Predictive Model for Opioid Use Disorder in Chronic Pain: A Development and Validation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Procedure and Variables
2.3. Pharmacogenetic Analysis
2.4. Statistical Methods
3. Results
3.1. Participants and Variables
3.2. Model Performance
3.3. Model Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Webster, L.R. Risk Factors for Opioid-Use Disorder and Overdose. Anesth. Analg. 2017, 125, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Salsitz, E.A. Chronic Pain, Chronic Opioid Addiction: A Complex Nexus. J. Med. Toxicol. 2016, 12, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Frieden, T.R.; Jaffe, H.W.; Cono, J.; Richards, C.L.; Iademarco, M.F. CDC Guideline for Prescribing Opioids for Chronic Pain—United States, 2016, MMWR. U.S. Department of Health and Human Services. 2016. Available online: https://www.cdc.gov/mmwr/volumes/65/rr/rr6501e1.htm (accessed on 25 August 2022).
- Solhaug, V.; Molden, E. Individual variability in clinical effect and tolerability of opioid analgesics—Importance of drug interactions and pharmacogenetics. Scand. J. Pain 2017, 17, 193–200. [Google Scholar] [CrossRef]
- Mura, E.; Govoni, S.; Racchi, M.; Carossa, V.; Ranzani, G.N.; Allegri, M.; Schaik, V.; Govoni, S.; Racchi, M.; Carossa, V.; et al. Consequences of the 118A>G polymorphism in the OPRM1 gene: Translation from bench to bedside? J. Pain Res. 2013, 6, 331–353. [Google Scholar] [CrossRef]
- Coller, J.K.; Beardsley, J.; Bignold, J.; Li, Y.; Merg, F.; Sullivan, T.; Cox, T.C.; Somogyi, A.A. Lack of association between the A118G polymorphism of the mu opioid receptor gene (OPRM1) and opioid dependence: A meta-analysis. Pharmacogenom. Pers. Med. 2009, 2, 9–19. [Google Scholar] [CrossRef]
- Escorial, M.; Muriel, J.; Agulló, L.; Zandonai, T.; Margarit, C.; Morales, D.; Peiró, A.M. Clinical prediction of opioid use disorder in chronic pain patients: A cohort-retrospective study with a pharmacogenetic approach. Minerva Anestesiol. 2024, 90, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Muriel, J.; Margarit, C.; Planelles, B.; Serralta, M.J.; Puga, C.; Inda, M.; Cutillas, E.; Morales, D.; Horga, J.F.; Peiró, A.M. OPRM1 influence on and effectiveness of an individualized treatment plan for prescription opioid use disorder patients. Ann. N. Y. Acad. Sci. 2018, 1425, 82–93. [Google Scholar] [CrossRef]
- Muriel, J.; Margarit, C.; Barrachina, J.; Ballester, P.; Flor, A.; Morales, D.; Horga, J.F.; Fernández, E.; Peiró, A.M. Pharmacogenetics and prediction of adverse events in prescription opioid use disorder patients. Basic Clin. Pharmacol. Toxicol. 2019, 124, 439–448. [Google Scholar] [CrossRef]
- Planelles, B.; Margarit, C.; Ajo, R.; Sastre, Y.; Muriel, J.; Inda, M.; Esteban, M.D.; Peiró, A.M. Health benefits of an adverse events reporting system for chronic pain patients using long-term opioids. Acta Anaesthesiol. Scand. 2019, 63, 248–258. [Google Scholar] [CrossRef]
- Planelles, B.; Margarit, C.; Inda, M.-D.; Ballester, P.; Muriel, J.; Barrachina, J.; Ajo, R.; Esteban, M.-D.; Peiró, A.M. Gender based differences, pharmacogenetics and adverse events in chronic pain management. Pharmacogenom. J. 2020, 20, 320–328. [Google Scholar] [CrossRef]
- Boscarino, J.; Hoffman, S.N.; Han, J.J. Opioid-use disorder among patients on long-term opioid therapy: Impact of final DSM-5 diagnostic criteria on prevalence and correlates. Subst. Abus. Rehabil. 2015, 6, 83–91. [Google Scholar] [CrossRef] [PubMed]
- McCormack, H.M.; Horne, D.J.; Sheather, S. Clinical applications of visual analogue scales: A critical review. Psychol. Med. 1988, 18, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Barrachina, J.; Muriel, J.; Margarit, C.; Planelles, B.; Ballester, P.; Richart-Martínez, M.; Cutillas, E.; Zandonai, T.; Morales, D.; Peiró, A.M. Global Pain State Questionnaire: Reliability, Validity, and Gender Gap. Arch. Intern. Med. Res. 2021, 04, 91–113. [Google Scholar] [CrossRef]
- Herdman, M.; Badia, X.; Berra, S. El EuroQol-5D: Una alternativa sencilla para la medición de la calidad de vida relacionada con la salud en atención primaria. Aten. Prim. 2001, 28, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Pergolizzi, J.; Böger, R.H.; Budd, K.; Dahan, A.; Erdine, S.; Hans, G.; Kress, H.; Langford, R.; Likar, R.; Raffa, R.B.; et al. Opioids and the Management of Chronic Severe Pain in the Elderly: Consensus Statement of an International Expert Panel with Focus on the Six Clinically Most Often Used World Health Organization step III Opioids (Buprenorphine, Fentanyl, Hydromorphone, Methadone, Morphine, Oxycodone). Pain Pract. 2008, 8, 287–313. [Google Scholar] [CrossRef]
- Moore, R.A.; McQuay, H.J. Prevalence of opioid adverse events in chronic non-malignant pain: Systematic review of randomised trials of oral opioids. Arthritis Res. Ther. 2005, 7, R1046–R1051. [Google Scholar] [CrossRef]
- MedDRA®, Introductory Guide MedDRA Version 23.1. 2020. Available online: https://admin.meddra.org/sites/default/files/guidance/file/intguide_%2023_1_English.pdf (accessed on 3 September 2024).
- Wisher, D. Martindale: The Complete Drug Reference. 37th ed. J. Med. Libr. Assoc. 2012, 100, 75–76. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Vergouwe, Y. Towards better clinical prediction models: Seven steps for development and an ABCD for validation. Eur. Heart J. 2014, 35, 1925–1931. [Google Scholar] [CrossRef]
- Oliva, E.M.; Bowe, T.; Tavakoli, S.; Martins, S.; Lewis, E.T.; Paik, M.; Wiechers, I.; Henderson, P.; Harvey, M.; Avoundjian, T.; et al. Development and applications of the Veterans Health Administration’s Stratification Tool for Opioid Risk Mitigation (STORM) to improve opioid safety and prevent overdose and suicide. Psychol. Serv. 2017, 14, 34–49. [Google Scholar] [CrossRef]
- Crews, K.R.; Monte, A.A.; Huddart, R.; Caudle, K.E.; Kharasch, E.D.; Gaedigk, A.; Dunnenberger, H.M.; Leeder, J.S.; Callaghan, J.T.; Samer, C.F.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2D6, OPRM1, and COMT Genotypes and Select Opioid Therapy. Clin. Pharmacol. Ther. 2021, 110, 888–896. [Google Scholar] [CrossRef]
- Burns, J.A.; Kroll, D.S.; Feldman, D.E.; Liu, C.K.; Manza, P.; Wiers, C.E.; Volkow, N.D.; Wang, G.-J. Molecular Imaging of Opioid and Dopamine Systems: Insights into the Pharmacogenetics of Opioid Use Disorders. Front. Psychiatry 2019, 10, 626. [Google Scholar] [CrossRef]
- Ettienne, E.B.; Chapman, E.; Maneno, M.; Ofoegbu, A.; Wilson, B.; Settles-Reaves, B.; Clarke, M.; Dunston, G.; Rosenblatt, K. Pharmacogenomics-guided policy in opioid use disorder (OUD) management: An ethnically-diverse case-based approach. Addict. Behav. Rep. 2017, 6, 8–14. [Google Scholar] [CrossRef]
- Thielke, S.M.M.; Turner, J.A.; Shortreed, S.M.; Saunders, K.J.; LeResche, L.S.; Campbell, C.I.; Weisner, C.C.D.; Von Korff, M. Do Patient-perceived Pros and Cons of Opioids Predict Sustained Higher-Dose Use? Clin. J. Pain 2014, 30, 93–101. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef]
- Lo-Ciganic, W.-H.; Huang, J.L.; Zhang, H.H.; Weiss, J.C.; Wu, Y.; Kwoh, C.K.; Donohue, J.M.; Cochran, G.; Gordon, A.J.; Malone, D.C.; et al. Evaluation of Machine-Learning Algorithms for Predicting Opioid Overdose Risk Among Medicare Beneficiaries with Opioid Prescriptions. JAMA Netw. Open 2019, 2, e190968. [Google Scholar] [CrossRef]
- Liu, Y.S.; Kiyang, L.; Hayward, J.; Zhang, Y.; Metes, D.; Wang, M.; Svenson, L.W.; Talarico, F.; Chue, P.; Li, X.-M.; et al. Individualized Prospective Prediction of Opioid Use Disorder. Can. J. Psychiatry 2023, 68, 54–63. [Google Scholar] [CrossRef]
- Armoon, B.; Fleury, M.-J.; Bayat, A.-H.; Bayani, A.; Mohammadi, R.; Griffiths, M.D. Quality of life and its correlated factors among patients with substance use disorders: A systematic review and meta-analysis. Arch. Public Health 2022, 80, 179. [Google Scholar] [CrossRef]
- Sanger, N.; Bhatt, M.; Shams, I.; Shahid, H.; Luo, C.; Tam, S.L.; Samaan, M.C.; de Souza, R.; Thabane, L.; Samaan, Z. Association Between Socio-Demographic and Health Functioning Variables Among Patients with Opioid Use Disorder Introduced by Prescription: A Prospective Cohort Study. Pain Physician 2018, 21, E623–E632. [Google Scholar]
- Smith, D.M.; Figg, W.D. Evidence Regarding Pharmacogenetics in Pain Management and Cancer. Oncologist 2023, 28, 189–192. [Google Scholar] [CrossRef]
- Morris, S.A.; Alsaidi, A.T.; Verbyla, A.; Cruz, A.; Macfarlane, C.; Bauer, J.; Patel, J.N. Cost Effectiveness of Pharmacogenetic Testing for Drugs with Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines: A Systematic Review. Clin. Pharmacol. Ther. 2022, 112, 1318–1328. [Google Scholar] [CrossRef]
Retrospective Sample 1 (n = 129) | Prospective Sample 2 (n = 100) | |
---|---|---|
Sex (% female) | 67 | 70 |
Age (years old) (median (IQR)) | 63 (52–72) | 65 (52–73) |
Employment status (%) | ||
Active | 15 | 13 |
Retired | 50 | 40 |
Work disability | 21 | 26 |
Unemployed | 7 | 6 |
Homemaker | 7 | 15 |
Previous SUD (%) | 18 | 25 |
Tobacco | 96 * | 71 |
Alcohol | 4 | 25 |
Illicit substances | 0 | 4 |
Incomes (%) | ||
Less than EUR 500 | 20 | 5 |
Between EUR 500 to 1000 | 67 | 53 |
More than EUR 1000 | 13 | 42 * |
Clinical outcomes (mean (SD)) | ||
Pain intensity (VAS, mm) | 61 (28) | 70 (26) * |
Pain relief (VAS, mm) | 38 (31) | 41 (31) |
Quality of life (VAS, mm) | 46 (24) | 46 (28) |
Health Utility (0–1 score) (median (IQR)) | 0.514 (0.113–0.732) | 0.252 (0.051–0.648) |
Health resource use (%) | ||
Emergency room visits | 30 | 42 |
Hospitalizations | 14 | 25 |
Medication changes | 50 | 51 |
Drug prescription (%) | ||
Non-opioid analgesics | 34 | 63 * |
NSAIDs | 17 | 22 |
Tramadol | 22 | 45 * |
MEDD (mg/day) (median (IQR)) | 80 (40–160) * | 60 (33–108) |
Oxycodone | 67 * | 14 |
Fentanyl | 15 | 24 |
Tapentadol | 11 | 37 * |
Buprenorphine | 3 | 22 * |
Morphine | 3 | 3 |
Hydromorphone | 1 | 0 |
Immediate release opioids | 24 * | 10 |
Neuromodulators | 52 | 60 |
Antidepressants | 50 | 46 |
Benzodiazepines | 35 | 54 * |
β-Coefficients | 95% CI | Std. Error | z-Value | Pr (>|z|) a | ||
---|---|---|---|---|---|---|
Intercept | 0.242 | −1.53 to 1.95 | 0.873 | 0.277 | 0.78 | |
Active | −1.950 | −3.65 to −0.35 | 0.831 | −2.347 | 0.02 | |
Work disability | −1.740 | −3.05 to −0.54 | 0.633 | −2.750 | 0.006 | |
Unemployed | −3.976 | −5.71 to −2.51 | 0.809 | −4.914 | <0.001 | |
MEDD | 0.004 | −0.00 to 0.01 | 0.003 | 1.515 | 0.13 | |
Strong opioids | 3.493 | 2.05 to 5.24 | 0.803 | 4.349 | <0.001 | |
Benzodiazepines | −2.626 | −3.94 to −1.50 | 0.617 | −4.254 | <0.001 | |
ED visits | −1.496 | −2.64 to −0.45 | 0.552 | −2.707 | 0.007 | |
Psychiatric AEs | 2.289 | 1.21 to 3.52 | 0.583 | 3.929 | <0.001 | |
COMT | GA | −2.159 | −3.60 to −0.89 | 0.686 | −3.147 | 0.002 |
GG | −0.901 | −2.56 to 0.70 | 0.824 | −1.094 | 0.27 |
β-Coefficients | 95% CI | Std. Error | z-Value | Pr (>|z|) a | ||
---|---|---|---|---|---|---|
Intercept | −0.622 | −4.77 to 2.99 | 1.933 | −0.322 | 0.75 | |
Age | −0.057 | −0.12 to 0.00 | 0.032 | −1.798 | 0.07 | |
Work disability | 2.860 | 1.33 to 4.78 | 0.848 | 3.373 | <0.001 | |
MEDD | 0.006 | 0.00 to 0.01 | 0.003 | 2.444 | 0.02 | |
CYP2D6 | PM | 1.191 | −2.19 to 3.90 | 1.442 | 0.826 | 0.41 |
UM | 3.299 | 0.82 to 5.97 | 1.255 | 2.628 | 0.009 |
β-Coefficients | 95% CI | Std. Error | z-Value | Pr (>|z|) a | |
---|---|---|---|---|---|
Intercept | −1.713 | −3.35 to −0.31 | 0.759 | −2.256 | 0.02 |
Quality of life | −0.032 | −0.06 to −0.01 | 0.014 | −2.302 | 0.02 |
MEDD | 0.005 | −0.00 to 0.01 | 0.004 | 1.394 | 0.16 |
OPRM1 (AG/GG) | 1.017 | −0.36 to 2.56 | 0.727 | 1.400 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escorial, M.; Muriel, J.; Margarit, C.; Agulló, L.; Zandonai, T.; Panadero, A.; Morales, D.; Peiró, A.M. Predictive Model for Opioid Use Disorder in Chronic Pain: A Development and Validation Study. Biomedicines 2024, 12, 2056. https://doi.org/10.3390/biomedicines12092056
Escorial M, Muriel J, Margarit C, Agulló L, Zandonai T, Panadero A, Morales D, Peiró AM. Predictive Model for Opioid Use Disorder in Chronic Pain: A Development and Validation Study. Biomedicines. 2024; 12(9):2056. https://doi.org/10.3390/biomedicines12092056
Chicago/Turabian StyleEscorial, Mónica, Javier Muriel, César Margarit, Laura Agulló, Thomas Zandonai, Ana Panadero, Domingo Morales, and Ana M. Peiró. 2024. "Predictive Model for Opioid Use Disorder in Chronic Pain: A Development and Validation Study" Biomedicines 12, no. 9: 2056. https://doi.org/10.3390/biomedicines12092056
APA StyleEscorial, M., Muriel, J., Margarit, C., Agulló, L., Zandonai, T., Panadero, A., Morales, D., & Peiró, A. M. (2024). Predictive Model for Opioid Use Disorder in Chronic Pain: A Development and Validation Study. Biomedicines, 12(9), 2056. https://doi.org/10.3390/biomedicines12092056