 95, e02481-20. [Google Scholar] [CrossRef]
- Li, L.-Y.; Li, J.-L.; Zhang, H.-M.; Yang, W.-M.; Wang, K.; Fang, Y.; Wang, Y. TGFβ1 treatment reduces hippocampal damage, spontaneous recurrent seizures, and learning memory deficits in pilocarpine-treated rats. J. Mol. Neurosci. 2013, 50, 109–123. [Google Scholar] [CrossRef]
- Caraci, F.; Spampinato, S.; Sortino, M.A.; Bosco, P.; Battaglia, G.; Bruno, V.; Drago, F.; Nicoletti, F.; Copani, A. Dysfunction of TGF-β1 signaling in Alzheimer’s disease: Perspectives for neuroprotection. Cell Tissue Res. 2012, 347, 291–301. [Google Scholar] [CrossRef]
- Caraci, F.; Battaglia, G.; Bruno, V.; Bosco, P.; Carbonaro, V.; Giuffrida, M.L.; Drago, F.; Sortino, M.A.; Nicoletti, F.; Copani, A. TGF-β1 Pathway as a New Target for Neuroprotection in Alzheimer’s Disease. CNS Neurosci. Ther. 2011, 17, 237–249. [Google Scholar] [CrossRef]
- Tarkowski, E.; Andreasen, N.; Tarkowski, A.; Blennow, K. Intrathecal inflammation precedes development of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1200–1205. [Google Scholar] [CrossRef]
- Kapoor, M.; Chinnathambi, S. TGF-β1 signalling in Alzheimer’s pathology and cytoskeletal reorganization: A specialized Tau perspective. J. Neuroinflamm. 2023, 20, 72. [Google Scholar] [CrossRef] [PubMed]
- Plinta, K.; Plewka, A.; Wójcik-Pędziwiatr, M.; Zmarzły, N.; Rudziński, M.; Rudzińska-Bar, M. Is TGF-β1 a Biomarker of Huntington’s Disease Progression? J. Clin. Med. 2021, 10, 3001. [Google Scholar] [CrossRef] [PubMed]
- Mogi, M.; Harada, M.; Kondo, T.; Narabayashi, H.; Riederer, P.; Nagatsu, T. Transforming growth factor-β1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson’s disease. Neurosci. Lett. 1995, 193, 129–132. [Google Scholar] [CrossRef]
- Muñoz, M.D.; de la Fuente, N.; Sánchez-Capelo, A. TGF-β/Smad3 Signalling Modulates GABA Neurotransmission: Implications in Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 590. [Google Scholar] [CrossRef]
- Tapia-González, S.; Giráldez-Pérez, R.M.; Cuartero, M.I.; Casarejos, M.J.; Mena, M.; Wang, X.-F.; Sánchez-Capelo, A. Dopamine and α-synuclein dysfunction in Smad3 null mice. Mol. Neurodegener. 2011, 6, 72. [Google Scholar] [CrossRef]
- Karampetsou, M.; Vekrellis, K.; Melachroinou, K. The promise of the TGF-β superfamily as a therapeutic target for Parkinson’s disease. Neurobiol. Dis. 2022, 171, 105805. [Google Scholar] [CrossRef] [PubMed]
- Booth, H.D.; Wessely, F.; Connor-Robson, N.; Rinaldi, F.; Vowles, J.; Browne, C.; Evetts, S.G.; Hu, M.T.; Cowley, S.A.; Webber, C.; et al. RNA sequencing reveals MMP2 and TGFB1 downregulation in LRRK2 G2019S Parkinson’s iPSC-derived astrocytes. Neurobiol. Dis. 2019, 129, 56–66. [Google Scholar] [CrossRef]
- Jiang, W.G.; Hiscox, S. Hepatocyte growth factor/scatter factor, a cytokine playing multiple and converse roles. Histol. Histopathol. 1997, 12, 537–555. [Google Scholar]
- Rampino, T.; Gregorini, M.; Canton, A.D. Scatter Factors in renal disease: Dr. Jeckyll and Mr. Hyde? Cytokine Growth Factor Rev. 2009, 20, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Pennacchietti, S.; Comoglio, P.M. Hepatocyte Growth Factor/Scatter Factor Receptor. In Encyclopedia of Biological Chemistry; Elsevier: Amsterdam, The Netherlands, 2004; Volume 2, pp. 367–371. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, W.; Wang, Y.-D.; Chen, W.-D. HGF/c-Met: A Key Promoter in Liver Regeneration. Front. Pharmacol. 2022, 13, 808855. [Google Scholar] [CrossRef]
- Matsumoto, K.; Umitsu, M.; De Silva, D.M.; Roy, A.; Bottaro, D.P. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci. 2017, 108, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Lee, M.-Y.; Lee, J.; Kwon, S.H.; Seung, H.; Lim, J.; Kim, S. Hepatocyte growth factor induces pErk and pSTAT3 (Ser 727) to promote mitochondrial activity and neurite outgrowth in primary dorsal root ganglion cultures. NeuroReport 2021, 32, 525–530. [Google Scholar] [CrossRef]
- Doeppner, T.R.; Kaltwasser, B.; Elali, A.; Zechariah, A.; Hermann, D.M.; Bähr, M. Acute hepatocyte growth factor treatment induces long-term neuroprotection and stroke recovery via mechanisms involving neural precursor cell proliferation and differentiation. J. Cereb. Blood Flow Metab. 2011, 31, 1251–1262. [Google Scholar] [CrossRef]
- Liu, X.-S.; Li, J.-F.; Wang, S.-S.; Wang, Y.-T.; Zhang, Y.-Z.; Yin, H.-L.; Geng, S.; Gong, H.-C.; Han, B.; Wang, Y.-L. Human umbilical cord mesenchymal stem cells infected with adenovirus expressing HGF promote regeneration of damaged neuron cells in a Parkinson’s disease model. BioMed. Res. Int. 2014, 2014, 909657. [Google Scholar] [CrossRef]
- Unnisa, A.; Dua, K.; Kamal, M.A. Mechanism of Mesenchymal Stem Cells as a Multitarget Disease-Modifying Therapy for Parkinson’s Disease. Curr. Neuropharmacol. 2023, 21, 988–1000. [Google Scholar] [CrossRef]
- Zhou, N.; Gu, T.W.; Xu, Y.; Liu, Y.; Peng, L.H. Challenges and progress of neurodrug: Bioactivities, production and delivery strategies of nerve growth factor protein. J. Biol. Eng. 2023, 17, 635. [Google Scholar] [CrossRef] [PubMed]
- Lofts, A.; Abu-Hijleh, F.; Rigg, N.; Mishra, R.K.; Hoare, T. Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs 2022, 36, 739–770. [Google Scholar] [CrossRef] [PubMed]
- Laranjeira, S.; Roberton, V.H.; Phillips, J.B.; Shipley, R.J. Perspectives on optimizing local delivery of drugs to peripheral nerves using mathematical models. Wiley Interdiscip. Rev. Syst. Biol. Med. 2023, 15, e1593. [Google Scholar] [CrossRef] [PubMed]
- Thorne, R.G.; Frey, W.H. Delivery of Neurotrophic Factors to the Central Nervous System. Clin. Pharmacokinet. 2012, 40, 907–946. [Google Scholar] [CrossRef] [PubMed]
- Xhima, K.; Aubert, I. The therapeutic potential of nerve growth factor combined with blood-brain barrier modulation by focused ultrasound for neurodegenerative disorders. Neural Regen. Res. 2021, 16, 1783–1785. [Google Scholar] [CrossRef]
- Yogi, A.; Hussack, G.; van Faassen, H.; Haqqani, A.S.; Delaney, C.E.; Brunette, E.; Sandhu, J.K.; Hewitt, M.; Sulea, T.; Kemmerich, K.; et al. Brain Delivery of IGF1R5, a Single-Domain Antibody Targeting Insulin-like Growth Factor-1 Receptor. Pharmaceutics 2022, 14, 1452. [Google Scholar] [CrossRef]
- Chiaretti, A.; Eftimiadi, G.; Soligo, M.; Manni, L.; Di Giuda, D.; Calcagni, M. Topical delivery of nerve growth factor for treatment of ocular and brain disorders. Neural Regen. Res. 2021, 16, 1740–1750. [Google Scholar] [CrossRef]
- Cattaneo, A.; Capsoni, S.; Paoletti, F. Towards Non Invasive Nerve Growth Factor Therapies for Alzheimer’s Disease. J. Alzheimers Dis. 2008, 15, 255–283. [Google Scholar] [CrossRef]
- Gasperi, M.; Castellano, A.E. Growth hormone/insulin-like growth factor I axis in neurodegenerative diseases. J. Endocrinol. Investig. 2010, 33, 587–591. [Google Scholar] [CrossRef]
- Padmakumar, S.; Taha, M.S.; Kadakia, E.; Bleier, B.S.; Amiji, M.M. Delivery of neurotrophic factors in the treatment of age-related chronic neurodegenerative diseases. Expert Opin. Drug Deliv. 2020, 17, 323–340. [Google Scholar] [CrossRef] [PubMed]
Growth Factor | Disease | Type of Study | Application | Results | Ref. |
---|---|---|---|---|---|
BDNF | Huntington’s disease | In vivo | Investigation of the therapeutic potential of BDNF delivered through mesenchymal stem/stromal cells (MSC/BDNF) in HD murine model | Reduced striatal atrophy, alleviated anxiety, increased neurogenesis-like activity, and extended lifespan | [74] |
Amyotrophic lateral sclerosis | Phase I/II clinical trial | Intrathecal delivery of recombinant BDNF for therapy in ALS patients | Doses up to 150 microg/day were well tolerated, with reversible CNS effects at higher doses. However, study’s design and small patient sample did not allow conclusions about treatment efficacy | [75] | |
Parkinson’s disease | In vivo | Investigation of the therapeutic potential of BDNF-secreting fibroblasts grafted near substantia nigra (SN) in a murine model | BDNF has shown promise in preventing neuronal loss and increasing survival of dopaminergic neurons in the SN and their projections to the striatum (ST) | [76,77] | |
In post-PD-induction cases, no recovery of dopaminergic neurons in SN | [78] | ||||
Spinocerebellar ataxia type 1 | In vivo | Intraventricular delivery of recombinant BDNF in a murine model | Delayed the onset of motor impairments and neuronal degeneration, and ameliorate them in the post-symptomatic stage. However, no changes in gene expression were noticed in Purkinje cells | [79] | |
Friedreich’s ataxia | In vitro | Investigation of the protective effects of adipose stem cell-conditioned medium containing BDNF against oxidative stress in FA cells | BDNF prevented apoptosis triggered by FXN gene knockdown | [80] | |
In vivo | Intracerebral delivery of herpes-viral vector carrying a BDNF gene in a murine model | Prevented apoptosis and hindered the development of neuropathology characteristic of FRDA | [81] |
GDNF | Parkinson’s disease | In vivo | Intravenous injections of GDNF-expressing macrophages in a murine model | Promising results for both early and late stages of the disease, including enhanced brain tissue integrity, restoration of most motor functions, sustained therapeutic effects, reduced neuroinflammation, and diminished α-synuclein aggregation | [82] |
Intrastriatal injection of rAAV-GDNF in the common marmoset monkey (Callithrix jacchus) | Improved protection of dopaminergic neurons and higher dopamine levels | [83] | |||
Intracerebral delivery of AAV2-hGDNF in rats | Generally favorable safety profile. However, none have provided robust and consistent evidence for clinical efficiency due to challenges including dosing, delivery route, and immune response | [84,85,86,87,88,89,90,91] | |||
Intracerebral delivery of AAV2-hGDNF in rhesus macaques | |||||
Several clinical trials | Putaminal infusion of AAV2-GDNF in patients with advanced PD | ||||
Bilateral intraputaminal infusion of recombinant GDNF in PD patients | |||||
Huntington’s disease | In vivo | Intrastriatal injection of AAV-GDNF in a murine model | Promoted neuronal survival, and significantly enhanced performance in motor tasks and neurological assessments, which was also supported by histological analyses showing higher neuronal counts in the targeted brain regions | [92,93] | |
Intrastriatal injection of GDNF-secreting neural stem cells (NSCs-GDNF) in a murine model |
IGF-1 | Alzheimer’s disease | In vivo | Intracerebroventricular injection of rAAV-IGF1 in AD mice | Blocked memory impairment, accordingly, could serve as a potential strategy against neuronal damage and memory loss in AD | [94] |
Amyotrophic lateral sclerosis | Phase III clinical trial | Subcutaneous delivery of human recombinant IGF-1 for 2 years in ALS patients | No significant improvement in outcomes, compared to the initial point, and IGF-1 therapy was found to be non-beneficial for this condition | [95] | |
Phase II clinical trial | Intravenous delivery of an IGF-1 mimetic, with a longer half-life, called BVS857 in ALS patients | Provoked an immune response after 12 weeks, with no significant improvement in strength or function of the muscles | [96] | ||
Huntington’s disease | Ex vivo | Investigating the effects of activating IGF-1/insulin signaling pathway in lymphoblasts derived from HD patients | Improved mitochondrial and metabolic function, as well as energy production, highlighting the role of IGF-1 in HD lymphoblasts | [97] | |
Friedreich’s ataxia | Clinical pilot study | Subcutaneous delivery of IGF-1 in FRDA patients for 12 months | Decreased disease progression during therapy, some patients exhibited high scores on the ataxia scale towards the end of the study. IGF-1 was found to significantly decrease FRDA progression but did not entirely prevent it | [98] | |
Ataxia telangiectasia | Cross-sectional observational study | Investigation of the correlation between clinical neurological data, including IGF-1 levels, with extracerebellar neuroimaging findings in AT patients | Established correlation between the deficiency of IGF-1 axis and elevated ataxia scores, coupled with severe neurodegeneration | [99] |
VEGF-A | Alzheimer’s Disease | Prospective longitudinal study | Examining how VEGF levels relate to brain aging over time across different cognitive statuses and investigating VEGF interactions with established AD biomarkers. | Higher CSF VEGF levels were linked to healthier brain aging. VEGF’s protective effects were strongest with heightened AD markers, indicating potential benefits for early AD stages | [100] |
Amyotrophic lateral sclerosis | In vivo | Intrathecal injection of AAV-VEGF in a murine model | Significant delay of disease, preserved motor and neurological functions, and a longer life span | [101] | |
Parkinson’s disease | In vivo | Intrastriatal injection of AAV-VEGF in a murine model | Neuroprotective effects on dopaminergic neurons, and positive behavioral outcome | [102,103] | |
Intrastriatal infusion of hVEGF-secreting cells (baby hamster kidney-VEGF) in a murine model | |||||
In vitro/in vivo | Investigation of cystatin C effect following intrastriatal injections in a murine model and its influence on VEGF secretion | VEGF elevation in the targeted area preserved dopaminergic neurons and promoted angiogenesis in vitro | [104] | ||
Non-viral intrastriatal delivery of VEGF gene to dopaminergic neurons using a polymeric gene carrier in a murine model | Preserved motor function, with no loss of dopaminergic neurons in the targeted area. Suppression of both microglial activation and apoptosis was proposed to contribute to the overall therapeutic effect of VEGF | [105] |
NGF | Alzheimer’s Disease | Phase I clinical trial | Intracerebral injections of AAV2-NGF in AD patients | Proven feasibility, good tolerance, and long-term production of biologically active NGF (up to 7 years) | [106] |
Phase II clinical trial | No changes in cognition or clinical outcomes, attributed to the delivery route | [107] | |||
Phase I clinical trial | Either ex vivo NGF gene delivery using genetically modified fibroblasts or intracerebral injections of AAV2-NGF in AD patients | Conserved ability of degenerating brain regions to interact with the delivered GF, evidenced by axonal sprouting and activation of cell signaling, with no NGF-related reported adverse effects | [108] | ||
Phase I clinical trial | Encapsulated cell bio-delivery of NGF (NGF-ECB), intracerebral injections in AD patients | Good tolerance in all patients, with three patients showing less brain atrophy and higher CSF cholinergic markers | [109,110]. | ||
Huntington’s disease | In vivo | Intracerebral injections of recombinant purified NGF in a murine model | Considerable positive effect on cognitive function, elevated cholinergic markers were noticed, along with restored neurogenesis in the hippocampus and enhanced spatial working memory | [111] | |
Parkinson’s disease | In vivo | Intrastriatal injections of genetically modified bone marrow stromal cells expressing NGF (BMSC-NGF) | Induced neurogenesis and a significant improvement in rotational behavior | [112] | |
Amyotrophic lateral sclerosis | Retrospective, observational study | Investigating the effect of mouse nerve growth factor (mNGF) combined with riluzole (an FDA-approved drug for ALS) on ALS patients | Although proven safe and well tolerated, the treatment did not result in significant clinical changes in ALS progression | [113] |
FGF-2 | Alzheimer’s Disease | In vivo | Subcutaneous delivery of recombinant FGF-2 in a murine model | Improved spatial memory, elevated levels of astrocytes in the hippocampus, and potential modulation of inflammatory responses | [114] |
In vivo | Intracerebral injections of AAV2-FGF-2 in a murine model | Improved spatial learning and long-term potentiation | [115] | ||
Detailed summary of in vitro and in vivo studies exploring FGF-2 therapeutic potentials and effects for AD | [116] | ||||
Parkinson’s disease | In vivo | Investigating the effect of silencing miR-497-5p (an FGF-2 repressor) in a murine model | FGF-2- mediated improvements in motor symptoms, reduction in apoptosis, and stimulation of autophagy | [117] | |
In vitro | Investigating FGF2 influence on the release of extracellular vesicles (EVs) in hippocampal neurons, and its relevance to PD | Enhanced release of EVs enriched with Rab8b and Rab31, suggesting that FGF2-induced Rab enrichment in EVs could play a role in molecular mechanisms related to non-motor symptoms in PD, such as hearing loss and dementia. | [118] | ||
Amyotrophic lateral sclerosis | In vivo | Investigating effects of FGF-2 deficiency in a murine model of ALS | FGF-2-deficient mice exhibited delayed disease onset, improved motor performance, and prolonged survival, as FGF-2 reduction led to the upregulation of other neurotrophic factors, including CNTF and GDNF | [119] |
CNTF | Amyotrophic lateral sclerosis | Several clinical trials | Subcutaneous delivery of recombinant CNTF in ALS patients | No significant differences observed. Common major adverse effects included injection site reactions, cough, reactivation of herpes simplex virus (HSV1) labialis/stomatitis nausea, anorexia, weight loss, and increased salivation | [120,121,122,123,124] |
Phase I clinical trial | Intrathecal implantation of polymer capsules containing genetically engineered baby hamster kidney cells releasing human CNTF in ALS patients | Detectable measures of CNTF in CSF for at least four months, without the adverse effects associated with systemic delivery | [125] | ||
Parkinson’s disease | In vivo | Investigating the effect of CNTF through activating transient receptor potential vanilloid 1 (TRPV1) on astrocytes in a murine model | Prevented the active degeneration of dopamine neurons and resulted in behavioral recovery in PD rat models | [126] |
TGF-β1 | Alzheimer’s disease | Genetic association study | Investigation of the correlation between TGF-β1 variants and AD | Potential association between specific TGF-β1 genetic variants, especially the −509 single-nucleotide polymorphism (SNP) and increased risk of late-onset AD | [127] |
Parkinson’s disease | In vivo | Intracerebral injection of an AAV vector expressing type I receptor of TGF-β1 (AAV-ALK-5) in a murine model | Significant reduction in dopaminergic neurodegeneration and motor deficits | [128] | |
Amyotrophic lateral sclerosis | In vivo | Investigation of TGF-β1 role in the regulation of neuroprotective inflammatory response in a murine model of ALS with astrocyte-specific overproduction | Overproduction of TGF-β1 accelerated disease progression and negatively correlated with lifespan | [129] | |
Observational validation study | Investigating the potential role of TGF-β1 isoforms as biomarkers of ALS progression | Elevated TGF-β1 levels correlated with muscle weakness in humans, and with disease progression in a murine model | [130] |
HGF | Alzheimer’s disease | Observational cohort study | Investigation of the associations between CSF HGF levels, AD biomarkers, and cognitive function. | Significantly higher levels of CSF HGF in demented participants and a significant correlation between HGF levels and AD biomarkers, including Aβ42, pTau, and tTau | [131] |
In vivo studies | Developing and testing small molecules capable of activating the HGF/MET system for AD therapy in AD animal models | Dihexa (one of the developed small molecules) exhibited metabolic stability, BBB penetrability, and the capacity to improve cognitive function by promoting synaptogenesis | [132] | ||
Parkinson’s disease | In vitro | Investigation of the efficacy of MSCs expressing HGF (MSC-HGF) using an adenovirus vector in a PD cell model | Promoted regeneration of damaged PD cells, through regulation of intracellular calcium levels | [133] |
Growth Factor | Classification | Discovery | Size | Primary Source | Receptors | Functions |
---|---|---|---|---|---|---|
BDNF | Neurotrophins | Discovered in 1982 in pig brains | 28–32 kDa | Neurons and glial cells | TrkB (high-affinity) and p75NTR (low-affinity) | Neuronal survival [134], neuroplasticity and synaptic plasticity [135], neurogenesis and synaptogenesis [136], cognitive function [137], dendritic branching [138], regulation of gene expression [135], and modulation of excitatory and inhibitory neurotransmitter profiles |
GDNF | Transforming growth factor beta (TGF-β) superfamily | Discovered in 1993, in rat B49 glial cell lines | 24 kDa | Glial cells | Receptor complex of Ret receptor tyrosine kinase and one of a number of glycosylphosphatidylinositol (GPI)-anchored cell surface proteins GFRα1–4 | Potent survival factor for neurons [139,140]. Control migration and neuronal differentiation in the enteric nervous system in vivo [141]. Regulation of ureteric budding and branching [142], and spermatogenesis regulation [143] |
IGF-1 | Insulin-like growth factor family | Discovered in 1976, in human serum | 7.6 kDa | Hepatocytes mainly, but also produced in the brain stem, cerebellum, cerebral cortex and the striatum | Tyrosine-kinase IGF-1 receptor (IGF-1R) | Growth stimulation [144], cellular proliferation and apoptosis [145], immunomodulatory functions [146], as well as CNS-related functions, such as neurogenesis, angiogenesis, neuroprotection, myelination, modulation of neuroinflammatory response, and neuroplasticity |
VEGF-A | Vascular endothelial growth factor family | Discovered in 1980s and was identified as secretions from tumor cells | 20–27 kDa | Endothelial cells engaged in angiogenesis process and maintaining barrier permeability, glial cells, and neurons | VEGF Receptors (VEGFRs), mainly VEGFR1 and VEGFR2 | Enhancement of synaptic plasticity, influencing memory and learning processes [147,148]. Support neuronal survival in vivo through involvement in angiogenesis and reducing neuroinflammation [149]. Upregulation of VEGF-A may serve in counteracting neuronal damage and enhance survival pathways [150]. Enhancement of axonal growth [151], and activation of Schwann cells [152]. |
NGF | Neurotrophin family | Discovered in 1957 from mouse sarcoma 180. (a Nobel Prize-winning discovery) | 130 kDa | Neurons and glial cells | p75 neurotrophin receptor (p75NTR) for proNGF, and tyrosine kinase A receptor (TrKA) for NGF | Modulation of neuronal growth, proliferation, activation, and survival [153], regulation of sensory neurons differentiation [154], perception [155], axonal target innervation [156], cholinergic neurons maintenance [157], and synaptic plasticity, affecting learning and memory abilities [158], with lower levels associated with depression [153]. |
FGF-2 | Fibroblast growth factor family | Discovered by contributions from various researchers during the 1970s and 1980s | Two isoforms: 18 kDa (low molecular weight), and 21–34 kDa (high molecular weight) | Astrocytes | An isoform of the FGF receptor (FGFR1–4) depending on the cell type | Potent mitogen for cell proliferation [159], promotes angiogenesis [160], tissue repair and regeneration [161], and cell activation and migration, impacting inflammation, wound healing, and potentially cancer progression [162,163]. Neurotrophic effects: promoting neuronal survival [164], neurogenesis [165], axonal growth, dendritic arborization [166], and synaptic plasticity, influencing cognition and memory [167]. |
CNTF | Interleukin 6 family | Discovered in 1980 from ocular tissue of chick embryos, and later found in the sciatic nerves in adult animals of leporine and murine species | 22.8 kDa | Myelin-producing Schwann cells, in PNS and ocular tissue, followed by astrocytes, microglia and oligodendrocytes | Receptor complex: CNTF-R with gp130 and leukemia inhibitory factor receptor (LIF-R) | Survival and maintenance of the optic nerve system, especially, by supporting retinal ganglion cells [168,169]. Hippocampal and sub-ventricular neurogenesis [170,171]. Astrocyte activation [172]. Promoting myelination and enhancing nerve conduction [173]. |
TGF-β1 | Transforming growth factor-beta family | Discovered in 1981 and was later characterized as a protein able to transform normal fibroblast cells into cancer-like cells | 25 kDa | Platelets, fibroblasts, and immune cells. In the CNS: microglia, astrocytes, neurons, and oligodendrocytes | Hetero-tetrameric complex of serine/threonine kinases including TGF-β receptor type 1 (TGFβR1, also known as ALK-5) and TGFβR2 | Regulation of cell growth and proliferation, contributing to the formation of extracellular matrix (ECM) [174], embryonic development [175], immune system modulation, regulation of lymphocyte proliferation and differentiation [176], angiogenesis [177], and wound healing [178]. In the nervous system: neuroprotective role [179]. Reducing neurodegeneration, exerting antioxidant activity, and supporting neurotrophic factors [180]. Enhancing synaptic plasticity, affecting learning and memory [181]. |
HGF | Family of scatter factors, or HGF-like factors | Discovered in the early 1980s and was partially purified from rat serum | 82 kDa | Mesenchymal cells in different tissues, mainly fibroblasts, and other cell types such as endothelial cells and hepatocytes | Specific tyrosine kinase receptor known as c-Met (mesenchymal–epithelial transition factor) | Mitogenic function by promoting cell proliferation and growth in hepatocytes [182], tissue repair, wound healing, and organ regeneration [183]. Inducing cells’ motility. Regulation of tissue structure and organization during development, by supporting branching morphogenesis, tubulogenesis, and organogenesis [184]. Anti-inflammatory properties and immunomodulatory effects [185,186,187]. In the nervous system: neurotrophic properties and promoting the neurons’ survival [131]. HGF’s function goes beyond simple extension, acting as a chemoattractant that facilitates the axonal guidance of motor neurons [188]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issa, S.; Fayoud, H.; Shaimardanova, A.; Sufianov, A.; Sufianova, G.; Solovyeva, V.; Rizvanov, A. Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases. Biomedicines 2024, 12, 1906. https://doi.org/10.3390/biomedicines12081906
Issa S, Fayoud H, Shaimardanova A, Sufianov A, Sufianova G, Solovyeva V, Rizvanov A. Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases. Biomedicines. 2024; 12(8):1906. https://doi.org/10.3390/biomedicines12081906
Chicago/Turabian StyleIssa, Shaza, Haidar Fayoud, Alisa Shaimardanova, Albert Sufianov, Galina Sufianova, Valeriya Solovyeva, and Albert Rizvanov. 2024. "Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases" Biomedicines 12, no. 8: 1906. https://doi.org/10.3390/biomedicines12081906
APA StyleIssa, S., Fayoud, H., Shaimardanova, A., Sufianov, A., Sufianova, G., Solovyeva, V., & Rizvanov, A. (2024). Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases. Biomedicines, 12(8), 1906. https://doi.org/10.3390/biomedicines12081906