Heart Transplant Rejection: From the Endomyocardial Biopsy to Gene Expression Profiling
Abstract
:1. Introduction
2. Historical Consideration
3. Endomyocardial Biopsy—“Almost Everything” about It
3.1. Endomyocardial Biopsy Technique
3.2. Complications of EMB
3.3. Histopathological Examination of the EMB
4. Rejection in Heart Transplant
4.1. Immunological Basis in Heart Transplant Rejection
4.2. Types of Rejection and Risk Factors
5. New Diagnostic Methods in Acute Rejection
6. Treatment Strategies
6.1. Pharmacotherapy of Immunosuppressive Drugs in Heart Transplantation
- Calcineurin Inhibitors (CNIs)
- Antiproliferative Agents
- mTOR Inhibitors
- Corticosteroids
6.2. Immunosuppression after HT
- Immediately postoperatively, the highest levels of immunosuppression should be used followed by tapering these levels in the first year, eventually reaching the lowest maintenance levels of immunosuppression, trying to find the balance between the prevention of graft rejection and the minimization of drug toxicity.
- It is advisable to use small doses of multiple drugs with non-overlapping toxicities rather than higher doses of fewer drugs to minimize side effects.
- Excessive immunosuppression should be avoided because it heightens the risk of adverse effects, including increased susceptibility to infections and malignancy.
- Anti-thymocyte globulins (rabbit ATG and horse ATG) that have multiple distinct antigen-combining sites resulting in the depletion of circulating T-cells and apoptosis of activated T-cells. These have strong immunosuppressive effect but also major side effects like thrombocytopenia, leukopenia and anemia.
- Interleukin-2 receptor antagonists whose mechanism of action is blocking the interleukin 2 (IL-2) receptor on activated T-cells.
- Anti-CD3 antibodies (muromonab-CD3)
- Anti-CD52 antibodies (alemtuzumab)
CNI | Anti-Metabolites | Proliferation Signal Inhibitors | Corticosteroids | |
---|---|---|---|---|
Name | Tacrolimus (TAC), cyclosporine A | mycophenolate mofetil (MMF), enteric-coated mycophenolate sodium (EC-MPS), azathioprine (AZA) | sirolimus (SIR) and everolimus (EVL) | Methylprednisolone—intravenous administration prednisone—oral administration |
Mechanism of action | inhibit the enzyme calcineurin in T-cells | inhibit the cell cycle by inducing nucleotides depletion | inhibit enzyme mammalian target of rapamycin | inhibit the synthesis of cytokines, suppress IL-6, interferon gamma, TNF and production of IL-1 |
Side effects | lymphoma and lymphoproliferative disorders hypertension [76] hyperlipidemia nephrotoxicity infections (bacterial, viral or fungal) [77] | leukopenia gastrointestinal diseases pancytopenia hepatitis pancreatitis [24] | drug–drug interactions dyslipidemia pancytopenia delayed wound healing oral ulcers pericardial and pleural effusions | osteoporosis osteonecrosis Cushing syndrome infections hypertension skin thinning and atrophy acne mild hirsutism facial erythema impaired wound healing |
6.3. ISHLT Recommendations for ACR Treatment
7. Future Directions
- Gene Editing and Cell Therapy
- Next-Generation Immunosuppressive Agents
- Personalized Immunosuppression Regimens
- Nanotechnology and Drug Delivery Systems
- Tissue Engineering and Bioartificial Hearts
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Calne, R.Y.; Rolles, K.; Thiru, S.; Mcmaster, P.; Craddock, G.N.; Aziz, S.; White, D.; Evans, D.; Dunn, D.; Henderson, R.; et al. Cyclosporin a Initially as the Only Immunosuppressant in 34 Recipients of Cadaveric Organs: 32 Kidneys, 2 Pancreases, and 2 Livers. Lancet 1979, 314, 1033–1036. [Google Scholar] [CrossRef]
- Tedesco, D.; Haragsim, L. Cyclosporine: A review. J. Transplant. 2012, 2012, 230386. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Venkataramanan, R.; Jain, A.; Cadoff, E.; Warty, V.; Iwasaki, K.; Nagase, K.; Krajack, A.; Imventarza, O.; Todo, S.; Fung, J.J.; et al. Pharmacokinetics of FK 506: Preclinical and clinical studies. Transplant. Proc. 1990, 22, 52–56. [Google Scholar] [PubMed] [PubMed Central]
- Javier, M.F.D.M.; Delmo, E.M.J.; Hetzer, R. Heart transplantation: The Berlin experience and perspectives. Cardiovasc. Diagn. Ther. 2021, 11, 243–253. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caves, P.K.; Stinson, E.B.; Graham, A.F.; Billingham, M.E.; Grehl, T.M.; Shumway, N.E. Percutaneous Transvenous Endomyocardial Biopsy. J. Am. Med. Assoc. (JAMA) 1973, 225, 288–291. [Google Scholar] [CrossRef]
- Billingham, M.E.; Cary, N.R.; Hammond, M.E.; Kemnitz, J.; Marboe, C.; McCallister, H.A.; Snovar, D.C.; Winters, G.L.; Zerbe, A. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation. J. Heart Transplant. 1990, 9, 587–593. [Google Scholar] [PubMed]
- Stewart, S.; Winters, G.L.; Fishbein, M.C.; Tazelaar, H.D.; Kobashigawa, J.; Abrams, J.; Andersen, C.B.; Angelini, A.; Berry, G.J.; Burke, M.M.; et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J. Heart Lung Transplant. 2005, 24, 1710–1720. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.W. Endomyocardial biopsy and the causes of dilated cardiomyopathy. J. Am. Coll. Cardiol. 1994, 23, 591–592. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, K.S.; Veinot, J.P.; Butany, J. An approach to endomyocardial biopsy interpretation. J. Clin. Pathol. 2006, 59, 121–129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seferović, P.M.; Tsutsui, H.; Mcnamara, D.M.; Ristić, A.D.; Basso, C.; Bozkurt, B.; Cooper, L.T.; Filippatos, G.; Ide, T.; Inomata, T.; et al. Heart Failure Association, Heart Failure Society of America, and Japanese Heart Failure Society Position Statement on Endomyocardial Biopsy. J. Card. Fail. 2021, 27, 727–743. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Goyal, A. Endomyocardial Biopsy. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK557597/ (accessed on 22 May 2024).
- Kuppahally, S.S.; Litwin, S.E.; Michaels, A.D. Endomyocardial biopsy of right atrial angiosarcoma guided by intracardiac echocardiography. Cardiol. Res. Pract. 2010, 2010, 681726. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baraldi-Junkins, C.; Levin, H.R.; Kasper, E.K.; Rayburn, B.K.; Herskowitz, A.; Baughman, K.L. Complications of endomyocardial biopsy in heart transplant patients. J. Heart Lung Transplant. 1993, 12 Pt 1, 63–67. [Google Scholar] [PubMed]
- Bussani, R.; Silvestri, F.; Perkan, A.; Gentile, P.; Sinagra, G. Chapter 9: Endomyocardial Biopsy. In Dilated Cardiomyopathy: From Genetics to Clinical Management [Internet]; Sinagra, G., Merlo, M., Pinamonti, B., Eds.; Springer: Cham, Switzerland, 2019; Available online: https://www.ncbi.nlm.nih.gov/books/NBK553844/ (accessed on 22 May 2024). [CrossRef]
- Sandhu, J.S.; Uretsky, B.F.; Zerbe, T.R.; Goldsmith, A.S.; Reddy, P.S.; Kormos, R.L.; Griffith, B.P.; Hardesty, R.L. Coronary artery fistula in the heart transplant patient. A potential complication of endomyocardial biopsy. Circulation 1989, 79, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Francis, R.; Lewis, C. Myocardial biopsy: Techniques and indications. Heart 2018, 104, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, F.; Matos, V.; Gonçalves, L.; Antunes, M.; Providência, L.A. Complications of endomyocardial biopsy in heart transplant patients: A retrospective study of 2117 consecutive procedures. Transplant. Proc. 2011, 43, 1908–1912. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, A.; Kindermann, I.; Kindermann, M.; Mahfoud, F.; Ukena, C.; Athanasiadis, A.; Hill, S.; Mahrholdt, H.; Voehringer, M.; Schieber, M.; et al. Comparative Evaluation of Left and Right Ventricular Endomyocardial Biopsy: Differences in Complication Rate and Diagnostic Performance. Circulation 2010, 122, 900–909. Available online: https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.109.924167 (accessed on 28 May 2024). [CrossRef]
- Chimenti, C.; Frustaci, A. Contribution and Risks of Left Ventricular Endomyocardial Biopsy in Patients with Cardiomyopathies: A Retrospective Study over a 28-Year Period. Circulation 2013, 128, 1531–1541. Available online: https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.13.001414 (accessed on 28 May 2024). [CrossRef]
- Khush, K.K.; Cherikh, W.S.; Chambers, D.C.; Harhay, M.O.; Hayes, D.; Hsich, E.; Meiser, B.; Potena, L.; Robinson, A.; Rossano, J.W.; et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-Sixth Adult Heart Transplantation Report—2019; Focus Theme: Donor and Recipient Size Match. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2019, 38, 1056–1066. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berry, G.J.; Burke, M.M.; Andersen, C.; Bruneval, P.; Fedrigo, M.; Fishbein, M.C.; Goddard, M.; Hammond, E.H.; Leone, O.; Marboe, C.; et al. The 2013 International Society for Heart and Lung Transplantation Working Formulation for the Standardization of Nomenclature in the Pathologic Diagnosis of Antibody-Mediated Rejection in Heart Transplantation. J. Heart Lung Transplant. 2013, 32, 1147–1162. [Google Scholar] [CrossRef] [PubMed]
- Janeway, C.A., Jr.; Travers, P.; Walport, M.; Shlomchik, M.J. Immunobiology: The Immune System in Health and Disease, 5th ed.; The Major Histocompatibility Complex and Its Functions; Garland Science: New York, NY, USA, 2001; Available online: https://www.ncbi.nlm.nih.gov/books/NBK27156/ (accessed on 28 May 2024).
- Wang, Y.C.; Herskowitz, A.; Gu, L.B.; Kanter, K.; Lattouf, O.; Sell, K.W.; Ahmed-Ansari, A. Influence of cytokines and immunosuppressive drugs on major histocompatibility complex class I/II expression by human cardiac myocytes in vitro. Hum. Immunol. 1991, 31, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Söderlund, C.; Rådegran, G. Immunosuppressive therapies after heart transplantation—The balance between under- and over-immunosuppression. Transplant. Rev. 2015, 29, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Ludhwani, D.; Abraham, J.; Kanmanthareddy, A. Heart Transplantation Rejection. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Bretscher, P.A. A two-step, two-signal model for the primary activation of precursor helper T cells. Proc. Natl. Acad. Sci. USA 1999, 96, 185–190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ansari, A.A.; Wang, Y.C.; Kanter, K.; Villinger, F.; Mayne, A.; Sell, K.W.; Herskowitz, A. Host T-cell primary allosensitization to MHC class-I and class-II-expressing human cardiac myocytes requires the presence of a second signal. Hum. Immunol. 1993, 37, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Kobashigawa, J.; Mehra, M.; West, L.; Kerman, R.; George, J.; Rose, M.; Zeevi, A.; Reinsmoen, N.; Patel, J.; Reed, E.F.; et al. Report from a consensus conference on the sensitized patient awaiting heart transplantation. J. Heart Lung Transplant. 2009, 28, 213–225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Labarrere, C.A.; Jaeger, B.R. Biomarkers of heart transplant rejection: The good, the bad, and the ugly! Transl. Res. 2012, 159, 238–251. [Google Scholar] [CrossRef] [PubMed]
- ISHLT. Registry Slides. Adult Heart Transplantation Statistics. 2013. Available online: https://ishltregistries.org/registries/slides.asp?yearToDisplay=2013 (accessed on 22 May 2024).
- Ingulli, E. Mechanism of cellular rejection in transplantation. Pediatr. Nephrol. 2010, 25, 61–74. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tan, C.D.; Baldwin, W.M., III; Rodriguez, E.R. Update on cardiac transplantation pathology. Arch. Pathol. Lab. Med. 2007, 131, 1169–1191. [Google Scholar] [CrossRef] [PubMed]
- Herskowitz, A.; Soule, L.M.; Mellits, E.D.; Traill, T.A.; Achuff, S.C.; Reitz, B.A.; Borkon, A.M.; Baumgartner, W.A.; Baughman, K.L. Histologic predictors of acute cardiac rejection in human endomyocardial biopsies: A multivariate analysis. J. Am. Coll. Cardiol. 1987, 9, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Hammond, E.H.; Yowell, R.L.; Nunoda, S.; Menlove, R.L.; Renlund, D.G.; Bristow, M.R.; Gay, W.A., Jr.; Jones, K.W.; O’Connell, J.B. Vascular (humoral) rejection in heart transplantation: Pathologic observations and clinical implications. J. Heart Transplant. 1989, 8, 430–443. [Google Scholar] [PubMed]
- Reed, E.; Demetris, A.; Hammond, E.; Itescu, S.; Kobashigawa, J.A.; Reinsmoen, N.L.; Rodriguez, E.R.; Rose, M.; Stewart, S.; Suciu-Foca, N.; et al. Acute antibody-mediated rejection of cardiac transplants. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2006, 25, 153–159. [Google Scholar] [CrossRef]
- Miller, L.W.; Wesp, A.; Jennison, S.H.; Graham, M.A.; Martin, T.W.; McBride, L.R.; Pennington, D.G.; Peigh, P. Vascular rejection in heart transplant recipients. J. Heart Lung Transplant. 1993, 12, S147–S152. [Google Scholar] [PubMed]
- Shah, K.S.; Patel, J. Desensitization in heart transplant recipients: Who, when, and how. Clin. Transplant. 2019, 33, e13639. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.C.; Lei, I.; Chen, Y.E.; Wang, Z.; Ailawadi, G.; Romano, M.A.; Salvi, S.; Aaronson, K.D.; Si, M.S.; Pagani, F.D.; et al. Risk factors for heart transplant survival with greater than 5 h of donor heart ischemic time. J. Card. Surg. 2021, 36, 2677–2684. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loforte, A.; Fiorentino, M.; Murana, G.; Gliozzi, G.; Cavalli, G.G.; Mariani, C.; Suarez, S.M.; Pacini, D. Mechanically Supported Early Graft Failure after Heart Transplantation. Transplant. Proc. 2020, 53, 311–317. Available online: https://www.sciencedirect.com/science/article/pii/S0041134520305856 (accessed on 28 May 2024). [CrossRef]
- Michaels, P.J.; Espejo, M.L.; Kobashigawa, J.; Alejos, J.C.; Burch, C.; Takemoto, S.; Reed, E.F.; Fishbein, M.C. Humoral Rejection in Cardiac Transplantation: Risk Factors, Hemodynamic Consequences and Relationship to Transplant Coronary Artery Disease. J. Hear. Lung Transplant. 2003, 22, 58–69. Available online: https://www.sciencedirect.com/science/article/pii/S1053249802004722 (accessed on 28 May 2024). [CrossRef] [PubMed]
- Loupy, A.; Coutance, G.; Bonnet, G.; Van Keer, J.; Raynaud, M.; Aubert, O.; Bories, M.C.; Racapé, M.; Yoo, D.; Duong Van Huyen, J.P.; et al. Identification and Characterization of Trajectories of Cardiac Allograft Vasculopathy after Heart Transplantation: A Population-Based Study. Circulation 2020, 141, 1954–1967. [Google Scholar] [CrossRef] [PubMed]
- Loupy, A.; Toquet, C.; Rouvier, P.; Beuscart, T.; Bories, M.C.; Varnous, S.; Guillemain, R.; Pattier, S.; Suberbielle, C.; Leprince, P.; et al. Late Failing Heart Allografts: Pathology of Cardiac Allograft Vasculopathy and Association with Antibody-Mediated Rejection. Am. J. Transplant. 2016, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Ticehurst, E.H.; Molina, M.R.; Kearns, J.; Goldberg, L.; Tsai, D.; Wald, J.W.; Kamoun, M. Antibody-mediated rejection in heart transplant patients: Long-term follow up of patients with high levels of donor-directed anti-DQ antibodies. Clin. Transplant. 2011, 43, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Lee, F.; Nair, V.; Chih, S. Cardiac allograft vasculopathy: Insights on pathogenesis and therapy. Clin. Transplant. 2020, 34, e13794. [Google Scholar] [CrossRef] [PubMed]
- Huibers, M.M.; Vink, A.; Kaldeway, J.; Huisman, A.; Timmermans, K.; Leenders, M.; Schipper, M.E.; Lahpor, J.R.; Kirkels, H.J.; Klöpping, C.; et al. Distinct phenotypes of cardiac allograft vasculopathy after heart transplantation: A histopathological study. Atherosclerosis 2014, 236, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.-H.; Palatnik, K.; Fishbein, G.A.; Lai, C.; Levi, D.S.; Perens, G.; Alejos, J.; Kobashigawa, J.; Fishbein, M.C. Diverse morphologic manifestations of cardiac allograft vasculopathy: A pathologic study of 64 allograft hearts. J. Heart Lung Transplant. 2011, 30, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Loupy, A.; Van Huyen, J.P.D.; Hidalgo, L.; Reeve, J.; Racapé, M.; Aubert, O.; Venner, J.M.; Falmuski, K.; Bories, M.C.; Beuscart, T.; et al. Gene Expression Profiling for the Identification and Classification of Antibody-Mediated Heart Rejection. Circulation 2017, 135, 917–935. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Leiro, M.G.; Stypmann, J.; Schulz, U.; Zuckermann, A.; Mohacsi, P.; Bara, C.; Ross, H.; Parameshwar, J.; Zakliczyński, M.; Fiocchi, R.; et al. Performance of gene-expression profiling test score variability to predict future clinical events in heart transplant recipients. BMC Cardiovasc. Disord. 2015, 15, 120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Palmieri, V.; Mansueto, G.; Coscioni, E.; Maiello, C.; Benincasa, G.; Napoli, C. Novel biomarkers useful in surveillance of graft rejection after heart transplantation. Transpl. Immunol. 2021, 67, 101406. [Google Scholar] [CrossRef] [PubMed]
- McCaughan, J.; Xu, Q.; Tinckam, K. Detecting donor-specific antibodies: The importance of sorting the wheat from the chaff. Hepatobiliary Surg. Nutr. 2019, 8, 37–52. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kobashigawa, J.; Colvin, M.; Potena, L.; Dragun, D.; Crespo-Leiro, M.G.; Delgado, J.F.; Olymbios, M.; Parameshwar, J.; Patel, J.; Reed, E.; et al. The management of antibodies in heart transplantation: An ISHLT consensus document. J. Heart Lung Transplant. 2018, 37, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.D.; Sokos, G.G.; Pidwell, D.J.; Smedira, N.G.; Gonzalez-Stawinski, G.V.; Taylor, D.O.; Starling, R.C.; Rodriguez, E.R. Correlation of donor-specific antibodies, complement and its regulators with graft dysfunction in cardiac antibody-mediated rejection. Am. J. Transplant. 2009, 9, 2075–2084. [Google Scholar] [CrossRef] [PubMed]
- Tran, A.; Fixler, D.; Huang, R.; Meza, T.; Lacelle, C.; Das, B.B. Donor-Specific HLA Alloantibodies: Impact on Cardiac Allograft Vasculopathy, Rejection, and Survival after Pediatric Heart Transplantation. J. Heart Lung Transplant. 2015, 35, 87–91. Available online: https://www.sciencedirect.com/science/article/pii/S1053249815013832 (accessed on 27 June 2024). [CrossRef]
- Irving, C.A.; Carter, V.; Gennery, A.R.; Parry, G.; Griselli, M.; Hasan, A.; Kirk, C.R. Effect of persistent versus transient donor-specific HLA antibodies on graft outcomes in pediatric cardiac transplantation. J. Heart Lung Transplant. 2015, 34, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.D.; Banner, N.R.; Hamour, I.M.; Ozawa, M.; Goh, A.; Robinson, D.; Terasaki, P.I.; Rose, M.L. De novo donor HLA-specific antibodies after heart transplantation are an independent predictor of poor patient survival. Am. J. Transplant. 2011, 11, 312–319. [Google Scholar] [CrossRef] [PubMed]
- De Vlaminck, I.; Valantine, H.A.; Snyder, T.M.; Strehl, C.; Cohen, G.; Luikart, H.; Neff, N.F.; Okamoto, J.; Bernstein, D.; Weisshaar, D.; et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci. Transl. Med. 2014, 6, 241ra77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agbor-Enoh, S.; Shah, P.; Tunc, I.; Hsu, S.; Russell, S.; Feller, E.; Shah, K.; Rodrigo, M.E.; Najjar, S.S.; Kong, H.; et al. Cell-Free DNA to Detect Heart Allograft Acute Rejection. Circulation 2021, 143, 1184–1197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Knüttgen, F.; Beck, J.; Dittrich, M.; Oellerich, M.; Zittermann, A.; Schulz, U.; Fuchs, U.; Knabbe, C.; Schütz, E.; Gummert, J.; et al. Graft-derived Cell-free DNA as a Noninvasive Biomarker of Cardiac Allograft Rejection: A Cohort Study on Clinical Validity and Confounding Factors. Transplantation 2022, 106, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Zangwill, S.D.; Kindel, S.J.; Ragalie, W.S.; North, P.E.; Pollow, A.; Hidestrand, M.; Tomita-Mitchell, A.; Stamm, K.D.; Mitchell, M.E. Early changes in cell-free DNA levels in newly transplanted heart transplant patients. Pediatr. Transplant. 2020, 24, e13622. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qian, X.; Shah, P.; Agbor-Enoh, S. Noninvasive biomarkers in heart transplant: 2020–2021 year in review. Curr. Opin. Organ. Transplant. 2022, 27, 7–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holzhauser, L.; DeFilippis, E.M.; Nikolova, A.; Byku, M.; Contreras, J.P.; De Marco, T.; Hall, S.; Khush, K.K.; Vest, A.R. The End of Endomyocardial Biopsy?: A Practical Guide for Noninvasive Heart Transplant Rejection Surveillance. JACC Heart Fail. 2023, 11, 263–276. Available online: https://www.sciencedirect.com/science/article/pii/S2213177922006436 (accessed on 22 May 2024). [CrossRef]
- Afzal, A.; Alam, A.; van Zyl, J.S.; Zafar, H.; Felius, J.; Hall, S.A.; Carey, S.A. Observed elevated donor-derived cell free DNA in orthotopic heart transplant recipients without clinical evidence of rejection. Clin. Transplant. 2022, 36, e14549. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pham, M.X.; Teuteberg, J.J.; Kfoury, A.G.; Starling, R.C.; Deng, M.C.; Cappola, T.P.; Kao, A.; Anderson, A.S.; Cotts, W.G.; Ewald, G.A.; et al. Gene-expression profiling for rejection surveillance after cardiac transplantation. N. Engl. J. Med. 2010, 362, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.R.; Dipchand, A.; Starling, R.; Anderson, A.; Chan, M.; Desai, S.; Fedson, S.; Fisher, P.; Gonzales-Stawinski, G.; Martinelli, L.; et al. International Society of Heart and Lung Transplantation Guidelines. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J. Heart Lung Transplant. 2010, 29, 914–956. [Google Scholar] [CrossRef] [PubMed]
- Kanwar, M.K.; Khush, K.K.; Pinney, S.; Sherman, C.; Hall, S.; Teuteberg, J.; Uriel, N.; Kobashigawa, J. Impact of cytomegalovirus infection on gene expression profile in heart transplant recipients. J. Heart Lung Transplant. 2021, 40, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.F.; Mehta, A.; Bahniwal, R.K.; Agbor-Enoh, S.; Shah, P. A gentler approach to monitor for heart transplant rejection. Front. Cardiovasc. Med. 2024, 11, 1349376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Azzi, J.R.; Sayegh, M.H.; Mallat, S.G. Calcineurin Inhibitors: 40 Years Later, Can’t Live without …. J. Immunol. 2013, 191, 5785–5791. [Google Scholar] [CrossRef] [PubMed]
- Allison, A.C.; Eugui, E.M. Mycophenolate Mofetil and Its Mechanisms of Action. Immunopharmacology 2000, 47, 85–118. Available online: https://www.sciencedirect.com/science/article/pii/S0162310900001880 (accessed on 12 August 2024). [CrossRef] [PubMed]
- Maltzman, J.S.; Koretzky, A.G. Old drug, new actions. J. Clin. Investig. 2003, 111, 1122–1124. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Luo, Y.; Huang, S. Updates of mTOR Inhibitors. In Anti-Cancer Agents in Medicinal Chemistry; Formerly as Current Medicinal Chemistry—Anti-Cancer Agents; Bentham Science Publishers: Sharjah, United Arab Emirates, 2010; Volume 10, pp. 571–581. [Google Scholar] [CrossRef]
- Williams, D.M. Clinical Pharmacology of Corticosteroids. Respir. Care 2018, 63, 655–670. [Google Scholar] [CrossRef]
- Chang, D.H.; Youn, J.C.; Dilibero, D.; Patel, J.K.; Kobashigawa, J.A. Heart Transplant Immunosuppression Strategies at Cedars-Sinai Medical Center. Int. J. Heart Fail. 2020, 3, 15–30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- International Thoracic Organ Transplant (TTX) Registry Data Slides. 2022. Available online: https://ishltregistries.org/registries/slides.asp?yearToDisplay=2022 (accessed on 6 June 2024).
- Amin, A.A.; Araj, F.G.; Ariyamuthu, V.K.; Drazner, M.H.; Ayvaci, M.U.; Mammen, P.P.; Mete, M.; Urey, M.A.; Tanriover, B. Impact of induction immunosuppression on patient survival in heart transplant recipients treated with tacrolimus and mycophenolic acid in the current allocation era. Clin. Transplant. 2019, 33, e13651. [Google Scholar] [CrossRef]
- Kobashigawa, J.A.; Miller, L.W.; Russell, S.D.; Ewald, G.A.; Zucker, M.J.; Goldberg, L.R.; Eisen, H.J.; Salm, K.; Tolzman, D.; Gao, J.; et al. Tacrolimus with mycophenolate mofetil (MMF) or sirolimus vs. cyclosporine with MMF in cardiac transplant patients: 1-year report. Am. J. Transplant. 2006, 6, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Sugianto, R.I.; Schmidt, B.M.W.; Memaran, N.; Duzova, A.; Topaloglu, R.; Seeman, T.; König, S.; Dello Strologo, L.; Murer, L.; Özçakar, Z.B.; et al. Sex and age as determinants for high blood pressure in pediatric renal transplant recipients: A longitudinal analysis of the CERTAIN Registry. Pediatr. Nephrol. 2020, 35, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Safarini, O.A.; Keshavamurthy, C.; Patel, P. Calcineurin Inhibitors. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK558995/ (accessed on 22 May 2024).
- Kyriakopoulou, E.; Monnikhof, T.; van Rooij, E. Gene editing innovations and their applications in cardiomyopathy research. Dis. Model. Mech. 2023, 16, dmm050088. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stegall, M.D.; Morris, R.E.; Alloway, R.R.; Mannon, R.B. Developing New Immunosuppression for the Next Generation of Transplant Recipients: The Path Forward. Am. J. Transplant. 2016, 16, 1094–1101. Available online: https://www.sciencedirect.com/science/article/pii/S1600613522008759 (accessed on 12 August 2024). [CrossRef] [PubMed]
- Sailliet, N.; Brosseau, C.; Robert, J.-M.; Brouard, S. Role of JAK Inhibitors and Immune Cells in Transplantation. Cytokine Growth Factor Rev. 2019, 47, 62–73. Available online: https://www.sciencedirect.com/science/article/pii/S1359610119300334 (accessed on 12 August 2024). [CrossRef] [PubMed]
- Vadapalli, S.; Abdelhalim, H.; Zeeshan, S.; Ahmed, Z. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Brief. Bioinform. 2022, 23, bbac191. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.G.; Martins, P.N. Nanotechnology Applications in Transplantation Medicine. Transplantation 2020, 104, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Sekine, H.; Shimizu, T.; Okano, T. Myocardial tissue engineering: Toward a bioartificial pump. Cell Tissue Res. 2012, 347, 775–782. [Google Scholar] [CrossRef]
1990 ISHLT Classification | 2004 ISHLT Classification | ||
---|---|---|---|
Grade 0 | No ACR | Grade 0 | No ACR |
Grade 1A | Focal, mild ACR Focal perivascular and/or interstitial infiltrate without myocyte damage | Grade 1R | Mild/low-grade ACR Interstitial and/or perivascular infiltrate with up to 1 focus of myocyte damage |
Grade 1B | Diffuse, mild ACR Diffuse infiltrate without myocyte damage | ||
Grade 2 | Focal, moderate ACR One focus of infiltrate with associated myocyte damage | ||
Grade 3A | Multifocal, moderate ACR One focus of infiltrate with associated myocyte damage | Grade 2R | Moderate/intermediate ACR Two or more foci of infiltrate with associated myocyte damage |
Grade 3B | Diffuse, moderate ACR Diffuse infiltrate with myocyte damage | Grade 3R | Severe/high-grade ACR Diffuse infiltrate with multifocal myocyte damage, ±edema, ±hemorrhage, ±vasculitis |
Grade 4 | Severe ACR Diffuse, polymorphous infiltrate with extensive myocyte damage, ±edema, ±hemorrhage, +vasculitis |
Grade | Description | Histopathological Findings |
---|---|---|
pAMR 0 | Absence of pathologic AMR | Both histologic and immunopathologic studies negative |
pAMR 1 (H+) | Histopathologic AMR alone | Histologic findings present and immunopathologic studies negative |
pAMR 1 (I+) | Immunopathologic AMR alone | Histologic findings negative and immunopathologic findings positive |
pAMR 2 | Pathologic AMR | Both histologic and immunopathologic findings present |
pAMR 3 | Severe pathologic AMR | Histologic findings of interstitial hemorrhage, capillary fragmentation, mixed inflammatory infiltrates, endothelial cell pyknosis, and/or karyorrhexis and marked edema |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farcas, A.O.; Stoica, M.C.; Maier, I.M.; Maier, A.C.; Sin, A.I. Heart Transplant Rejection: From the Endomyocardial Biopsy to Gene Expression Profiling. Biomedicines 2024, 12, 1926. https://doi.org/10.3390/biomedicines12081926
Farcas AO, Stoica MC, Maier IM, Maier AC, Sin AI. Heart Transplant Rejection: From the Endomyocardial Biopsy to Gene Expression Profiling. Biomedicines. 2024; 12(8):1926. https://doi.org/10.3390/biomedicines12081926
Chicago/Turabian StyleFarcas, Anca Otilia, Mihai Ciprian Stoica, Ioana Maria Maier, Adrian Cornel Maier, and Anca Ileana Sin. 2024. "Heart Transplant Rejection: From the Endomyocardial Biopsy to Gene Expression Profiling" Biomedicines 12, no. 8: 1926. https://doi.org/10.3390/biomedicines12081926
APA StyleFarcas, A. O., Stoica, M. C., Maier, I. M., Maier, A. C., & Sin, A. I. (2024). Heart Transplant Rejection: From the Endomyocardial Biopsy to Gene Expression Profiling. Biomedicines, 12(8), 1926. https://doi.org/10.3390/biomedicines12081926