Unveiling Niaprazine’s Potential: Behavioral Insights into a Re-Emerging Anxiolytic Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Behavioral Tests
2.2.1. Elevated Plus Maze
2.2.2. Marble Burying Test
2.3. Flow Cytometry
2.4. Chemical Analysis
2.4.1. Stability Study
2.4.2. Stress Test
2.5. Chemicals
2.6. Data Analysis and Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Connor, D.B.; Thayer, J.F.; Vedhara, K. Stress and Health: A Review of Psychobiological Processes. Annu. Rev. Psychol. 2021, 72, 663–688. [Google Scholar] [CrossRef]
- Burkhardt, M.E. Social Interaction Effects Following a Technological Change: A Longitudinal Investigation. Acad. Manag. J. 1994, 37, 869–898. [Google Scholar] [CrossRef]
- Baym, N.K.; Zhang, Y.B.; Lin, M.-C. Social Interactions Across Media. New Media Soc. 2004, 6, 299–318. [Google Scholar] [CrossRef]
- Gonaygunta, H.; Meduri, S.S.; Podicheti, S.; Nadella, G.S. The Impact of Virtual Reality on Social Interaction and Relationship via Statistical Analysis. Int. J. Mach. Learn. Sustain. Dev. 2023, 5, 1–20. [Google Scholar]
- Ratschen, E.; Shoesmith, E.; Shahab, L.; Silva, K.; Kale, D.; Toner, P.; Reeve, C.; Mills, D.S. Human-Animal Relationships and Interactions during the Covid-19 Lockdown Phase in the UK: Investigating Links with Mental Health and Loneliness. PLoS ONE 2020, 15, e0239397. [Google Scholar] [CrossRef]
- Janssens, M.; Eshuis, J.; Peeters, S.; Lataster, J.; Reijnders, J.; Enders-Slegers, M.-J.; Jacobs, N. The Pet-Effect in Daily Life: An Experience Sampling Study on Emotional Wellbeing in Pet Owners. Anthrozoos 2020, 33, 579–588. [Google Scholar] [CrossRef]
- Barcelos, A.M.; Kargas, N.; Maltby, J.; Mills, D.S. Potential Psychosocial Explanations for the Impact of Pet Ownership on Human Well-Being: Evaluating and Expanding Current Hypotheses. Hum.-Anim. Interact. 2023. [Google Scholar] [CrossRef]
- Overgaauw, P.A.M.; Vinke, C.M.; van Hagen, M.A.E.; Lipman, L.J.A. A One Health Perspective on the Human–Companion Animal Relationship with Emphasis on Zoonotic Aspects. Int. J. Environ. Res. Public Health 2020, 17, 3789. [Google Scholar] [CrossRef]
- Matijczak, A.; Yates, M.S.; Ruiz, M.C.; Santos, L.R.; Kazdin, A.E.; Raila, H. The Influence of Interactions with Pet Dogs on Psychological Distress. Emotion 2024, 24, 384–396. [Google Scholar] [CrossRef]
- Novack, L.I.; Schnell-Peskin, L.; Feuerbacher, E.; Fernandez, E.J. The Science and Social Validity of Companion Animal Welfare: Functionally Defined Parameters in a Multidisciplinary Field. Animals 2023, 13, 1850. [Google Scholar] [CrossRef]
- Garakani, A.; Murrough, J.W.; Freire, R.C.; Thom, R.P.; Larkin, K.; Buono, F.D.; Iosifescu, D.V. Pharmacotherapy of Anxiety Disorders: Current and Emerging Treatment Options. Front. Psychiatry 2020, 11, 595584. [Google Scholar] [CrossRef]
- Witkin, J.M.; Barrett, J.E. ANXIOLYTICS: Origins, Drug Discovery, and Mechanisms. Pharmacol. Biochem. Behav. 2024, 245, 173858. [Google Scholar] [CrossRef]
- Sakakibara, H.; Shimoi, K. Anti-Stress Effects of Polyphenols: Animal Models and Human Trials. Food Funct. 2020, 11, 5702–5717. [Google Scholar] [CrossRef]
- Ratajczak, P.; Kus, K.; Przyjemska, M.Z.; Zaprutko, B.; Kopciuch, D.; Paczkowska, A.; Nowakowska, E. Antistress and Antidepressant Properties of Dapoxetine and Vortioxetine. Acta Neurobiol. Exp. 2020, 80, 217–224. [Google Scholar] [CrossRef]
- Heesbeen, E.J.; van Kampen, T.; Verdouw, P.M.; van Lissa, C.; Bijlsma, E.Y.; Groenink, L. The Effect of SSRIs on Unconditioned Anxiety: A Systematic Review and Meta-Analysis of Animal Studies. Psychopharmacology 2024, 241, 1731–1755. [Google Scholar] [CrossRef]
- de Santana, J.H.; Rodrigues, T.d.O.; de Lima, F.A.; Martins Silva, D.G.; Beltrão de Lemos, M.D.T.; de Andrade Silva, S.C.; Lagranha, C.J. Effects of Fluoxetine Withdrawal in the Brainstem and Hypothalamus of Overnourished Rats: Chronic Modulation on Oxidative Stress Levels. Int. J. Dev. Neurosci. 2023, 83, 297–306. [Google Scholar] [CrossRef]
- Bandelow, B.; Allgulander, C.; Baldwin, D.S.; Costa, D.L.d.C.; Denys, D.; Dilbaz, N.; Domschke, K.; Eriksson, E.; Fineberg, N.A.; Hättenschwiler, J.; et al. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Treatment of Anxiety, Obsessive-Compulsive and Posttraumatic Stress Disorders—Version 3. Part I: Anxiety Disorders. World J. Biol. Psychiatry 2023, 24, 79–117. [Google Scholar] [CrossRef]
- Davidson, J.R.T. Use of Benzodiazepines in Social Anxiety Disorder, Generalized Anxiety Disorder, and Posttraumatic Stress Disorder. J. Clin. Psychiatry 2004, 65 (Suppl. S5), 29–33. [Google Scholar]
- Gupta, A.; Bhattacharya, G.; Farheen, S.A.; Funaro, M.; Balasubramaniam, M.; Young, J.; Tampi, D.J.; Tampi, R.R. Systematic Review of Benzodiazepines for Anxiety Disorders in Late Life. Ann. Clin. Psychiatry 2020, 32, 114–127. [Google Scholar]
- Offidani, E.; Guidi, J.; Tomba, E.; Fava, G.A. Efficacy and Tolerability of Benzodiazepines versus Antidepressants in Anxiety Disorders: A Systematic Review and Meta-Analysis. Psychother. Psychosom. 2013, 82, 355–362. [Google Scholar] [CrossRef]
- Panossian, A. Understanding Adaptogenic Activity: Specificity of the Pharmacological Action of Adaptogens and Other Phytochemicals. Ann. N. Y. Acad. Sci. 2017, 1401, 49–64. [Google Scholar] [CrossRef]
- Panossian, A.G.; Efferth, T.; Shikov, A.N.; Pozharitskaya, O.N.; Kuchta, K.; Mukherjee, P.K.; Banerjee, S.; Heinrich, M.; Wu, W.; Guo, D.; et al. Evolution of the Adaptogenic Concept from Traditional Use to Medical Systems: Pharmacology of Stress- and Aging-related Diseases. Med. Res. Rev. 2021, 41, 630–703. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Camerena, E.; López-Rubalcava, C.; Vega-Rivera, N.M.; González-Trujano, M.E. Antidepressant- and Anxiolytic-like Effects of Pomegranate: Is It Acting by Common or Well-Known Mechanisms of Action? Plants 2024, 13, 2205. [Google Scholar] [CrossRef] [PubMed]
- Trebesova, H.; Orlandi, V.; Boggia, R.; Grilli, M. Anxiety and Metabolic Disorders: The Role of Botanicals. Curr. Issues Mol. Biol. 2023, 45, 1037–1053. [Google Scholar] [CrossRef]
- Woodward, D.J.; Thorp, J.G.; Akosile, W.; Ong, J.S.; Gamazon, E.R.; Derks, E.M.; Gerring, Z.F. Identification of Drug Repurposing Candidates for the Treatment of Anxiety: A Genetic Approach. Psychiatry Res. 2023, 326, 115343. [Google Scholar] [CrossRef]
- Nykamp, M.J.; Zorumski, C.F.; Reiersen, A.M.; Nicol, G.E.; Cirrito, J.; Lenze, E.J. Opportunities for Drug Repurposing of Serotonin Reuptake Inhibitors: Potential Uses in Inflammation, Infection, Cancer, Neuroprotection, and Alzheimer’s Disease Prevention. Pharmacopsychiatry 2022, 55, 24–29. [Google Scholar] [CrossRef]
- Relia, S.; Ekambaram, V. Pharmacological Approach to Sleep Disturbances in Autism Spectrum Disorders with Psychiatric Comorbidities: A Literature Review. Med. Sci. 2018, 6, 95. [Google Scholar] [CrossRef]
- De Zen, L.; Del Rizzo, I.; Robazza, M.; Barbieri, F.; Campagna, M.; Vaccher, S.; Barbi, E.; Dall’amico, R. Home Use of Intranasal Dexmedetomidine in a Child with an Intractable Sleep Disorder. J. Pediatr. Pharmacol. Ther. 2020, 25, 332–335. [Google Scholar] [CrossRef]
- Scherman, D.; Hamon, M.; Gozlan, H.; Henry, J.-P.; Lesage, A.; Masson, M.; Rumigny, J.F. Molecular Pharmacology of Niaprazine. Prog. Neuropsychopharmacol. Biol. Psychiatry 1988, 12, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Keane, P.E.; Benedetti, M.S.; Dow, J. The Effect of Niaprazine on the Turnover of 5-Hydroxytryptamine in the Rat Brain. Neuropharmacology 1982, 21, 163–169. [Google Scholar] [CrossRef]
- Keane, P.E.; Benedetti, M.S. Niaprazine, a Selective Brain Catecholamine Depletor. Neuropharmacology 1979, 18, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Biliński, P.; Hołownia, P.; Kapka-Skrzypczak, L.; Wojtyła, A. Designer Drug (DD) Abuse in Poland; a Review of the Psychoactive and Toxic Properties of Substances Found from Seizures of Illegal Drug Products and the Legal Consequences Thereof. Part II-Piperazines/Piperidines, Phenylethylamines, Tryptamines and Miscel. Ann. Agric. Environ. Med. 2012, 19, 871–882. [Google Scholar] [PubMed]
- Ascoli, M.; Elia, M.; Gasparini, S.; Bonanni, P.; Mastroianni, G.; Cianci, V.; Neri, S.; Pascarella, A.; Santangelo, D.; Aguglia, U.; et al. Therapeutic Approach to Neurological Manifestations of Angelman Syndrome. Expert Rev. Clin. Pharmacol. 2022, 15, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Maurer, J.J.; Choi, A.; An, I.; Sathi, N.; Chung, S. Sleep Disturbances in Autism Spectrum Disorder: Animal Models, Neural Mechanisms, and Therapeutics. Neurobiol. Sleep Circadian Rhythm. 2023, 14, 100095. [Google Scholar] [CrossRef] [PubMed]
- Pisciotta, L.; Gherzi, M.; Stagnaro, M.; Calevo, M.G.; Giannotta, M.; Vavassori, M.R.; Veneselli, E.; De Grandis, E. Alternating Hemiplegia of Childhood: Pharmacological Treatment of 30 Italian Patients. Brain Dev. 2017, 39, 521–528. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE Guidelines 2.0: Updated Guidelines for Reporting Animal Research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- Lee, B.; Lee, H. Systemic Administration of Curcumin Affect Anxiety-Related Behaviors in a Rat Model of Posttraumatic Stress Disorder via Activation of Serotonergic Systems. Evid.-Based Complement. Altern. Med. 2018, 2018, 9041309. [Google Scholar] [CrossRef]
- Salehi, A.; Rabiei, Z.; Setorki, M. Effect of Gallic Acid on Chronic Restraint Stress-Induced Anxiety and Memory Loss in Male BALB/c Mice. Iran. J. Basic Med. Sci. 2018, 21, 1232–1237. [Google Scholar] [CrossRef]
- Selvaraj, D.B.; Vergil Andrews, J.F.; Anusuyadevi, M.; Kandasamy, M. Ranitidine Alleviates Anxiety-like Behaviors and Improves the Density of Pyramidal Neurons upon Deactivation of Microglia in the CA3 Region of the Hippocampus in a Cysteamine HCl-Induced Mouse Model of Gastrointestinal Disorder. Brain Sci. 2023, 13, 266. [Google Scholar] [CrossRef]
- Dixit, P.V.; Sahu, R.; Mishra, D.K. Marble-Burying Behavior Test as a Murine Model of Compulsive-like Behavior. J. Pharmacol. Toxicol. Methods 2020, 102, 106676. [Google Scholar] [CrossRef]
- Rodriguez, A.; Zhang, H.; Klaminder, J.; Brodin, T.; Andersson, P.L.; Andersson, M. ToxTrac: A Fast and Robust Software for Tracking Organisms—User Guide for Version 2.61. Methods Ecol. Evol. 2017, 61, 1–54. [Google Scholar]
- Trebesova, H.; Olivero, G.; Marchi, M.; Grilli, M. The Anti-Aggregative Peptide KLVFF Mimics Aβ1-40 in the Modulation of Nicotinic Receptors: Implications for Peptide-Based Therapy. Biomedicines 2022, 10, 2231. [Google Scholar] [CrossRef] [PubMed]
- Gylys, K.H.; Fein, J.A.; Cole, G.M. Quantitative Characterization of Crude Synaptosomal Fraction (P-2) Components by Flow Cytometry. J. Neurosci. Res. 2000, 61, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Olivero, G.; Taddeucci, A.; Vallarino, G.; Trebesova, H.; Roggeri, A.; Gagliani, M.C.; Cortese, K.; Grilli, M.; Pittaluga, A. Complement Tunes Glutamate Release and Supports Synaptic Impairments in an Animal Model of Multiple Sclerosis. Br. J. Pharmacol. 2024, 181, 1812–1828. [Google Scholar] [CrossRef]
- Gylys, K.H.; Fein, J.A.; Wiley, D.J.; Cole, G.M. Rapid Annexin-V Labeling in Synaptosomes. Neurochem. Int. 2004, 44, 125–131. [Google Scholar] [CrossRef]
- Scott-Hewitt, N.; Perrucci, F.; Morini, R.; Erreni, M.; Mahoney, M.; Witkowska, A.; Carey, A.; Faggiani, E.; Schuetz, L.T.; Mason, S.; et al. Local Externalization of Phosphatidylserine Mediates Developmental Synaptic Pruning by Microglia. EMBO J. 2020, 39, e105380. [Google Scholar] [CrossRef]
- Zembruski, N.C.L.L.; Stache, V.; Haefeli, W.E.; Weiss, J. 7-Aminoactinomycin D for Apoptosis Staining in Flow Cytometry. Anal. Biochem. 2012, 429, 79–81. [Google Scholar] [CrossRef]
- Fracassi, A.; Marcatti, M.; Tumurbaatar, B.; Woltjer, R.; Moreno, S.; Taglialatela, G. TREM2-Induced Activation of Microglia Contributes to Synaptic Integrity in Cognitively Intact Aged Individuals with Alzheimer’s Neuropathology. Brain Pathol. 2023, 33, e13108. [Google Scholar] [CrossRef]
- Neri, S.; Mariani, E.; Meneghetti, A.; Cattini, L.; Facchini, A. Calcein-Acetyoxymethyl Cytotoxicity Assay: Standardization of a Method Allowing Additional Analyses on Recovered Effector Cells and Supernatants. Clin. Diagn. Lab. Immunol. 2001, 8, 1131–1135. [Google Scholar] [CrossRef]
- Fisichella, M.; Odoardi, S.; Strano-Rossi, S. High-Throughput Dispersive Liquid/Liquid Microextraction (DLLME) Method for the Rapid Determination of Drugs of Abuse, Benzodiazepines and Other Psychotropic Medications in Blood Samples by Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS) and App. Microchem. J. 2015, 123, 33–41. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Ottaviano, S.; Giannotti, F.; Cortesi, F. The Effect of Niaprazine on Some Common Sleep Disorders in Children—A Double-Blind Clinical Trial by Means of Continuous Home-Videorecorded Sleep. Child’s Nerv. Syst. 1991, 7, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Rossi, P.G.; Posar, A.; Parmeggiani, A.; Pipitone, E.; D’Agata, M. Niaprazine in the Treatment of Autistic Disorder. J. Child. Neurol. 1999, 14, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.K.; Boberg, J.R.; Walsh, M.T.; Wolf, V.; Trujillo, A.; Duke, M.S.; Palme, R.; Felton, L.A. A Less Stressful Alternative to Oral Gavage for Pharmacological and Toxicological Studies in Mice. Toxicol. Appl. Pharmacol. 2012, 260, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, E.; Bilousova, T.; Melnik, M.; Fakhrutdinov, D.; Poon, W.W.; Vinters, H.V.; Miller, C.A.; Corrada, M.; Kawas, C.; Bohannan, R.; et al. Exosomal Tau with Seeding Activity Is Released from Alzheimer’s Disease Synapses, and Seeding Potential Is Associated with Amyloid Beta. Lab. Investig. 2021, 101, 1605–1617. [Google Scholar] [CrossRef]
- Mancini, J.; Thirion, X.; Masut, A.; Saillard, C.; Pradel, V.; Romain, F.; Pastor, M.J.J.; Coudert, C.; Micallef, J. Anxiolytics, Hypnotics, and Antidepressants Dispensed to Adolescents in a French Region in 2002. Pharmacoepidemiol. Drug Saf. 2006, 15, 494–503. [Google Scholar] [CrossRef]
- Turrini, F.; Vallarino, G.; Cisani, F.; Donno, D.; Beccaro, G.L.; Zunin, P.; Boggia, R.; Pittaluga, A.; Grilli, M. Use of an Animal Model to Evaluate Anxiolytic Effects of Dietary Supplementation with Tilia Tomentosa Moench Bud Extracts. Nutrients 2020, 12, 3328. [Google Scholar] [CrossRef]
- Younus, M.; Labellarte, M.J. Insomnia in Children: When Are Hypnotics Indicated? Pediatr. Drugs 2002, 4, 391–403. [Google Scholar] [CrossRef]
- Kumar, A.; Dogra, S.; Sona, C.; Umrao, D.; Rashid, M.; Singh, S.K.; Wahajuddin, M.; Yadav, P.N. Chronic Histamine 3 Receptor Antagonism Alleviates Depression like Conditions in Mice via Modulation of Brain-Derived Neurotrophic Factor and Hypothalamus-Pituitary Adrenal Axis. Psychoneuroendocrinology 2019, 101, 128–137. [Google Scholar] [CrossRef]
- Ito, C. The Role of Brain Histamine in Acute and Chronic Stresses. Biomed. Pharmacother. 2000, 54, 263–267. [Google Scholar] [CrossRef]
- Stanisor, O.I.; van Diest, S.A.; Yu, Z.; Welting, O.; Bekkali, N.; Shi, J.; de Jonge, W.J.; Boeckxstaens, G.E.; van den Wijngaard, R.M. Stress-Induced Visceral Hypersensitivity in Maternally Separated Rats Can Be Reversed by Peripherally Restricted Histamine-1-Receptor Antagonists. PLoS ONE 2013, 8, e66884. [Google Scholar] [CrossRef] [PubMed]
- Miyata, S.; Hirano, S.; Ohsawa, M.; Kamei, J. Chlorpheniramine Exerts Anxiolytic-like Effects and Activates Prefrontal 5-HT Systems in Mice. Psychopharmacology 2011, 213, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Fukudo, S.; Kano, M.; Sato, Y.; Muratsubaki, T.; Kanazawa, M.; Tashiro, M.; Yanai, K. Histamine Neuroimaging in Stress-Related Disorders. Curr. Top. Behav. Neurosci. 2022, 59, 113–129. [Google Scholar] [CrossRef]
- Naghibi, B.; Rayatnia, F. Co-Administration of Subeffective Anxiolytic Doses of Diazepam and Hydroxyzine in Elevated Zero-Maze in Mice. Psychiatry Investig. 2011, 8, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Takamura, N.; Masuda, T.; Inoue, T.; Nakagawa, S.; Koyama, T. The Effects of the Co-Administration of the A₁-Adrenoreceptor Antagonist Prazosin on the Anxiolytic Effect of Citalopram in Conditioned Fear Stress in the Rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 39, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, H.; Ferreira, M.; Mascarello, A.; Osten, P.; Werneck Guimarães, C.R. The Serotonergic and Alpha-1 Adrenergic Receptor Modulator ACH-000029 Ameliorates Anxiety-like Behavior in a Post-Traumatic Stress Disorder Model. Neuropharmacology 2020, 164, 107912. [Google Scholar] [CrossRef]
- Azevedo, H.; Ferreira, M.; Mascarello, A.; Osten, P.; Guimarães, C.R.W. Brain-Wide Mapping of c-Fos Expression in the Single Prolonged Stress Model and the Effects of Pretreatment with ACH-000029 or Prazosin. Neurobiol. Stress 2020, 13, 100226. [Google Scholar] [CrossRef]
- Baronio, D.; Castro, K.; Gonchoroski, T.; Mueller De Melo, G.; Nunes, G.D.F.; Bambini-Junior, V.; Gottfried, C.; Riesgo, R. Effects of an H3R Antagonist on the Animal Model of Autism Induced by Prenatal Exposure to Valproic Acid. PLoS ONE 2015, 10, e0116363. [Google Scholar] [CrossRef]
- Simmons, D.H.; Titley, H.K.; Hansel, C.; Mason, P. Behavioral Tests for Mouse Models of Autism: An Argument for the Inclusion of Cerebellum-Controlled Motor Behaviors. Neuroscience 2021, 462, 303–319. [Google Scholar] [CrossRef]
- Peter, J.-U.; Dieudonné, P.; Zolk, O. Pharmacokinetics, Pharmacodynamics, and Side Effects of Midazolam: A Review and Case Example. Pharmaceuticals 2024, 17, 473. [Google Scholar] [CrossRef]
- Alberto Armas, D.; Hernández García, V.; Román Castillo, Y.; Santana Ayala, J.R.; Capdevila Finestres, F.; Hardisson de la Torre, A.; Rubio Armendáriz, C. Risk Characterization in Patients Using Benzodiazepines While Providing Pharmaceutical Care Dispensing Service. Pharmacy 2024, 12, 120. [Google Scholar] [CrossRef] [PubMed]
- Balsikci, A.; Uzun, O.; Erdem, M.; Doruk, A.; Cansever, A.; Ates, M.A. Side Effects That Cause Noncompliance to Antidepressant Medications in the Course of Outpatient Treatment. Klin. Psikofarmakol. Bülteni-Bull. Clin. Psychopharmacol. 2014, 24, 69–75. [Google Scholar] [CrossRef]
- Kelly, K.; Posternak, M.; Jonathan, E.A. Toward Achieving Optimal Response: Understanding and Managing Antidepressant Side Effects. Dialogues Clin. Neurosci. 2008, 10, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Baslington-Davies, A.; Howell, H.; Hogue, T.E.; Mills, D.S. An Assessment of Scientific Evidence Relating to the Effect of Early Experience on the Risk of Human-Directed Aggression by Adult Dogs. Animals 2023, 13, 2329. [Google Scholar] [CrossRef]
- Van Herwijnen, I.R.; van der Borg, J.A.M.; Kapteijn, C.M.; Arndt, S.S.; Vinke, C.M. Factors Regarding the Dog Owner’s Household Situation, Antisocial Behaviours, Animal Views and Animal Treatment in a Population of Dogs Confiscated after Biting Humans and/ or Other Animals. PLoS ONE 2023, 18, e0282574. [Google Scholar] [CrossRef]
Principal Component | Eigenvalue | Variance (%) |
---|---|---|
1 | 6.3883 | 37.578 |
2 | 2.65679 | 15.628 |
3 | 2.03895 | 11.994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trebesova, H.; Monaco, M.; Baldassari, S.; Ailuno, G.; Lancellotti, E.; Caviglioli, G.; Pittaluga, A.M.; Grilli, M. Unveiling Niaprazine’s Potential: Behavioral Insights into a Re-Emerging Anxiolytic Agent. Biomedicines 2024, 12, 2087. https://doi.org/10.3390/biomedicines12092087
Trebesova H, Monaco M, Baldassari S, Ailuno G, Lancellotti E, Caviglioli G, Pittaluga AM, Grilli M. Unveiling Niaprazine’s Potential: Behavioral Insights into a Re-Emerging Anxiolytic Agent. Biomedicines. 2024; 12(9):2087. https://doi.org/10.3390/biomedicines12092087
Chicago/Turabian StyleTrebesova, Hanna, Martina Monaco, Sara Baldassari, Giorgia Ailuno, Edilio Lancellotti, Gabriele Caviglioli, Anna Maria Pittaluga, and Massimo Grilli. 2024. "Unveiling Niaprazine’s Potential: Behavioral Insights into a Re-Emerging Anxiolytic Agent" Biomedicines 12, no. 9: 2087. https://doi.org/10.3390/biomedicines12092087
APA StyleTrebesova, H., Monaco, M., Baldassari, S., Ailuno, G., Lancellotti, E., Caviglioli, G., Pittaluga, A. M., & Grilli, M. (2024). Unveiling Niaprazine’s Potential: Behavioral Insights into a Re-Emerging Anxiolytic Agent. Biomedicines, 12(9), 2087. https://doi.org/10.3390/biomedicines12092087