Dual Approach to Depression: The Combined Efficacy of Intermittent Hypoxia and Fluoxetine in Modulating Behavioral and Inflammatory Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drugs and Treatments
2.3. Acute Restraint Stress (ARS) Procedure
2.4. Experimental Design
2.5. Behavioral Tests
2.5.1. Open Field Test (OFT)
2.5.2. Forced Swim Test (FST)
2.5.3. Tail Suspension Test (TST)
2.6. Biochemical Analysis
2.6.1. Serum Corticosterone Levels
2.6.2. Inflammatory Parameters
2.7. Statistical Analysis
3. Results
3.1. Phase 1
3.2. Phase 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO) Depressive Disorder (Depression). Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 5 September 2024).
- Cui, L.; Li, S.; Wang, S.; Wu, X.; Liu, Y.; Yu, W.; Wang, Y.; Tang, Y.; Xia, M.; Li, B. Major Depressive Disorder: Hypothesis, Mechanism, Prevention and Treatment. Signal Transduct. Target. Ther. 2024, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; He, H.; Yang, J.; Feng, X.; Zhao, F.; Lyu, J. Changes in the Global Burden of Depression from 1990 to 2017: Findings from the Global Burden of Disease Study. J. Psychiatr. Res. 2020, 126, 134–140. [Google Scholar] [CrossRef]
- Poole, L.; Steptoe, A. Depressive Symptoms Predict Incident Chronic Disease Burden 10 Years Later: Findings from the English Longitudinal Study of Ageing (ELSA). J. Psychosom. Res. 2018, 113, 30–36. [Google Scholar] [CrossRef]
- Alenko, A.; Markos, Y.; Fikru, C.; Tadesse, E.; Gedefaw, L. Association of Serum Cortisol Level with Severity of Depression and Improvement in Newly Diagnosed Patients with Major Depressive Disorder in Jimma Medical Center, Southwest Ethiopia. PLoS ONE 2020, 15, e0240668. [Google Scholar] [CrossRef]
- Chiu, L.Y.L.; Stewart, K.; Woo, C.; Yatham, L.N.; Lam, R.W. The Relationship between Burnout and Depressive Symptoms in Patients with Depressive Disorders. J. Affect. Disord. 2015, 172, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, F.; Molteni, R.; Riva, M.A. Antistress Properties of Antidepressant Drugs and Their Clinical Implications. Pharmacol. Ther. 2011, 132, 39–56. [Google Scholar] [CrossRef]
- Daviu, N.; Bruchas, M.R.; Moghaddam, B.; Sandi, C.; Beyeler, A. Neurobiological Links between Stress and Anxiety. Neurobiol. Stress 2019, 11, 100191. [Google Scholar] [CrossRef] [PubMed]
- Gold, P.W. The Neurobiology of Stress and Its Relevance to Psychotherapy. Clin. Neurosci. Res. 2005, 4, 315–324. [Google Scholar] [CrossRef]
- Capra, J.C.; Cunha, M.P.; Machado, D.G.; Zomkowski, A.D.E.; Mendes, B.G.; Santos, A.R.S.; Pizzolatti, M.G.; Rodrigues, A.L.S. Antidepressant-like Effect of Scopoletin, a Coumarin Isolated from Polygala Sabulosa (Polygalaceae) in Mice: Evidence for the Involvement of Monoaminergic Systems. Eur. J. Pharmacol. 2010, 643, 232–238. [Google Scholar] [CrossRef]
- Freitas, A.E.; Bettio, L.E.B.; Neis, V.B.; Santos, D.B.; Ribeiro, C.M.; Rosa, P.B.; Farina, M.; Rodrigues, A.L.S. Agmatine Abolishes Restraint Stress-Induced Depressive-like Behavior and Hippocampal Antioxidant Imbalance in Mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 50, 143–150. [Google Scholar] [CrossRef]
- Zafir, A.; Banu, N. Antioxidant Potential of Fluoxetine in Comparison to Curcuma Longa in Restraint-Stressed Rats. Eur. J. Pharmacol. 2007, 572, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Fiksdal, A.; Hanlin, L.; Kuras, Y.; Gianferante, D.; Chen, X.; Thoma, M.V.; Rohleder, N. Associations between Symptoms of Depression and Anxiety and Cortisol Responses to and Recovery from Acute Stress. Psychoneuroendocrinology 2019, 102, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Pastis, I.; Santos, M.G.; Paruchuri, A. Exploring the Role of Inflammation in Major Depressive Disorder: Beyond the Monoamine Hypothesis. Front. Behav. Neurosci. 2024, 17, 1282242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mei, H.; Xiao, H.; Zhang, Y.; Gao, W.; Qi, H.; Zhang, J. Association between Neutrophil-Lymphocyte Ratio and Perinatal Depressive Symptoms among Chinese Women. J. Psychosom. Res. 2023, 166, 111101. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhu, L.; Zhou, L.; Bai, X. E5NT Inhibitor Protects Acute Restraint Stress-Induced Depression by Regulating Nucleoside Release in Mice. J. Pharm. Pharmacol. 2020, 72, 1556–1563. [Google Scholar] [CrossRef]
- Siddiqui, F.; Barbateskovic, M.; Juul, S.; Katakam, K.K.; Munkholm, K.; Gluud, C.; Jakobsen, J.C. Duloxetine versus ‘Active’ Placebo, Placebo or No Intervention for Major Depressive Disorder; a Protocol for a Systematic Review of Randomised Clinical Trials with Meta-Analysis and Trial Sequential Analysis. Syst. Rev. 2021, 10, 171. [Google Scholar] [CrossRef]
- Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; et al. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. Am. J. Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef]
- Nemeroff, C.B.; Owens, M.J. Treatment of Mood Disorders. Nat. Neurosci. 2002, 5, 1068–1070. [Google Scholar] [CrossRef]
- Adzic, M.; Brkic, Z.; Mitic, M.; Francija, E.; Jovicic, M.J.; Radulovic, J.; Maric, N.P. Therapeutic Strategies for Treatment of Inflammation-Related Depression. Curr. Neuropharmacol. 2018, 16, 176–209. [Google Scholar] [CrossRef]
- Brown, S.; Rittenbach, K.; Cheung, S.; McKean, G.; MacMaster, F.P.; Clement, F. Current and Common Definitions of Treatment-Resistant Depression: Findings from a Systematic Review and Qualitative Interviews. Can. J. Psychiatry 2019, 64, 380–387. [Google Scholar] [CrossRef]
- Li, Y.-F. A Hypothesis of Monoamine (5-HT)—Glutamate/GABA Long Neural Circuit: Aiming for Fast-Onset Antidepressant Discovery. Pharmacol. Ther. 2020, 208, 107494. [Google Scholar] [CrossRef] [PubMed]
- Micheli, L.; Ceccarelli, M.; D’Andrea, G.; Tirone, F. Depression and Adult Neurogenesis: Positive Effects of the Antidepressant Fluoxetine and of Physical Exercise. Brain Res. Bull. 2018, 143, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Rybnikova, E.; Mironova, V.; Pivina, S.; Tulkova, E.; Ordyan, N.; Nalivaeva, N.; Turner, A.; Samoilov, M. Involvement of the Hypothalamic-Pituitary-Adrenal Axis in the Antidepressant-like Effects of Mild Hypoxic Preconditioning in Rats. Psychoneuroendocrinology 2007, 32, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Serebrovskaya, T.V.; Manukhina, E.B.; Smith, M.L.; Downey, H.F.; Mallet, R.T. Intermittent Hypoxia: Cause of or Therapy for Systemic Hypertension? Exp. Biol. Med. 2008, 233, 627–650. [Google Scholar] [CrossRef]
- Zhu, X.H.; Yan, H.C.; Zhang, J.; Qu, H.D.; Qiu, X.S.; Chen, L.; Li, S.J.; Cao, X.; Bean, J.C.; Chen, L.H.; et al. Intermittent Hypoxia Promotes Hippocampal Neurogenesis and Produces Antidepressant-like Effects in Adult Rats. J. Neurosci. 2010, 30, 12653–12663. [Google Scholar] [CrossRef] [PubMed]
- Rybnikova, E.A.; Samoilov, M.O.; Mironova, V.I.; Tyul’kova, E.I.; Pivina, S.G.; Vataeva, L.A.; Ordyan, N.É.; Abritalin, E.Y.; Kolchev, A.I. The Possible Use of Hypoxic Preconditioning for the Prophylaxis of Post-Stress Depressive Episodes. Neurosci. Behav. Physiol. 2008, 38, 721–726. [Google Scholar] [CrossRef]
- Kang, I.; Kondo, D.; Kim, J.; Lyoo, I.K.; Yurgelun-Todd, D.; Hwang, J.; Renshaw, P.F. Elevating the Level of Hypoxia Inducible Factor May Be a New Potential Target for the Treatment of Depression. Med. Hypotheses 2021, 146, 110398. [Google Scholar] [CrossRef]
- Ding, F.S.; Cheng, X.; Zhao, T.; Zhao, Y.Q.; Zhang, G.B.; Wu, H.T.; Zhu, L.L.; Wu, K.W. [Intermittent Hypoxic Preconditioning Relieves Fear and Anxiety Behavior in Post-Traumatic Stress Model Mice]. Sheng Li Xue Bao 2019, 71, 537–546. [Google Scholar]
- Manukhina, E.B.; Tseilikman, V.E.; Karpenko, M.N.; Pestereva, N.S.; Tseilikman, O.B.; Komelkova, M.V.; Kondashevskaya, M.V.; Goryacheva, A.V.; Lapshin, M.S.; Platkovskii, P.O.; et al. Intermittent Hypoxic Conditioning Alleviates Post-Traumatic Stress Disorder-Induced Damage and Dysfunction of Rat Visceral Organs and Brain. Int. J. Mol. Sci. 2020, 21, 345. [Google Scholar] [CrossRef]
- Neis, V.B.; Bettio, L.B.; Moretti, M.; Rosa, P.B.; Olescowicz, G.; Fraga, D.B.; Gonçalves, F.M.; Freitas, A.E.; Heinrich, I.A.; Lopes, M.W.; et al. Single Administration of Agmatine Reverses the Depressive-like Behavior Induced by Corticosterone in Mice: Comparison with Ketamine and Fluoxetine. Pharmacol. Biochem. Behav. 2018, 173, 44–50. [Google Scholar] [CrossRef]
- Jiang, C.Y.; Qin, X.Y.; Yuan, M.M.; Lu, G.J.; Cheng, Y. 2,3,5,4′-Tetrahydroxystilbene-2-O-Beta-D-Glucoside Reverses Stress-Induced Depression via Inflammatory and Oxidative Stress Pathways. Oxid. Med. Cell. Longev. 2018, 2018, 9501427. [Google Scholar] [CrossRef]
- Simões, R.R.; Dutra, A.L.; Finamor, I.A.; Saccol, E.M.H.; Pavanato, M.A.; Llesuy, S.F.; Portela, L.O.C.; Zanchet, E.M. The Effect of Intermittent Hypoxic Training under Oxidative Stress Parameters in Wistar Rats Fed on Standard and Hight Fat Diet. Cad. Pesqui. 2013, 25, 12–23. [Google Scholar]
- MacDowell, K.S.; Caso, J.R.; Martín-Hernández, D.; Madrigal, J.L.; Leza, J.C.; García-Bueno, B. Paliperidone Prevents Brain Toll-like Receptor 4 Pathway Activation and Neuroinflammation in Rat Models of Acute and Chronic Restraint Stress. Int. J. Neuropsychopharmacol. 2015, 18, pyu070. [Google Scholar] [CrossRef]
- Prut, L.; Belzung, C. The Open Field as a Paradigm to Measure the Effects of Drugs on Anxiety-like Behaviors: A Review. Eur. J. Pharmacol. 2003, 463, 3–33. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Ai, L.; Chen, D.; Zhou, D.; Han, Y.; Ji, R.; Hu, M.; Wang, Q.; Zhang, M.; Wang, Y.; et al. Multiple Integrated Social Stress Induces Depressive-like Behavioral and Neural Adaptations in Female C57BL/6J Mice. Neurobiol. Dis. 2024, 190, 106374. [Google Scholar] [CrossRef]
- He, T.; Guo, C.; Wang, C.; Hu, C.; Chen, H. Effect of Early Life Stress on Anxiety and Depressive Behaviors in Adolescent Mice. Brain Behav. 2020, 10, e01526. [Google Scholar] [CrossRef]
- dos Santos, B.M.; Pereira, G.C.; Piton, E.; Fialho, M.F.P.; Becker, G.; da Silva Carlotto, M.; Camargo, L.F.M.; Ramanzini, L.G.; Oliveira, S.M.; Trevisan, G.; et al. Lower Antidepressant Response to Fluoxetine Is Associated with Anxiety-like Behavior, Hippocampal Oxidative Imbalance, and Increase on Peripheral IL-17 and IFN-γ Levels. Behav. Brain Res. 2022, 425, 113815. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Anton, G.; Blavet, N.; Jalfre, M. Behavioural Despair in Rats: A New Model Sensitive to Antidepressant Treatments. Eur. J. Pharmacol. 1978, 47, 379–391. [Google Scholar] [CrossRef]
- Brocardo, P.S.; Budni, J.; Kaster, M.P.; Santos, A.R.S.; Rodrigues, A.L.S. Folic Acid Administration Produces an Antidepressant-like Effect in Mice: Evidence for the Involvement of the Serotonergic and Noradrenergic Systems. Neuropharmacology 2008, 54, 464–473. [Google Scholar] [CrossRef]
- Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The Tail Suspension Test: A New Method for Screening Antidepressants in Mice. Psychopharmacology 1985, 85, 367–370. [Google Scholar] [CrossRef]
- Cryan, J.F.; Mombereau, C. In Search of a Depressed Mouse: Utility of Models for Studying Depression-Related Behavior in Genetically Modified Mice. Mol. Psychiatry 2004, 9, 326–357. [Google Scholar] [CrossRef] [PubMed]
- Thakare, V.N.; Dhakane, V.D.; Patel, B.M. Attenuation of Acute Restraint Stress-Induced Depressive like Behavior and Hippocampal Alterations with Protocatechuic Acid Treatment in Mice. Metab. Brain Dis. 2017, 32, 401–413. [Google Scholar] [CrossRef]
- Sulakhiya, K.; Patel, V.; Saxena, R.; Dashore, J.; Srivastava, A.; Rathore, M. Effect of Beta Vulgaris Linn. Leaves Extract on Anxiety- and Depressive-like Behavior and Oxidative Stress in Mice after Acute Restraint Stress. Pharmacogn. Res. 2016, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Misztak, P.; Sowa-Kućma, M.; Pańczyszyn-Trzewik, P.; Szewczyk, B.; Nowak, G. Antidepressant-like Effects of Combined Fluoxetine and Zinc Treatment in Mice Exposed to Chronic Restraint Stress Are Related to Modulation of Histone Deacetylase. Molecules 2021, 27, 22. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Tuohimaa, P. Experimental Modeling of Anxiety and Depression. Acta Neurobiol. Exp. 2004, 64, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Sturman, O.; Germain, P.L.; Bohacek, J. Exploratory Rearing: A Context- and Stress-Sensitive Behavior Recorded in the Open-Field Test. Stress 2018, 21, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Shin, L.M.; Liberzon, I. The Neurocircuitry of Fear, Stress, and Anxiety Disorders. Neuropsychopharmacology 2010, 35, 169–191. [Google Scholar] [CrossRef]
- Nukina, H.; Sudo, N.; Aiba, Y.; Oyama, N.; Koga, Y.; Kubo, C. Restraint Stress Elevates the Plasma Interleukin-6 Levels in Germ-Free Mice. J. Neuroimmunol. 2001, 115, 46–52. [Google Scholar] [CrossRef]
- Tang, L.; Cai, N.; Zhou, Y.; Liu, Y.; Hu, J.; Li, Y.; Yi, S.; Song, W.; Kang, L.; He, H. Acute Stress Induces an Inflammation Dominated by Innate Immunity Represented by Neutrophils in Mice. Front. Immunol. 2022, 13, 1014296. [Google Scholar] [CrossRef]
- Voorhees, J.L.; Tarr, A.J.; Wohleb, E.S.; Godbout, J.P.; Mo, X.; Sheridan, J.F.; Eubank, T.D.; Marsh, C.B. Prolonged Restraint Stress Increases IL-6, Reduces IL-10, and Causes Persistent Depressive-Like Behavior That Is Reversed by Recombinant IL-10. PLoS ONE 2013, 8, e58488. [Google Scholar] [CrossRef]
- Macht, D.I. Pharmacological Synergism of Stereoisomers. Proc. Natl. Acad. Sci. USA 1929, 15, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Lemberger, L.; Rowe, H.; Carmichael, R.; Crabtree, R.; Horng, J.S.; Bymaster, F.; Wong, D. Fluoxetine, a Selective Serotonin Uptake Inhibitor. Clin. Pharmacol. Ther. 1978, 23, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Perez-Caballero, L.; Torres-Sanchez, S.; Bravo, L.; Mico, J.A.; Berrocoso, E. Fluoxetine: A Case History of Its Discovery and Preclinical Development. Expert Opin. Drug Discov. 2014, 9, 567–578. [Google Scholar] [CrossRef]
- Moncrieff, J.; Cooper, R.E.; Stockmann, T.; Amendola, S.; Hengartner, M.P.; Horowitz, M.A. The Serotonin Theory of Depression: A Systematic Umbrella Review of the Evidence. Mol. Psychiatry 2023, 28, 3243–3256. [Google Scholar] [CrossRef] [PubMed]
- Mateus-Pinheiro, A.; Pinto, L.; Bessa, J.M.; Morais, M.; Alves, N.D.; Monteiro, S.; Patrício, P.; Almeida, O.F.X.; Sousa, N. Sustained Remission from Depressive-like Behavior Depends on Hippocampal Neurogenesis. Transl. Psychiatry 2013, 3, e210. [Google Scholar] [CrossRef]
- Molteni, R.; Calabrese, F.; Bedogni, F.; Tongiorgi, E.; Fumagalli, F.; Racagni, G.; Andrea Riva, M. Chronic Treatment with Fluoxetine Up-Regulates Cellular BDNF MRNA Expression in Rat Dopaminergic Regions. Int. J. Neuropsychopharmacol. 2006, 9, 307–317. [Google Scholar] [CrossRef]
- Heinrich, I.A.; Freitas, A.E.; Wolin, I.A.V.; Nascimento, A.P.M.; Walz, R.; Rodrigues, A.L.S.; Leal, R.B. Neuronal Activity Regulated Pentraxin (Narp) and GluA4 Subunit of AMPA Receptor May Be Targets for Fluoxetine Modulation. Metab. Brain Dis. 2021, 36, 711–722. [Google Scholar] [CrossRef]
- Manukhina, E.B.; Downey, H.F.; Shi, X.; Mallet, R.T. Intermittent Hypoxia Training Protects Cerebrovascular Function in Alzheimer’s Disease. Exp. Biol. Med. 2016, 241, 1351–1363. [Google Scholar] [CrossRef]
- Gonzalez-Rothi, E.J.; Lee, K.Z.; Dale, E.A.; Reier, P.J.; Mitchell, G.S.; Fuller, D.D. Intermittent Hypoxia and Neurorehabilitation. J. Appl. Physiol. 2015, 119, 1455–1465. [Google Scholar] [CrossRef]
- Shingo, T.; Todd Sorokan, S.; Shimazaki, T.; Weiss, S. Erythropoietin Regulates the in Vitro and in Vivo Production of Neuronal Progenitors by Mammalian Forebrain Neural Stem Cells. J. Neurosci. 2001, 21, 9733–9743. [Google Scholar] [CrossRef]
- Zhu, L.L.; Zhao, T.; Li, H.S.; Zhao, H.; Wu, L.Y.; Ding, A.S.; Fan, W.H.; Fan, M. Neurogenesis in the Adult Rat Brain after Intermittent Hypoxia. Brain Res. 2005, 1055, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kushwah, N.; Jain, V.; Deep, S.; Prasad, D.; Singh, S.B. Neuroprotective Role of Intermittent Hypobaric Hypoxia in Unpredictable Chronic Mild Stress Induced Depression in Rats. PLoS ONE 2016, 11, e0149309. [Google Scholar] [CrossRef]
- Duszczyk, M.; Gamdzyk, M.; Ziembowicz, A.; Boguszewski, P.; Łazarewicz, J.; Salińska, E. Antidepressant-like and Anxiolytic-like Effects of Mild Hypobaric Hypoxia in Mice: Possible Involvement of Neuropeptide Y. Acta Neurobiol. Exp. 2015, 75, 364–371. [Google Scholar] [CrossRef]
- Navarrete-Opazo, A.; Mitchell, G.S. Therapeutic Potential of Intermittent Hypoxia: A Matter of Dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R1181–R1197. [Google Scholar] [CrossRef]
- Li, H.-S.; Zhou, Y.-N.; Li, L.; Li, S.-F.; Long, D.; Chen, X.-L.; Zhang, J.-B.; Feng, L.; Li, Y.-P. HIF-1α Protects against Oxidative Stress by Directly Targeting Mitochondria. Redox. Biol. 2019, 25, 101109. [Google Scholar] [CrossRef]
- Perrault, G.H.; Morel, E.; Zivkovic, B.; Sanger, D.J. Activity of Litoxetine and Other Serotonin Uptake Inhibitors in the Tail Suspension Test in Mice. Pharmacol. Biochem. Behav. 1992, 42, 45–47. [Google Scholar] [CrossRef]
- Dhir, A.; Kulkarni, S.K. Effect of Addition of Yohimbine (Alpha-2-Receptor Antagonist) to the Antidepressant Activity of Fluoxetine or Venlafaxine in the Mouse Forced Swim Test. Pharmacology 2007, 80, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Villas Boas, G.R.; Boerngen de Lacerda, R.; Paes, M.M.; Gubert, P.; Almeida, W.L.d.C.; Rescia, V.C.; de Carvalho, P.M.G.; de Carvalho, A.A.V.; Oesterreich, S.A. Molecular Aspects of Depression: A Review from Neurobiology to Treatment. Eur. J. Pharmacol. 2019, 851, 99–121. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Wang, Y.; Chen, K.; Long, Z.; Zou, J. Ketamine Alleviates Depressive-Like Behaviors via Down-Regulating Inflammatory Cytokines Induced by Chronic Restraint Stress in Mice. Biol. Pharm. Bull. 2017, 40, 1260–1267. [Google Scholar] [CrossRef]
- Majidi, J.; Kosari-Nasab, M.; Salari, A.A. Developmental Minocycline Treatment Reverses the Effects of Neonatal Immune Activation on Anxiety- and Depression-like Behaviors, Hippocampal Inflammation, and HPA Axis Activity in Adult Mice. Brain Res. Bull. 2016, 120, 1–13. [Google Scholar] [CrossRef]
- Kennis, M.; Gerritsen, L.; van Dalen, M.; Williams, A.; Cuijpers, P.; Bockting, C. Prospective Biomarkers of Major Depressive Disorder: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2020, 25, 321–338. [Google Scholar] [CrossRef] [PubMed]
- Mifflin, S.; Cunningham, J.T.; Toney, G.M. Neurogenic Mechanisms Underlying the Rapid Onset of Sympathetic Responses to Intermittent Hypoxia. J. Appl. Physiol. 2015, 119, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Shamenko, V.O.; Kadzharian, Y.V.; Abramov, A.V. Intermittent Hypobaric Hypoxia and Neuroendocrine Reaction of the Parvocellular Neurons of the Paraventricular Hypothalamic Nucleus. Pathologia 2019, 3, 334–338. [Google Scholar] [CrossRef]
- Liu, D.; Xie, K.; Yang, X.; Gu, J.; Ge, L.; Wang, X.; Wang, Z. Resveratrol Reverses the Effects of Chronic Unpredictable Mild Stress on Behavior, Serum Corticosterone Levels and BDNF Expression in Rats. Behav. Brain Res. 2014, 264, 9–16. [Google Scholar] [CrossRef]
- Bashiri, H.; Houwing, D.J.; Homberg, J.R.; Salari, A.-A. The Combination of Fluoxetine and Environmental Enrichment Reduces Postpartum Stress-Related Behaviors through the Oxytocinergic System and HPA Axis in Mice. Sci. Rep. 2021, 11, 8518. [Google Scholar] [CrossRef] [PubMed]
- Dunn, A.J.; Swiergiel, A.H.; Beaurepaire, R. de Cytokines as Mediators of Depression: What Can We Learn from Animal Studies? Neurosci. Biobehav. Rev. 2005, 29, 891–909. [Google Scholar] [CrossRef]
- Kronfol, Z. Immune Dysregulation in Major Depression: A Critical Review of Existing Evidence. Int. J. Neuropsychopharmacol. 2002, 5, S1461145702003024. [Google Scholar] [CrossRef] [PubMed]
- Haapakoski, R.; Mathieu, J.; Ebmeier, K.P.; Alenius, H.; Kivimäki, M. Cumulative Meta-Analysis of Interleukins 6 and 1β, Tumour Necrosis Factor α and C-Reactive Protein in Patients with Major Depressive Disorder. Brain Behav. Immun. 2015, 49, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Tallerova, A.V.; Kovalenko, L.P.; Durnev, A.D.; Seredenin, S.B. Effect of Ladasten on the Content of Cytokine Markers of Inflammation and Behavior of Mice with Experimental Depression-Like Syndrome. Bull. Exp. Biol. Med. 2011, 152, 58–60. [Google Scholar] [CrossRef]
- Liu, Y.; Ho, R.C.-M.; Mak, A. Interleukin (IL)-6, Tumour Necrosis Factor Alpha (TNF-α) and Soluble Interleukin-2 Receptors (SIL-2R) Are Elevated in Patients with Major Depressive Disorder: A Meta-Analysis and Meta-Regression. J. Affect. Disord. 2012, 139, 230–239. [Google Scholar] [CrossRef]
- Yao, W.; Zhang, J.; Dong, C.; Zhuang, C.; Hirota, S.; Inanaga, K.; Hashimoto, K. Effects of Amycenone on Serum Levels of Tumor Necrosis Factor-α, Interleukin-10, and Depression-like Behavior in Mice after Lipopolysaccharide Administration. Pharmacol. Biochem. Behav. 2015, 136, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-N.; Peng, Y.-L.; -Liu, L.; Wu, T.-Y.; Zhang, Y.; Lian, Y.-J.; Yang, Y.-Y.; Kelley, K.W.; Jiang, C.-L.; Wang, Y.-X. TNFα Mediates Stress-Induced Depression by Upregulating Indoleamine 2,3-Dioxygenase in a Mouse Model of Unpredictable Chronic Mild Stress. Eur. Cytokine Netw. 2015, 26, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Wachholz, S.; Knorr, A.; Mengert, L.; Plümper, J.; Sommer, R.; Juckel, G.; Friebe, A. Interleukin-4 Is a Participant in the Regulation of Depressive-like Behavior. Behav. Brain Res. 2017, 326, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A Meta-Analysis of Cytokines in Major Depression. Biol. Psychiatry 2010, 67, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Bosmans, E.; De Jongh, R.; Kenis, G.; Vandoolaeghe, E.; Neels, H. Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 1997, 9, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Zhou, Y.; Qiao, M.; Zhao, X.; Huang, X.; Zhao, T.; Cheng, X.; Fan, M.; Zhao, Y.; Chen, R.; et al. Intermittent Hypoxia Treatment Alleviates Memory Impairment in the 6-Month-Old APPswe/PS1dE9 Mice and Reduces Amyloid Beta Accumulation and Inflammation in the Brain. Alzheimer’s Res. Ther. 2021, 13, 194. [Google Scholar] [CrossRef]
- Li, G.; Guan, Y.; Gu, Y.; Guo, M.; Ma, W.; Shao, Q.; Liu, J.; Ji, X. Intermittent Hypoxic Conditioning Restores Neurological Dysfunction of Mice Induced by Long-term Hypoxia. CNS Neurosci. Ther. 2023, 29, 202–215. [Google Scholar] [CrossRef]
- Cyranowski, J.M.; Frank, E.; Young, E.; Shear, M.K. Adolescent Onset of the Gender Difference in Lifetime Rates of Major Depression. Arch. Gen. Psychiatry 2000, 57, 21–27. [Google Scholar] [CrossRef]
- Chapman, B.P.; Khan, A.; Harper, M.; Stockman, D.; Fiscella, K.; Walton, J.; Duberstein, P.; Talbot, N.; Lyness, J.M.; Moynihan, J. Gender, Race/Ethnicity, Personality, and Interleukin-6 in Urban Primary Care Patients. Brain. Behav. Immun. 2009, 23, 636–642. [Google Scholar] [CrossRef]
- Grigoriadis, S.; Robinson, G.E. Gender Issues in Depression. Ann. Clin. Psychiatry 2007, 19, 247–255. [Google Scholar] [CrossRef]
- Bangasser, D.A.; Cuarenta, A. Sex Differences in Anxiety and Depression: Circuits and Mechanisms. Nat. Rev. Neurosci. 2021, 22, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Kokras, N.; Antoniou, K.; Mikail, H.G.; Kafetzopoulos, V.; Papadopoulou-Daifoti, Z.; Dalla, C. Forced Swim Test: What about Females? Neuropharmacology 2015, 99, 408–421. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; González, M.I.; Wilson, C.A.; File, S.E. Factor Analysis Shows That Female Rat Behaviour Is Characterized Primarily by Activity, Male Rats Are Driven by Sex and Anxiety. Pharmacol. Biochem. Behav. 1999, 64, 731–736. [Google Scholar] [CrossRef] [PubMed]
Parameters | Control | ARS | p-Value |
---|---|---|---|
Latency TST | 55.17 ± 3.32 | 47.50 ± 4.84 | 0.2209 |
Immobility TST | 119.2 ± 10.28 | 160.5 ± 15.27 | 0.0485 |
Latency FST | 87.33 ± 11.28 | 59.33 ± 5.40 | 0.0493 |
Immobility FST | 93.67 ± 14.54 | 169.7 ± 14.03 | 0.0037 |
Number of crossings | 90.33 ± 3.83 | 79.67 ± 3.29 | 0.0474 |
Number of rearings | 31.33 ± 2.41 | 20.50 ± 1.36 | 0.0029 |
Corticosterone levels | 5.15 ± 0.25 | 6.28 ± 0.16 | 0.0059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arboit, F.; Pereira, G.C.; Fialho, M.F.P.; Becker, G.; Brum, E.d.S.; Pillat, M.M.; Bochi, G.V.; Portela, L.O.C.; Zanchet, E.M. Dual Approach to Depression: The Combined Efficacy of Intermittent Hypoxia and Fluoxetine in Modulating Behavioral and Inflammatory Responses. Biomedicines 2024, 12, 2116. https://doi.org/10.3390/biomedicines12092116
Arboit F, Pereira GC, Fialho MFP, Becker G, Brum EdS, Pillat MM, Bochi GV, Portela LOC, Zanchet EM. Dual Approach to Depression: The Combined Efficacy of Intermittent Hypoxia and Fluoxetine in Modulating Behavioral and Inflammatory Responses. Biomedicines. 2024; 12(9):2116. https://doi.org/10.3390/biomedicines12092116
Chicago/Turabian StyleArboit, Francini, Gabriele Cheiran Pereira, Maria Fernanda Pessano Fialho, Gabriela Becker, Evelyne da Silva Brum, Micheli Mainardi Pillat, Guilherme Vargas Bochi, Luiz Osório Cruz Portela, and Eliane Maria Zanchet. 2024. "Dual Approach to Depression: The Combined Efficacy of Intermittent Hypoxia and Fluoxetine in Modulating Behavioral and Inflammatory Responses" Biomedicines 12, no. 9: 2116. https://doi.org/10.3390/biomedicines12092116
APA StyleArboit, F., Pereira, G. C., Fialho, M. F. P., Becker, G., Brum, E. d. S., Pillat, M. M., Bochi, G. V., Portela, L. O. C., & Zanchet, E. M. (2024). Dual Approach to Depression: The Combined Efficacy of Intermittent Hypoxia and Fluoxetine in Modulating Behavioral and Inflammatory Responses. Biomedicines, 12(9), 2116. https://doi.org/10.3390/biomedicines12092116