Adult-Onset Still’s Disease (AOSD)—On the Basis of Own Cases
Abstract
:1. Introduction
- Transient (non-persistent) erythematous rash in the form of salmon-colored spots, most often located on the trunk and limbs; the rash is macular or slightly urticarial, and sometimes persistent red-brownish papules and plaques may be seen.
- Arthritis (initially it may be very discreet, but then it causes significant damage to the musculoskeletal system).
- Generalized lymphadenopathy and/or hepatomegaly and/or splenomegaly.
- Serositis.
- Arthralgia lasting 2 weeks or more (in the absence of arthritis).
- Leukocytosis (≥15,000/μL) with neutrophilia [5].
- A monocyclic course, characterized by a single episode followed by persistent remission.
- A polycyclic course is characterized by recurrent flares and remissions.
- A chronic course [6].
- Systemic AOSD is characterized by an increased concentration of the interleukin (IL)-1β, IL-18, interferon (INF)α/β, INFγ, IL-4, IL-10, hyperferritinemia, thrombocytopenia, and Natural-killer (NK) cell dysfunction. Clinical symptoms include fever, serositis, hepatitis, and MAS [6]. Monoarthritis is more prevalent in systemic AOSD, which correlates with the lower frequency of MAS among patients with polyarthritis, the chronic articular disease course, and the lower inflammatory markers [6]. MAS can present with wide range of hepatic dysfunction, from mild elevation of the transaminases to liver failure. [6]. Treatment should include IL-1, IL-18, or INFγ inhibitors [7].
- Articular AOSD is associated with increased concentrations of IL-17, IL-23, tumor necrosis factor (TNF)α, and IL-6, as well as thrombocytosis. The clinical symptoms include arthritis with joint destruction. The recommended treatment includes IL-6 or TNFα or IL-17 inhibitors [7].
- Severe viral infections (rubella, hepatitis, parvoviruses, coxsackie viruses, Epstein–Barr viruses [EBVs], cytomegaloviruses [CMVs], human immunodeficiency virus [HIV], severe acute respiratory syndrome coronavirus-2 [SARS-CoV-2], pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 [PIMS-TS]), or bacterial infections (bacterial endocarditis, meningococcal infection, brucellosis, yersiniosis, tuberculosis, Lyme disease, syphilis, as well as sepsis.
- Malignancies, including leukemia, lymphoma, neuroblastoma, and paraneoplastic syndromes.
- Rheumatic fever.
- Kawasaki disease.
- Other systemic connective tissue diseases, like systemic lupus erythematosus, idiopathic myositis, mixed connective tissue disease, rheumatoid arthritis, and vasculitis.
- Other autoinflammatory diseases related to IL-1, like Mediterranean fever, cryopyrin-associated periodic syndromes (CAPSs), TNF receptor-associated periodic fever syndrome (TRAPS), and mevalonate kinase deficiency (MKD) [5].
2. Materials and Methods
3. Ethics
4. Results
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bywaters, E.G. Still’s disease in the adult. Ann. Rheum. Dis. 1971, 30, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Still, G.F. On a form of chronic joint disease in children. Med. Chir. Trans. 1897, 80, 9. [Google Scholar] [CrossRef]
- Martini, A.; Ravelli, A.; Avcin, T.; Beresford, M.W.; Burgos-Vargas, R.; Cuttica, R.; Ilowite, N.T.; Khubchandani, R.; Laxer, R.M.; Lovell, D.J.; et al. Toward New Classification Criteria for Juvenile Idiopathic Arthritis: First Steps, Pediatric Rheumatology International Trials Organization International Consensus. J. Rheumatol. 2018, 46, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, M.; Osuch, A.; Samel-Kowalik, P.; Gorynski, P.; Tyszko, P.; Kanecki, K. Adult-onset Still’s disease in Poland—A nationwide population-based study. Ann. Agric. Environ. Med. 2021, 28, 250–254. [Google Scholar] [CrossRef]
- Feist, E.; Mitrovic, S.; Fautrel, B. Mechanisms, biomarkers and targets for adult-onset Still’s disease. Nat. Rev. Rheumatol. 2018, 14, 603–618. [Google Scholar] [CrossRef]
- Shumizu, M.; Nakagishi, Y.; Yachie, A. Distinct subsets of patients with systemic juvenile idiopathic arthritis based on their cytokine profiles. Cytokine 2013, 61, 345–348. [Google Scholar] [CrossRef]
- Ichida, H.; Kawaguchi, Y.; Sugiura, T.; Takagi, K.; Katsumata, Y.; Gono, T.; Ota, Y.; Kataoka, S.; Kawasumi, H.; Yamanaka, H. Clinical Manifestations of Adult-Onset Still’s Disease Presenting with Erosive Arthritis: Association with Low Levels of Ferritin and Interleukin-18. Arthritis Care Res. 2013, 66, 642–646. [Google Scholar] [CrossRef]
- Cush, J.J.; Medsger, T.A., Jr.; Christy, W.C.; Herbert, D.C.; Cooperstein, L.A. Adult-onset Still’s disease: Clinical course and outcome. Arthritis Rheum. 1987, 30, 186–194. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Ohta, A.; Tsunematsu, T.; Kasukawa, R.; Mizushima, Y.; Kashiwagi, H.; Kashiwazaki, S.; Tanimoto, K.; Matsumoto, Y.; Ota, T. Preliminary criteria for classification of adult Still’s disease. J. Rheumatol. 1992, 19, 424–430. [Google Scholar]
- Fautrel, B.; Zing, E.; Golmard, J.-L.; Moel, G.L.E.; Bissery, A.; Rioux, C.; Rozenberg, S.; Piette, J.-C.; Bourgeois, P. Proposal for a New Set of Classification Criteria for Adult-Onset Still Disease. Medicine 2002, 81, 194–200. [Google Scholar] [CrossRef]
- Petty, R.E.; Southwood, T.R.; Manners, P.; Baum, J.; Glass, D.N.; Goldenberg, J.; He, X.; Maldonado-Cocco, J.; Orozco-Alcala, J.; Prieur, A.-M.; et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: Second revision, Edmonton, 2001. J. Rheumatol. 2004, 31, 390–392. [Google Scholar] [PubMed]
- Tomaras, S.; Goetzke, C.C.; Kallinich, T.; Feist, E. Adult-Onset Still’s Disease: Clinical Aspects and Therapeutic Approach. J. Clin. Med. 2021, 10, 733. [Google Scholar] [CrossRef]
- Fautrel, B. Adult-onset Still disease. Best Pract. Res. Clin. Rheumato. 2008, 22, 779–792. [Google Scholar] [CrossRef]
- Pouchot, J.; Sampalis, J.S.; Beaudet, F.; Carette, S.; Décary, F.; Salusinsky-Sternbach, M.; Hill, R.; Gutkowski, A.; Harth, M.; Myhal, D.; et al. Adult Still’s disease: Manifestations, disease course and outcome in 62 patients. Medicine 1991, 70, 118–136. [Google Scholar] [CrossRef] [PubMed]
- Ravelli, A.; Minoia, F.; Davì, S.; Horne, A.; Bovis, F.; Pistorio, A.; Aricò, M.; Avcin, T.; Behrens, E.M.; De Benedetti, F.; et al. 2016 classification criteria for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis: A European League against Rheumatism/American College of Rheumatology/Pediatric Rheumatology International Trials Organisation Collaborative Initiative. Arthritis Rheumatol. 2016, 68, 566–576. [Google Scholar]
- Gabay, C.; Fautrel, B.; Rech, J.; Spertini, F.; Feist, E.; Kötter, I.; Hachulla, E.; Morel, J.; Schaeverbeke, T.; Hamidou, M.A.; et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekining alfa (IL-18BP) in adult-onset Still’s disease. Ann. Rheum. Dis. 2018, 77, 840–847. [Google Scholar]
- Hayem, F.; Hayem, G. Still’s disease and the mitochondrion: The other face of an old friend? Med. Hypothese 2012, 79, 136–137. [Google Scholar] [CrossRef] [PubMed]
- Fardet, L.; Galicier, L.; Lambotte, O.; Marzac, C.; Aumont, C.; Chahwan, D.; Coppo, P.; Hejblum, G. Development and Validation of the HScore, a Score for the Diagnosis of Reactive Hemophagocytic Syndrome. Arthritis Rheumatol. 2014, 66, 2613–2620. [Google Scholar] [CrossRef] [PubMed]
- Jamilloux, Y.; Gerfaud-Valentin, M.; Martinon, F.; Belot, A.; Henry, T.; Sève, P. Pathogenesis of adult-onset Still’s disease: New insights from the juvenile counterpart. Immunol. Res. 2014, 61, 53–62. [Google Scholar] [CrossRef]
- McGonagle, D.; McDermott, M.R. A proposed classification of the immunological diseases. PLoS Med. 2006, 3, e297. [Google Scholar] [CrossRef]
- Choi, J.-H.; Suh, C.-H.; Lee, Y.-M.; Suh, Y.-J.; Lee, S.-K.; Kim, S.-S.; Nahm, D.-H.; Park, H.-S. Serum cytokine profiles in patients with adult onset Still’s disease. J. Rheumatol. 2003, 30, 2422–2427. [Google Scholar] [PubMed]
- Liu, B.; Yang, J.X.; Yan, L.; Zhuang, H.; Li, T. Novel HBV recombinants between genotypes B and C in 3′-terminal reverse transcriptase (RT) sequences are associated with enhanced viral DNA load, higher RT point mutation rates and place of birth among Chinese patients. Infect. Genet. Evol. 2018, 57, 26–35. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, B.; Hou, J.; Sun, J.; Hao, R.; Xiang, K.; Yan, L.; Zhang, J.; Zhuang, H.; Li, T. Naturally occurring deletions/insertions in HBV core promoter tend to decrease in hepatitis B e antigen-positive chronic hepatitis B patients during antiviral therapy. Antivir. Ther. 2015, 20, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.M.; Li, N.L.; Wang, R.; Li, X.; Li, Z.A.; Marion, T.N.; Li, K. Key roles for phosphorylation and the coiled-coil domain in TRIM56-madiated positive regulation of TLR3-TRIF-dependent innate immunity. J. Biol. Chem. 2024, 300, 107249. [Google Scholar] [CrossRef]
- Shen, Y.; Li, N.L.; Wang, J.; Liu, B.; Lester, S.; Li, K. TRIM56 Is an Essential Component of the TLR3 Antiviral Signaling Pathway. J. Biol. Chem. 2012, 287, 36404–36413. [Google Scholar] [CrossRef]
- Wei, D.; Li, N.L.; Zeng, Y.; Liu, B.; Kumthip, K.; Wang, T.T.; Huo, D.; Ingels, J.F.; Lu, L.; Shang, J.; et al. The molecular chaperone GRP78 contributes to Toll-like receptor 3-mediated innate immune ewsponse to hepatitis C virus in hepatocytes. J. Biol. Chem. 2016, 291, 12294–12309. [Google Scholar] [CrossRef]
- Park, H.; Bourla, A.B.; Kastner, D.L.; Colbert, R.A.; Siegel, R.M. Lighting the fires within: The cell biology of autoinflammatory diseases. Nat. Rev. Immunol. 2012, 12, 570–580. [Google Scholar] [CrossRef]
- Conigliaro, P.; Priori, R.; Bombardieri, M.; Alessandri, C.; Barone, F.; Pitzalis, C.; McInnes, I.B.; Valesini, G. Lymph node IL-18 expression in adult-onset Still’s fdisease. Ann. Rheum. Dis. 2009, 68, 442–443. [Google Scholar] [CrossRef] [PubMed]
- Meng, G.; Zhang, F.; Fuss, I.; Kitani, A.; Strober, W. A mutation in the NLRP3 gene causing inflammasone hyperactivation potentiates Th17 cell-dominant immune responses. Immunity 2009, 30, 860–874. [Google Scholar] [CrossRef]
- Lee, S.; Cho, Y.; Kim, T.; Park, S.; Park, D.; Jin, H.; Lee, S.; Kee, S.; Kim, N.; Yoo, D.; et al. Natural killer T cell deficiency in active adult-onset Still’s disease: Correlation of deficiency of natural killer T cells with dysfunction of natural killer cells. Arthritis Rheum. 2012, 64, 2868–2877. [Google Scholar] [CrossRef]
- Zandman-Goddart, G.; Shoenfeld, Y. Ferritin in autoimmune diseases. Autoimmun. Rev. 2007, 6, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Mitrivic, S.; Fautrel, B. New markers for adult-onset Still’s disease. Jt. Bone Spine 2018, 85, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Javaux, C.; El-Jammal, T.; Neau, P.-A.; Fournier, N.; Gerfaud-Valentin, M.; Perard, L.; Fouillet-Desjonqueres, M.; Le Scanff, J.; Vignot, E.; Durupt, S.; et al. Detection and Prediction of Macrophage Activation Syndrome in Still’s Disease. J. Clin. Med. 2021, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Triggianese, P.; Vitale, A.; Lopalco, G.; Giardini, H.A.M.; Ciccia, F.; Al-Maghlouth, I.; Ruscitti, P.; Sfikakis, P.P.; Iannone, F.; Antonelli, I.P.d.B.; et al. Clinical and laboratory features associated with macrophage activation syndrome in Still’s disease: Data from the international AIDA Network Still’s Disease Registry. Intern. Emerg. Med. 2023, 18, 2231–2243. [Google Scholar] [CrossRef] [PubMed]
- Sola, D.; Smirne, C.; Bruggi, F.; Sbaratta, C.B.; Njata, A.C.T.; Walente, G.; Pavanelli, M.C.; Vitetta, R.; Bellan, M.; De Paoli, L.; et al. Unveiling the Mystery of Adult-Onset Still’s Disease:A Compelling Case Report. Life 2024, 14, 195. [Google Scholar] [CrossRef]
- Fautrel, B.; Sibilia, J.; Mariette, X.; Combe, B. Tumor necrosis factor alpha blocking agents in refractory adult Still’s disease: An observational study of 20 cases. Ann. Rheum. Dis. 2005, 64, 262–266. [Google Scholar] [CrossRef]
- Ortiz-Sanjuán, F.; Blanco, R.; Riancho-Zarrabeitia, L.; Castaneda, S.; Olivé, A.; Riveros, A.; Velloso-Feijoo, M.L.; Narváez, J.; Jiménez-Moleón, I.; Maiz-Alonso, O.; et al. Efficacy of Anakinra in refractory adult-onset Still’s disease: Multicenter study of 41 patients and literature review. Medicine 2015, 94, e1554. [Google Scholar] [CrossRef]
- Kedor, C.; Listing, J.; Zernicke, J.; Weiß, A.; Behrens, F.; Blank, N.; Henes, J.C.; Kekow, J.; Rubbert-Roth, A.; Schulze-Koops, H.; et al. Canakinumab for treatment of adult-onset Still’s disease to achieve reduction of arthritic manifestation (CONSIDER): Phase II, randomised, double-blind, placebo-controlled, multicentre, investigator-initiated trial. Ann. Rheum. Dis. 2020, 79, 1090–1097. [Google Scholar] [CrossRef]
- Ilowite, N.T.; Prather, K.; Lokhnygina, Y.; Schanberg, L.E.; Elder, M.; Milojevic, D.; Verbsky, J.W.; Spalding, S.J.; Kimura, Y.; Imundo, L.F.; et al. Randomized, double-blind, placebo-controlled trial of the efficacy and safety of rilonacept in the treatment of systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 2014, 66, 2570–2579. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, M.; Zhang, X.; Xia, Q.; Yang, J.; Xu, S.; Pan, F. Efficacy and safety of tocilizumab with inhibition of interleukin-6 in adult-onset Still’s disease: A meta-analysis. Mod. Rheumatol. 2018, 28, 849–857. [Google Scholar] [CrossRef]
- Honda, M.; Moriyama, M.; Kondo, M.; Kumakura, S.; Murakawa, Y. Tofacitinib-induced remission in refractory adult-onset Still’s complicated by macrophage activation syndrome. Scand. J. Rheumatol. 2020, 49, 336–338. [Google Scholar] [CrossRef] [PubMed]
- Kacar, M.; Fitton, J.; Gough, A.K.; Buch, M.H.; McGonagle, D.G.; Savic, S. Mixed results with baricitinib in biological-resistant adult-onset Still’s disease and undifferentiated systemic autoinflammatory disease. RMD Open 2020, 6, e001246. [Google Scholar] [CrossRef] [PubMed]
- Adachi, S.; Takase-Minegishi, K.; Maeda, A.; Nagai, H.; Horita, N.; Yoshimi, R.; Kirino, Y.; Nakajima, H. Risk of macrophage activation syndrome in patients with adult-onset Still’s disease treated with IL-1 and IL-6 inhibitors: A meta-analysis and single center experience. Rheumatol. Ther. 2023, 10, 1623–1636. [Google Scholar] [CrossRef]
- Ahmadi-Simab, K.; Lamprecht, P.; Jankowiak, C.; Gross, W.L. Succesful treatment of refractory adult onset Still’s disease with rituximab. Ann. Rheum. Dis. 2006, 65, 1117–1118. [Google Scholar] [CrossRef]
- Przybyszewska, W.; Geisler, P.; Kisiel, B.; Raczkiewicz, A.; Elert-Kopeć, S.; Malczuk, E.; Choroś, D.; Tłustochowicz, W. The use of cyclophosphamide in the treatment of Still’s disease—A case report. Pol. Merkur. Lek. 2021, 49, 317–373. [Google Scholar]
- Vignes, S.; Wechsler, B.; Amoura, Z.; Papo, T.; Frances, C.; Huong, D.L.; Veyssier, P.; Godeau, P.; Piette, J.C. Intravenous immunoglobulin in adult Still’s disease refractory to non-steroidal anti-inflammatory drugs. Clin. Exp. Rheumatol. 1998, 16, 295–298. [Google Scholar]
- Quartuccio, L.; Maset, M.; de Vita, S. Efficacy of abatacept in a refractory case of adult-onset Still’s disease. Clin. Exp. Rheumatol. 2010, 28, 265–267. [Google Scholar]
- Kessel, C.; Lippitz, K.; Weinhage, T.; Hinze, C.; Wittkowski, H.; Holzinger, D.; Fall, N.; Grom, A.A.; Gruen, N.; Foell, D. Proinflammatory Cytokine Environments Can Drive Interleukin-17 Overexpression by γ/δ T Cells in Systemic Juvenile Idiopathic Arthritis. Arthritis Rheumatol. 2017, 69, 1480–1494. [Google Scholar] [CrossRef]
- Shakoory, B.; Geerlinks, A.; Wilejto, M.; Kernan, K.; Hines, M.; Romano, M.; Piskin, D.; Ravelli, A.; Sinha, R.; Aletaha, D.; et al. The 2022 EULAR/ACR points to consider at the early stages of diagnosis and management of suspected haemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS). Ann. Rheum. Dis. 2023, 82, 1271–1285. [Google Scholar] [CrossRef]
- De Benedetti, F.; Grom, A.A.; Brogan, P.A.; Bracaglia, C.; Pardeo, M.; Marucci, G.; Eleftheriou, D.; Papadopoulou, C.; Schulert, G.S.; Quartier, P.; et al. Efficacy and safety of emapalumab in macrophage activation syndrome. Ann. Rheum. Dis. 2023, 82, 857–865. [Google Scholar] [CrossRef]
1987 Cush Criteria [8] | 1992 Yamaguchi Criteria [9] | 2002 Fautrel Criteria [10] | 2004 ILAR Criteria [11] |
---|---|---|---|
2 points each: Quotidian fever > 39 °C Evanescent rash White blood cells (WBC) > 12,000/μL and erythrocytes sedimentation rate (ESR) > 40 mm/1h Negative antinuclear antibody (ANA) and rheumatoid factor (RF) Carpal ankylosis | Major criteria: Fever > 39 °C, intermittent, one week or longer Arthralgia or arthritis ≥ 2 weeks Characteristic rash WBC > 10,000/μL with > 80% granulocytes | Major criteria: Spiking fever ≥ 39 °C Arthralgia Transient erythema Pharyngitis ≥80% granulocytes Glycosylated ferritin ≤ 20% | Major criteria: Arthritis in at least one joint Fever > 2 weeks, daily for at least 3 days |
1 point each: Onset age > 35 years Arthritis Sore throat Reticuloendothelial system involvement or liver function test (LFT) abnormality Serositis Cervical or tarsal ankylosis | Minor criteria: Sore throat Lymphadenopathy Hepatomegaly or splenomegaly Abnormal liver function tests Negative ANA and RF | Minor criteria: Maculopapular rash Leucocytes ≥ 10,000/μL | Minor criteria: Evanescent erythematous rash Generalized lymph node enlargement Hepatomegaly Splenomegaly Serositis |
Exclusion criteria: None | Exclusion criteria: Infections, malignancy, other rheumatic diseases that mimic AOSD | Exclusion criteria: None | Exclusion criteria: Other forms of JIA must be excluded |
Algorithm: Probable AOSD: 10 points during 12 weeks of observation Definite AOSD: 10 points with 6 months observation | Algorithm: 5 criteria: at least 2 major ones AND no exclusion criteria | Algorithm: 4 major criteria OR 3 major with 2 minor ones | Algorithm: All major criteria AND at least 1 minor criterion |
Sensitivity: Not applicable Specificity: Not applicable | Sensitivity: 96.2% Specificity: 92.1% | Sensitivity: 80.6% Specificity: 98.5% | Sensitivity: Not applicable Specificity: Not applicable |
Symptoms | Frequency in % | Involved Joints | Frequency in % | Laboratory Test Abnormalities | Frequency in % |
---|---|---|---|---|---|
Fever Arthralgia/arthritis Skin rashes Myalgia Sore throat Lymphadenopathy Hepatomegaly Splenomegaly Abdominal pain Pleuritis or pericarditis | 85–100 73–95 68–81 44–65 53–62 31–61 7–22 5–67 14–18 20–25 | Knee Wrist Ankle Proximal interphalangeal (PIP) Elbow Shoulder MCP Metatarsophalangeal (MTP) Hip Distal interphalangeal (DIP) Temporomandi-bular | 84 74 57 47 50 43 34 19 14 18 8 | Increased ESR and CRP Leukocytosis > 10,000/mm3 Neutrophil polymorphonuc-lear count ≥ 80% Anemia ≤ 10g/100 mL Thrombocytosis > 400,000/mm3 Abnormal liver function results Increased ferritin concentration Reduced glycosylated ferritin concentration ANA absence RF absence | 99 89–94 88–93 50–75 62 43–76 69–93 80–90 92 93 |
Variable | Variable | Number of Points |
---|---|---|
Temperature | <38.4 °C 38.4–39.4 °C >39.4 °C | 0 33 49 |
Organomegaly | None Hepatomegaly or splenomegaly Hepatomegaly and splenomegaly | 0 23 38 |
Cytopenia | One lineage Two lineages Three lineages | 0 24 34 |
Triglycerides (mmol/L) | <1.5 1.5–4.0 >4.0 | 0 44 64 |
Fibrinogen (g/L) | >2.5 ≤2.5 | 0 30 |
Ferritin (ng/mL) | <2000 2000–6000 >6000 | 0 35 50 |
Serum aspartate aminotransferase (IU/L) | <30 ≥30 | 0 19 |
Hemophagocytosis on bone marrow aspirate | No Yes | 0 35 |
Known immunosuppression | No Yes | 0 18 |
No. of Case | Sex/Age | Criteria of Diagnosis | Complications | Treatment |
---|---|---|---|---|
1 | F/34 18-week HBD | Intermittent fever > 39 °C, arthralgia, typical rash, leucocytes > 28,000 μg/L, granulocytes 84.5%, sore throat, ferritin 2217 ng/mL | MAS/HLH Th5 compressive fracture | GCs, IVIG, cyclosporin A (CsA), methotrexate (MTX), Etanercept, Tocilizumab |
2 | M/24 | Arthritis (wrists, knee), sore throat, maculopapular rash, leucocytes > 18,300 μg/L, 84.4% granulocytes, ferritin 2006 ng/mL | GCs, MTX | |
3 | F/30 | Intermittent fever > 39 °C, arthralgia, typical rash, leucocytes > 20,100 μg/L, granulocytes 83%, sore throat, ferritin 2067 ng/mL | GCs, MTX | |
4 | F/31 | Intermittent fever > 39 °C, arthralgia, typical rash, leucocytes > 15,700 μg/L, granulocytes 82% sore throat, ferritin 4405 ng/mL | GCs, MTX | |
5 | M/41 | Intermittent fever > 39 °C, arthralgia, typical rash, leucocytes > 13,870 μg/L, granulocytes 83%, ferritin 16,016 ng/mL | GCs | |
6 | F/28 | Intermittent fever > 39 °C, arthritis (wrists), typical rash, lymphadenopathy, leucocytes > 14,720 μg/L, granulocytes 83.3% sore throat, ferritin 799 ng/mL | GCs, MTX | |
7 | M/19 | Intermittent fever > 39 °C, arthritis (wrists), typical rash, leucocytes > 20,980 μg/L, granulocytes 89.4% sore throat, ferritin 4405 ng/mL | MAS/HLH | GCs, CyC, intravenous immunoglobulin (IVIG), Tocilizumab |
8 | F/26, 22-week HBD | Intermittent fever > 39 °C, arthritis (wrists, knees), typical rash, sore throat, pericarditis, pleuritis, leucocytes > 21,030 μg/L, granulocytes 88.6%, ferritin 21,140 ng/mL, hepatomegaly. Previously, at age 10, the patient suffered one incident of MAS/HLH | MAS/HLH | GCs, CsA, IVIG, etanercept, MTX |
9 | F/30 | Intermittent fever > 39 °C, arthritis (wrists, feet), slight urticarial rash, lymphadenopathy, hepatosplenomegaly, leucocytes > 8670 μg/L, ferritin 885 ng/mL | MAS/HLH | GCs |
Clinical and Laboratory Feature | Case 1 Female/34 Years 18 Week HBD | Case 7 Male/19 Years | Case 8 Female/26 Years 22 Week HBD | Case 9 Female/30 Years |
---|---|---|---|---|
Persistent fever | >39.5 °C | >39.5 °C | >39.5 °C | >39.5 °C |
Hemorrhagic rash | Absent | Present | Absent | Absent |
Hepatosplenomegaly | Present | Present | Only hepatomegaly | Present |
Erythrocytes (μg/L) | 26,000 | Within normal range | 28,500 | Within normal range |
Lymphocytes (μg/L) | Within normal range | Within normal range | Within normal range | 2.46 |
Thrombocytes (μg/L) | 106,000 | 55,000 | 159,000 | Within normal range |
Ferritin (ng/mL) | 6217 | 79,187 | 36,985 | 1062 |
AspAT (IU/L) | 2423 | 138 | 453 | 66 |
Fibrinogen (g/L) | 1.98 | 0.88 | 4.0 | 1.67 |
Triglycerides (mg/dL) | 215.2 | 335.4 | 275 | 138.5 |
Parameters of Hscore | Case 1 Female/34 Years 18 Week HBD | Case 7 Male/19 Years | Case 8 Female/26 Years 22 Week HBD | Case 9 Female/30 Years |
---|---|---|---|---|
Immunosuppression | 18 | 18 | 18 | 18 |
Temperature | 49 | 49 | 49 | 49 |
Organomegaly | 38 | 38 | 23 | 38 |
Cytopenias | 24 | 0 | 24 | 0 |
Ferritin | 50 | 50 | 50 | 0 |
Fibrinogen | 30 | 30 | 0 | 30 |
Triglycerides | 44 | 64 | 44 | 0 |
Transaminase | 19 | 19 | 19 | 19 |
Total score | 272 | 268 | 227 | 154 |
Treatment | GCs, CyS, IVIG, tocilizumab | GCs, CyS, IVIG, tocilizumab | GCs, CyS, IVIG, plasmapheresis | GCs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wisłowska, M. Adult-Onset Still’s Disease (AOSD)—On the Basis of Own Cases. Biomedicines 2024, 12, 2067. https://doi.org/10.3390/biomedicines12092067
Wisłowska M. Adult-Onset Still’s Disease (AOSD)—On the Basis of Own Cases. Biomedicines. 2024; 12(9):2067. https://doi.org/10.3390/biomedicines12092067
Chicago/Turabian StyleWisłowska, Małgorzata. 2024. "Adult-Onset Still’s Disease (AOSD)—On the Basis of Own Cases" Biomedicines 12, no. 9: 2067. https://doi.org/10.3390/biomedicines12092067
APA StyleWisłowska, M. (2024). Adult-Onset Still’s Disease (AOSD)—On the Basis of Own Cases. Biomedicines, 12(9), 2067. https://doi.org/10.3390/biomedicines12092067