Pharmacokinetics of Hydrogen During Hydrogen-Saturated Saline Infusion in Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Hydrogen-Saturated Saline
2.2. Confirmation of Sterility and Ingredient Specifications of Hydrogen-Saturated Saline
2.3. Animal Experiments
2.4. Measurement of Hydrogen Gas Concentration
3. Results
3.1. Sterility and Component Specifications of the First Hydrogen-Saturated Saline
3.2. Sterility and Component Specifications of the Second Hydrogen-Saturated Saline
3.3. Contamination of Easily Detectable Insoluble Foreign Materials (Coring)
3.4. Blood Pressure, Heart Rate, and Percutaneous Oxygen Saturation During Hydrogen-Saturated Saline Infusion
3.5. Hydrogen Gas Concentration
4. Discussion
4.1. The Medical Safety of Filling Hydrogen to Intravenous Drip Solution (Pharmaceuticals)
4.2. Safety When Injecting Hydrogen Gas Through a Rubber Stopper
4.3. PK of Hydrogen After Hydrogen-Saturated Saline Infusion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cole, A.R.; Sperotto, F.; DiNardo, J.A.; Carlisle, S.; Rivkin, M.J.; Sleeper, L.A.; Kheir, J.N. Safety of Prolonged Inhalation of Hydrogen Gas in Air in Healthy Adults. Crit. Care Explor. 2021, 3, e543. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, Y.; Sano, F.; Abe, T.; Tamura, T.; Fujisawa, T.; Shiraishi, Y.; Kohsaka, S.; Ueda, I.; Homma, K.; Suzuki, M.; et al. The Effects of Hydrogen Gas Inhalation on Adverse Left Ventricular Remodeling After Percutaneous Coronary Intervention for ST-Elevated Myocardial Infarction—First Pilot Study in Humans. Circ. J. 2017, 81, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Suzuki, M.; Homma, K.; Sano, M. HYBRID II Study Group. Efficacy of inhaled hydrogen on neurological outcome following brain ischemia during post-cardiac arrest care (HYBRID II): A multi-centre, randomised, double-blind, placebo-controlled trial. EClinicalMedicine 2023, 58, 101907. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Narumiya, H.; Homma, K.; Suzuki, M. Combination of Hydrogen Inhalation and Hypothermic Temperature Control After Out-of-Hospital Cardiac Arrest: A Post hoc Analysis of the Efficacy of Inhaled Hydrogen on Neurologic Outcome Following Brain Ischemia During PostCardiac Arrest Care II Trial. Crit. Care Med. 2024, 52, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Cole, A.R.; Perry, D.A.; Raza, A.; Nedder, A.P.; Pollack, E.; Regan, W.L.; van den Bosch, S.J.; Polizzotti, B.D.; Yang, E.; Davila, D.; et al. Perioperatively Inhaled Hydrogen Gas Diminishes Neurologic Injury Following Experimental Circulatory Arrest in Swine. JACC Basic Transl. Sci. 2019, 4, 176–187. [Google Scholar] [CrossRef]
- Takeuchi, S.; Kumagai, K.; Toyooka, T.; Otani, N.; Wada, K.; Mori, K. Intravenous Hydrogen Therapy With Intracisternal Magnesium Sulfate Infusion in Severe Aneurysmal Subarachnoid Hemorrhage. Stroke 2021, 52, 20–27. [Google Scholar] [CrossRef]
- Guan, W.-J.; Wei, C.-H.; Chen, A.-L.; Sun, X.-C.; Guo, G.-Y.; Zou, X.; Shi, J.-D.; Lai, P.-Z.; Zheng, Z.-G.; Zhong, N.-S. Hydrogen/oxygen mixed gas inhalation improves disease severity and dyspnea in patients with Coronavirus disease 2019 in a recent multicenter, open-label clinical trial. J. Thorac. Dis. 2020, 12, 3448–3452. [Google Scholar] [CrossRef] [PubMed]
- Botek, M.; Krejčí, J.; Valenta, M.; McKune, A.; Sládečková, B.; Konečný, P.; Klimešová, I.; Pastucha, D. Molecular Hydrogen. Positively Affects Physical and Respiratory Function in Acute Post-COVID-19 Patients: A New Perspective in Rehabilitation. Int. J. Environ. Res. Public Health 2022, 19, 1992. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Ding, Y.; He, Y.; Chen, D.; He, Q.; Huang, Z.; Huang, S.; Lei, W. Hydrogen-oxygen therapy alleviates clinical symptoms in twelve patients hospitalized with COVID-19: A retrospective study of medical records. Medicine 2022, 101, e27759. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Itami, N.; Suzuki, H.; Hamada, H.; Osaka, N.; Yamamoto, R.; Tsunoda, K.; Nakano, H.; Watanabe, K.; Zun, W.-J. Possible clinical effects of molecular hydrogen (H2) delivery during hemodialysis in chronic dialysis patients: Interim analysis in a 12 month observation. PLoS ONE 2017, 12, e0184535. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.-G.; Sun, W.-Z.; Hu, J.-Y.; Jie, Z.-J.; Xu, J.-F.; Cao, J.; Song, Y.-L.; Wang, C.-H.; Wang, J.; Zhao, H.; et al. Hydrogen/oxygen therapy for the treatment of an acute exacerbation of chronic obstructive pulmonary disease: Results of a multicenter, randomized, double-blind, parallel-group controlled trial. Respir. Res. 2021, 22, 149. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.T.; Bao, C.; He, Y.; Tian, X.; Yang, Y.; Zhang, T.; Xu, K.F. Hydrogen gas (XEN) inhalation ameliorates airway inflammation in asthma and COPD patients. QJM Int. J. Med. 2020, 113, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Korovljev, D.; Stajer, V.; Ostojic, J.; LeBaron, T.W.; Ostojic, S.M. Hydrogen-rich water reduces liver fat accumulation and improves liver enzyme profiles in patients with non-alcoholic fatty liver disease: A randomized controlled pilot trial. Clin. Res. Hepatol. Gastroenterol. 2019, 43, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Kura, B.; Szantova, M.; LeBaron, T.W.; Mojto, V.; Barancik, M.; Bacova, B.S.; Kalocayova, B.; Sykora, M.; Okruhlicova, L.; Tribulova, N.; et al. Biological Effects of Hydrogen Water on Subjects with NAFLD: A Randomized, Placebo-Controlled Trial. Antioxidants 2022, 11, 1935. [Google Scholar] [CrossRef] [PubMed]
- Tao, G.; Zhang, G.; Chen, W.; Yang, C.; Xue, Y.; Song, G.; Qin, S. A randomized, placebo-controlled clinical trial of hydrogen/oxygen inhalation for non-alcoholic fatty liver disease. J. Cell Mol. Med. 2022, 26, 4113–4123. [Google Scholar] [CrossRef]
- Chen, J.B.; Kong, X.F.; Mu, F.; Lu, T.Y.; Lu, Y.Y.; Xu, K.C. Hydrogen therapy can be used to control tumor progression and alleviate the adverse events of medications in patients with advanced non-small cell lung cancer. Med. Gas Res. 2020, 10, 75–80. [Google Scholar]
- Akagi, J.; Baba, H. Hydrogen gas restores exhausted CD8+ T cells in patients with advanced colorectal cancer to improve prognosis. Oncol. Rep. 2019, 41, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.-C.; Chen, J.-B.; Kong, X.-F.; Qian, W.; Mu, F.; Lu, T.-Y.; Lu, Y.-Y. Two weeks of hydrogen inhalation can significantly reverse adaptive and innate immune system senescence patients with advanced non-small cell lung cancer: A self-controlled study. Med. Gas Res. 2020, 10, 149–154. [Google Scholar] [CrossRef]
- Nishimaki, K.; Asada, T.; Ohsawa, I.; Nakajima, E.; Ikejima, C.; Yokota, T.; Kamimura, N.; Ohta, S. Effects of Molecular Hydrogen Assessed by an Animal Model and a Randomized Clinical Study on Mild Cognitive Impairment. Curr. Alzheimer Res. 2018, 15, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Ono, H.; Nishijima, Y.; Ohta, S. Therapeutic Inhalation of Hydrogen Gas for Alzheimer’s Disease Patients and Subsequent. Long-Term Follow-Up as a Disease-Modifying Treatment: An Open Label Pilot Study. Pharmaceuticals 2023, 16, 434. [Google Scholar] [CrossRef] [PubMed]
- Yoritaka, A.; Ohtsuka, C.; Maeda, T.; Hirayama, M.; Abe, T.; Watanabe, H.; Saiki, H.; Oyama, G.; Fukae, J.; Shimo, Y.; et al. Randomized, double-blind, multicenter trial of hydrogen water for Parkinson’s disease. Mov. Disord. 2018, 3, 1505–1507. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, T.; Sato, B.; Shibata, S.; Sakai, T.; Hara, Y.; Naritomi, Y.; Koyanagi, S.; Hara, H.; Nagao, T. Therapeutic efficacy of infused molecular hydrogen in saline on rheumatoid arthritis: A randomized, double-blind, placebo-controlled pilot study. Int. Immunopharmacol. 2014, 21, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Fan, K.; Tan, S.; Liu, S.; Ge, Q.; Wang, Y.; Ai, Z.; Yu, S. The Beneficial Effects of Hydrogen-Rich Saline Irrigation on Chronic Rhinitis: A Randomized, Double-Blind Clinical Trial. J. Inflamm. Res. 2022, 15, 3983–3995. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, H.M.; Hiorth, M.; Klaveness, J. Molecular Hydrogen Therapy—A Review on Clinical Studies and Outcomes. Molecules 2023, 28, 7785. [Google Scholar] [CrossRef] [PubMed]
- Ono, H.; Nishijima, Y.; Adachi, N.; Tachibana, S.; Chitoku, S.; Mukaihara, S.; Sakamoto, M.; Kudo, Y.; Nakazawa, J.; Kaneko, K.; et al. Improved brain MRI indices in the acute brain stem infarct sites treated with hydroxyl radical scavengers, Edaravone and hydrogen, as compared to Edaravone alone. A non-controlled study. Med. Gas Res. 2011, 1, 12. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.; Shirakawa, K.; Katsumata, Y.; Ichihara, G.; Kobayashi, E. Low-flow nasal cannula hydrogen therapy. J. Clin. Med. Res. 2020, 12, 674–680. [Google Scholar] [CrossRef] [PubMed]
- The Ministry of Health, Labour and Welfare, “Japanese Pharmacopoeia 18th Edition”. English Version. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000066597.html (accessed on 30 November 2024).
- Ohta, S. Recent progress toward hydrogen medicine: Potential of molecular hydrogen for preventive and therapeutic applications. Curr. Pharm. Des. 2011, 17, 2241–2252. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Yang, M.; Yang, N.N.; Yin, X.X.; Song, W.G. Molecular hydrogen: A preventive and therapeutic medical gas for various diseases. Oncotarget 2017, 8, 102653–102673. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Kim, C.S.; Lee, K.J. Molecular hydrogen gas and its therapeutic potential in recent disease progression. Med. Gas Res. 2025, 15, 120–121. [Google Scholar] [CrossRef]
- Kobayashi, E.; Sano, M. Organ preservation solution containing dissolved hydrogen gas from a hydrogen-absorbing alloy canister improves function of transplanted ischemic kidneys in miniature pigs. PLoS ONE 2019, 14, e0222863. [Google Scholar] [CrossRef] [PubMed]
- Nishi, K.; Iwai, S.; Tajima, K.; Okano, S.; Sano, M.; Kobayashi, E. Prevention of Chronic Rejection of Marginal Kidney Graft by Using a Hydrogen Gas-Containing Preservation Solution and Adequate Immunosuppression in a Miniature Pig Model. Front. Immunol. 2021, 11, 626295. [Google Scholar] [CrossRef] [PubMed]
- Wani, T.; Wadhwa, A.; Tobias, J.D. The incidence of coring with blunt versus sharp needles. J. Clin. Anesth. 2014, 26, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Ichihara, G.; Katsumata, Y.; Moriyama, H.; Kitakata, H.; Hirai, A.; Momoi, M.; Ko, S.; Shinya, Y.; Kinouchi, K.; Kobayashi, E.; et al. Pharmacokinetics of hydrogen after ingesting a hydrogen-rich solution: A study in pigs. Heliyon 2021, 7, e08359. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Itami, N.; Suzuki, H.; Hamada, H.; Yamamoto, R.; Tsunoda, K.; Osaka, N.; Nakano, H.; Maruyama, Y.; Kabayama, S.; et al. Novel haemodialysis (HD) treatment employing molecular hydrogen (H2)-enriched dialysis solution improves prognosis of chronic dialysis patients: A prospective observational study. Sci. Rep. 2018, 8, 254. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Kabayama, S.; Miyazaki, M. Application of Electrolyzed Hydrogen Water for Management of Chronic Kidney Disease and Dialysis Treatment—Perspective View. Antioxidants 2024, 13, 90. [Google Scholar] [CrossRef] [PubMed]
Analysis Item: Saline Solution * | Result | |
---|---|---|
Confirmation test | sodium salt (1) | reference range |
sodium salt (2) | reference range | |
chloride (1) | reference range | |
chloride (2) | reference range | |
pH | 5.6 | |
Endotoxin | less than 0.50 EU/mL without response interference factor | |
Insoluble extraneous material ** | easily detectable | |
Insoluble particles ** | more than 10 μm | 0/mL |
more than 25 μm | 0/mL | |
Sterility ** | liquid thioglycolic acid medium | no microorganisms |
soybean–casein digest medium | no microorganisms | |
SCDLP agar plate medium | bacteria: less than 100/g | |
LB medium | coliform bacteria: negative/1 g | |
Content | sodium chloride | 0.90 w/v% |
Characteristics | color/shape | clear and transparent liquid |
Analysis Item: Saline Solution * | Result | |
---|---|---|
Confirmation test | sodium salt (1) | reference range |
sodium salt (2) | reference range | |
chloride (1) | reference range | |
chloride (2) | reference range | |
pH | 5.8 | |
Endotoxin | less than 0.50 EU/mL | |
Insoluble extraneous material ** | no insoluble extraneous material | |
Insoluble particles ** | more than 10 μm | 0/mL |
more than 25 μm | 0/mL | |
Sterility ** | liquid thioglycolic acid medium | no microorganisms |
soybean–casein digest medium | no microorganisms | |
SCDLP agar plate medium | bacteria: less than 100/g | |
LB medium | coliform bacteria: negative/1 g | |
Content | sodium chloride | 0.90 w/v% |
Characteristics | color/shape | clear and transparent liquid |
Parameter | Pre | Time After Initiation of Infusion (min) | |||
---|---|---|---|---|---|
30 | 60 | 90 | 120 | ||
sBP (mmHg) | 101 | 99 | 101 | 100 | 94 |
dBP (mmHg) | 44 | 44 | 42 | 43 | 40 |
mBP (mmHg) | 60 | 59 | 58 | 58 | 54 |
HR (bpm) | 80 | 85 | 80 | 81 | 82 |
SpO2 (%) | 99 | 98 | 98 | 97 | 97 |
Pre | Time After Initiation of Infusion (min) | ||||
---|---|---|---|---|---|
30 | 60 | 90 | 120 | ||
LIJV | 0.5 | 6.4 | 4.7 | 4.9 | 5.3 |
RA | 0.1 | 0.7 | 0.5 | 0.7 | 0.7 |
RICA | 0.1 | 0.2 | 0.3 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shibuya, M.; Fujinaka, M.; Yonezawa, M.; Nishimura, N.; Uchinoumi, H.; Sunahara, H.; Tani, K.; Kobayashi, E.; Sano, M. Pharmacokinetics of Hydrogen During Hydrogen-Saturated Saline Infusion in Pigs. Biomedicines 2025, 13, 234. https://doi.org/10.3390/biomedicines13010234
Shibuya M, Fujinaka M, Yonezawa M, Nishimura N, Uchinoumi H, Sunahara H, Tani K, Kobayashi E, Sano M. Pharmacokinetics of Hydrogen During Hydrogen-Saturated Saline Infusion in Pigs. Biomedicines. 2025; 13(1):234. https://doi.org/10.3390/biomedicines13010234
Chicago/Turabian StyleShibuya, Masaki, Masafumi Fujinaka, Mako Yonezawa, Natsumi Nishimura, Hitoshi Uchinoumi, Hiroshi Sunahara, Kenji Tani, Eiji Kobayashi, and Motoaki Sano. 2025. "Pharmacokinetics of Hydrogen During Hydrogen-Saturated Saline Infusion in Pigs" Biomedicines 13, no. 1: 234. https://doi.org/10.3390/biomedicines13010234
APA StyleShibuya, M., Fujinaka, M., Yonezawa, M., Nishimura, N., Uchinoumi, H., Sunahara, H., Tani, K., Kobayashi, E., & Sano, M. (2025). Pharmacokinetics of Hydrogen During Hydrogen-Saturated Saline Infusion in Pigs. Biomedicines, 13(1), 234. https://doi.org/10.3390/biomedicines13010234