Shotgun Analysis of Gut Microbiota with Body Composition and Lipid Characteristics in Crohn’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Recruitment
2.2. Data Collection
2.3. Outcome Measurements and Definitions
2.4. Body Composition Analysis
2.5. Nutritional Questionnaire
2.6. Determination of Microbiome Component
2.7. Statistical Analysis
2.8. Ethical Approval
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Association between Parameters Describing Obesity, Crohn’s Disease Phenotype, Prognosis, and Microbiome
3.3. Association between Lipid Metabolism and Microbiome
3.4. Association between Crohn’s Disease Activity and Microbiome
3.5. Association between Crohn’s Disease Treatment and Microbiome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Human gut microbiota/microbiome in health and diseases: A review. Antonie Van Leeuwenhoek 2020, 113, 2019–2040. [Google Scholar] [CrossRef] [PubMed]
- Galloway-Peña, J.; Hanson, B. Tools for Analysis of the Microbiome. Dig. Dis. Sci. 2020, 65, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Bálint, A.; Farkas, K.; Méhi, O.; Kintses, B.; Vásárhelyi, B.M.; Ari, E.; Pál, C.; Madácsy, T.; Maléth, J.; Szántó, K.J.; et al. Functional Anatomical Changes in Ulcerative Colitis Patients Determine Their Gut Microbiota Composition and Consequently the Possible Treatment Outcome. Pharmaceuticals 2020, 13, 346. [Google Scholar] [CrossRef]
- Stojanov, S.; Berlec, A.; Štrukelj, B. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms 2020, 8, 1715. [Google Scholar] [CrossRef]
- Komaroff, A.L. The Microbiome and Risk for Obesity and Diabetes. JAMA 2017, 317, 355–356. [Google Scholar] [CrossRef]
- Castaner, O.; Goday, A.; Park, Y.-M.; Lee, S.-H.; Magkos, F.; Shiow, S.-A.T.E.; Schröder, H. The Gut Microbiome Profile in Obesity: A Systematic Review. Int. J. Endocrinol. 2018, 2018, 4095789. [Google Scholar] [CrossRef]
- Ha, C.W.; Martin, A.; Sepich-Poore, G.D.; Shi, B.; Wang, Y.; Gouin, K.; Humphrey, G.; Sanders, K.; Ratnayake, Y.; Chan, K.S.; et al. Translocation of Viable Gut Microbiota to Mesenteric Adipose Drives Formation of Creeping Fat in Humans. Cell 2020, 183, 666–683.e17. [Google Scholar] [CrossRef]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef]
- Harper, J.W.; Zisman, T.L. Interaction of obesity and inflammatory bowel disease. World J. Gastroenterol. 2016, 22, 7868–7881. [Google Scholar] [CrossRef]
- Ni, J.; Wu, G.D.; Albenberg, L.; Tomov, V.T. Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Flaig, B.; Garza, R.; Singh, B.; Hamamah, S.; Covasa, M. Treatment of Dyslipidemia through Targeted Therapy of Gut Microbiota. Nutrients 2023, 15, 228. [Google Scholar] [CrossRef] [PubMed]
- Gargari, G.; Deon, V.; Taverniti, V.; Gardana, C.; Denina, M.; Riso, P.; Guardamagna, O.; Guglielmetti, S. Evidence of dysbiosis in the intestinal microbial ecosystem of children and adolescents with primary hyperlipidemia and the potential role of regular hazelnut intake. FEMS Microbiol. Ecol. 2018, 94, fiy045. [Google Scholar] [CrossRef]
- Szilagyi, A. Relationship(s) between obesity and inflammatory bowel diseases: Possible intertwined pathogenic mechanisms. Clin. J. Gastroenterol. 2020, 13, 139–152. [Google Scholar] [CrossRef]
- Chen, L.; Collij, V.; Jaeger, M.; Munckhof, I.C.L.v.D.; Vila, A.V.; Kurilshikov, A.; Gacesa, R.; Sinha, T.; Oosting, M.; Joosten, L.A.B.; et al. Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity. Nat. Commun. 2020, 11, 4018. [Google Scholar] [CrossRef]
- Silverberg, M.S.; Satsangi, J.; Ahmad, T.; Arnott, I.D.; Bernstein, C.N.; Brant, S.R.; Caprilli, R.; Colombel, J.-F.; Gasche, C.; Geboes, K.; et al. Toward an integrated clinical, molecular, and serological classification of inflammatory bowel disease: Report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can. J. Gastroenterol. 2005, 19, 5A–36A. [Google Scholar] [CrossRef]
- Best, W.R.; Becktel, J.M.; Singleton, J.W.; Kern, F., Jr. Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gastroenterology 1976, 70, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Daperno, M.; D’Haens, G.; Van Assche, G.; Baert, F.; Bulois, P.; Maunoury, V.; Sostegni, R.; Rocca, R.; Pera, A.; Gevers, A.; et al. Development and validation of a new, simplified endoscopic activity score for Crohn’s disease: The SES-CD. Gastrointest. Endosc. 2004, 60, 505–512. [Google Scholar] [CrossRef]
- Kim, J.A.; Choi, C.J.; Yum, K.S. Cut-off values of visceral fat area and waist circumference: Diagnostic criteria for abdominal obesity in a Korean population. J. Korean Med. Sci. 2006, 21, 1048–1053. [Google Scholar] [CrossRef]
- WHO. Physical status: The use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ. Tech. Rep. Ser. 1995, 854, 1–452. [Google Scholar]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Khakoo, N.S.; Ioannou, S.; Khakoo, N.S.; Vedantam, S.; Pearlman, M. Impact of Obesity on Inflammatory Bowel Disease. Curr. Gastroenterol. Rep. 2022, 24, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M.; El-Omar, E.M. Ten reasons gastroenterologists and hepatologists should be treating obesity. Gut, 2023; ahead of print. [Google Scholar]
- Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S.; et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017, 17, 120. [Google Scholar] [CrossRef]
- Zhang, H.; DiBaise, J.K.; Zuccolo, A.; Kudrna, D.; Braidotti, M.; Yu, Y.; Parameswaran, P.; Crowell, M.D.; Wing, R.; Rittmann, B.E.; et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA 2009, 106, 2365–2370. [Google Scholar] [CrossRef]
- Rahman, M.S.; Kang, I.; Lee, Y.; Habib, M.A.; Choi, B.J.; Kang, J.S.; Park, D.S.; Kim, Y.S. Bifidobacterium longum subsp. infantis YB0411 Inhibits Adipogenesis in 3T3-L1 Pre-adipocytes and Reduces High-Fat-Diet-Induced Obesity in Mice. J. Agric. Food Chem. 2021, 69, 6032–6042. [Google Scholar] [CrossRef]
- Wu, T.; Sun, M.; Liu, R.; Sui, W.; Zhang, J.; Yin, J.; Fang, S.; Zhu, J.; Zhang, M. Bifidobacterium longum subsp. longum Remodeled Roseburia and Phosphatidylserine Levels and Ameliorated Intestinal Disorders and liver Metabolic Abnormalities Induced by High-Fat Diet. J. Agric. Food Chem. 2020, 68, 4632–4640. [Google Scholar] [CrossRef] [PubMed]
- Million, M.; Maraninchi, M.; Henry, M.; Armougom, F.; Richet, H.; Carrieri, P.; Valero, R.; Raccah, D.; Vialettes, B.; Raoult, D. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int. J. Obes. 2012, 36, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Jing, N.; Liu, X.; Jin, M.; Yang, X.; Hu, X.; Li, C.; Zhao, K. Fubrick tea attenuates high-fat diet induced fat deposition and metabolic disorder by regulating gut microbiota and caffeine metabolism. Food Funct. 2020, 11, 6971–6986. [Google Scholar] [CrossRef] [PubMed]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277, Erratum in Front. Immunol. 2019, 10, 1486. [Google Scholar]
- Inczefi, O.; Bacsur, P.; Resál, T.; Keresztes, C.; Molnár, T. The Influence of Nutrition on Intestinal Permeability and the Microbiome in Health and Disease. Front. Nutr. 2022, 9, 718710. [Google Scholar] [CrossRef]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef]
- Prosberg, M.; Bendtsen, F.; Vind, I.; Petersen, A.M.; Gluud, L.L. The association between the gut microbiota and the inflammatory bowel disease activity: A systematic review and meta-analysis. Scand. J. Gastroenterol. 2016, 51, 1407–1415. [Google Scholar] [CrossRef]
- Kolho, K.L.; Korpela, K.; Jaakkola, T.; Pichai, M.V.; Zoetendal, E.G.; Salonen, A.; De Vos, W.M. Fecal Microbiota in Pediatric Inflammatory Bowel Disease and Its Relation to Inflammation. Am. J. Gastroenterol. 2015, 110, 921–930. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; Luo, C.; Yajnik, V.; Khalili, H.; Garber, J.J.; Stevens, B.W.; Cleland, T.; Xavier, R.J. Gut Microbiome Function Predicts Response to Anti-integrin Biologic Therapy in Inflammatory Bowel Diseases. Cell Host Microbe 2017, 21, 603–610.e3. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y.; Huang, W.; Jin, M.; Gao, Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm. Sin. B 2021, 11, 1789–1812. [Google Scholar] [CrossRef]
Characteristics | Total (N = 27) | Obese * (N = 10) | Non-Obese * (N = 17) | Sig. |
---|---|---|---|---|
Gender (male, N, %) | 9 (33.3) | 4 (40.0) | 5 (29.4) | 0.573 |
Age (years, median (IQR)) | 35 (26–40) | 36 (29–53) | 35 (25–40) | 0.070 |
Disease duration (years, median (IQR)) | 7 (2–13) | 9 (5–18) | 4 (1–13) | 0.251 |
CD localization (N, %) + | ||||
ileal | 5 (18.5) | 0 (0) | 5 (29.4) | 0.111 |
colonic | 11 (40.7) | 4 (40.0) | 7 (41.2) | |
ileocolonic | 11 (40.7) | 6 (60.0) | 5 (29.4) | |
upper gastrointestinal disease | 2 (7.4) | 0 (0) | 2 (11.8) | 0.516 |
CD behavior (N, %) + | ||||
non-stricturing, non-penetrating | 14 (51.9) | 3 (30.0) | 11 (64.7) | 0.157 |
stricturing | 5 (18.5) | 2 (20.0) | 3 (17.6) | |
penetrating | 8 (29.6) | 5 (50.0) | 3 (17.6) | |
Previous bowel resection (N, %) | 6 (22.2) | 1 (10.0) | 5 (29.4) | 0.363 |
Disease activity | ||||
CDAI at inclusion (mean, ± SD) | 146.2 (98.8) | 112.4 (113.6) | 164.3 (88.7) | 0.165 |
SES-CD at inclusion (mean, ± SD) | 7.0 (7.9) | 7.9 (10.6) | 6.5 (6.4) | 0.948 |
Fecal calprotectin (ug/g, median, [IQR]) | 523.7 (327.9) | 552.3 (377.5) | 508.4 (311.5) | 0.532 |
CRP at inclusion (mean, ± SD) | 8.5 (8.5) | 12.1 (11.6) | 6.6 (6.4) | 0.345 |
Therapy (N, %) | ||||
5-ASA | 6 (22.2) | 3 (30.0) | 3 (17.6) | 0.638 |
oral corticosteroid | 5 (18.52) | 2 (20.0) | 3 (17.6) | 1.000 |
topical corticosteroid | 1 (3.7) | 1 (10.0) | 0 (0) | 0.370 |
thiopurines | 8 (29.6) | 4 (40.0) | 4 (23.5) | 0.415 |
biological therapy | 16 (59.3) | 7 (70.0) | 9 (52.9) | 0.448 |
infliximab | 4 (14.8) | 2 (20.0) | 2 (11.8) | - |
adalimumab | 4 (14.8) | 1 (10.0) | 3 (17.6) | |
vedolizumab | 4 (14.8) | 1 (10.0) | 3 (17.6) | |
ustekinumab | 4 (14.8) | 3 (30.0) | 1 (5.9) | |
Obesity characteristics | ||||
VFA > 100 cm2 (N, %) | 10 (37.0) | - | - | - |
BMI > 25 kg/m2 (N, %) | 12 (44.4) | - | - | - |
Serum cholesterol (mmol/L, mean, ± SD) | 4.3 (0.9) | 4.5 (0.8) | 4.2 (0.9) | 0.421 |
Serum triglyceride (mmol/L, mean, ± SD) | 1.5 (1.1) | 1.9 (1.1) | 1.4 (1.0) | 0.217 |
Variable | Total (N = 27) | Obese * (N = 10) | Non-Obese * (N = 17) | Sig. |
---|---|---|---|---|
Body weight (kg, mean, ± SD) | 72.2 (18.9) | 88.0 (16.4) | 62.9 (13.5) | <0.001 |
Body mass index (kg/m2, mean, ± SD) | 24.8 (5.2) | 29.7 (4.6) | 21.9 (2.9) | <0.001 |
Total body water (L, mean, ± SD) | 37.8 (8.6) | 41.3 (8.0) | 35.7 (8.5) | 0.051 |
Soft lean mass (kg, mean, ± SD) | 48.5 (11.0) | 53.0 (10.2) | 45.8 (10.9) | 0.051 |
Fat-free mass (kg, mean, ± SD) | 51.5 (11.7) | 56.2 (10.9) | 48.7 (11.6) | 0.054 |
Body fat mass (kg, mean, ± SD) | 20.87 (11.1) | 31.8 (10.0) | 14.5 (5.1) | <0.001 |
Skeletal muscle mass (kg, mean, ± SD) | 28.4 (6.9) | 31.2 (6.4) | 26.7 (6.8) | 0.050 |
Percent body fat (%, mean, ± SD) | 27.7 (9.0) | 35.8 (7.1) | 22.8 (6.0) | <0.001 |
Visceral fat area (cm2, mean, ± SD) | 95.1 (52.1) | 149.9 (43.2) | 62.9 (19.6) | <0.001 |
Waist–hip ratio (mean, ± SD) | 0.9 (0.08) | 1.0 (0.03) | 0.85 (0.05) | <0.001 |
Species | Marker | Sig. |
---|---|---|
Roseburia hominis | CDAI | p = 0.007 ρ = −0.513 |
Roseburia inulinivorans | p = 0.04 ρ = −0.405 | |
Blautia caecimuris | p = 0.014 ρ = −0.477 | |
Blautia faecis | p = 0.038 ρ = −0.409 | |
Blautia massiliensis | p = 0.008 ρ = −0.505 | |
Blautia wexlerae | p = 0.03 ρ = −0.427 | |
Blautia obeum | SES-CD | p = 0.04 |
Blautia argi | fecal calprotectin | p = 0.018 ρ = −0.471 |
Blautia massiliensis | hematocrite | p = 0.02 ρ = 0.452 |
Blautia schinkii | trombocyte | p = 0.046 ρ = −0.394 |
Roseburia intestinalis | p = 0.034 ρ = −0.418 | |
Blautia caecimuris | serum iron | p = 0.039 ρ = 0.443 |
Blautia faecis | p = 0.018 ρ = 0.498 | |
Blautia caecimuris | albumin | p = 0.09 ρ = 0.520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacsur, P.; Resál, T.; Farkas, B.; Jójárt, B.; Gyuris, Z.; Jaksa, G.; Pintér, L.; Takács, B.; Pál, S.; Gácser, A.; et al. Shotgun Analysis of Gut Microbiota with Body Composition and Lipid Characteristics in Crohn’s Disease. Biomedicines 2024, 12, 2100. https://doi.org/10.3390/biomedicines12092100
Bacsur P, Resál T, Farkas B, Jójárt B, Gyuris Z, Jaksa G, Pintér L, Takács B, Pál S, Gácser A, et al. Shotgun Analysis of Gut Microbiota with Body Composition and Lipid Characteristics in Crohn’s Disease. Biomedicines. 2024; 12(9):2100. https://doi.org/10.3390/biomedicines12092100
Chicago/Turabian StyleBacsur, Péter, Tamás Resál, Bernadett Farkas, Boldizsár Jójárt, Zoltán Gyuris, Gábor Jaksa, Lajos Pintér, Bertalan Takács, Sára Pál, Attila Gácser, and et al. 2024. "Shotgun Analysis of Gut Microbiota with Body Composition and Lipid Characteristics in Crohn’s Disease" Biomedicines 12, no. 9: 2100. https://doi.org/10.3390/biomedicines12092100
APA StyleBacsur, P., Resál, T., Farkas, B., Jójárt, B., Gyuris, Z., Jaksa, G., Pintér, L., Takács, B., Pál, S., Gácser, A., Szántó, K. J., Rutka, M., Bor, R., Fábián, A., Farkas, K., Maléth, J., Szepes, Z., Molnár, T., & Bálint, A. (2024). Shotgun Analysis of Gut Microbiota with Body Composition and Lipid Characteristics in Crohn’s Disease. Biomedicines, 12(9), 2100. https://doi.org/10.3390/biomedicines12092100