Bacterial Diversity in Native Heart Valves in Infective Endocarditis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Group Description
2.2. Histological Analysis
2.3. Immunohistochemistry
2.4. 16S rRNA Metabarcoding
3. Results
3.1. Clinical Characteristics of Patients
3.2. Histopathological Characteristics
3.3. Taxonomic Structure of Microbiome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cahill, T.J.; Prendergast, B.D. Infective endocarditis. Lancet 2016, 387, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Kim, J.B.; Sastry, B.K.S.; Chen, M. Infective endocarditis. Lancet 2024, 404, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.J.; Yeh, C.Y.; Hsu, R.B.; Lee, C.M.; Shun, C.T.; Chia, J.S. Endocarditis pathogen promotes vegetation formation by inducing intravascular neutrophil extracellular traps through activated platelets. Circulation 2015, 131, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Delgado, V.; Ajmone Marsan, N.; de Waha, S.; Bonaros, N.; Brida, M.; Burri, H.; Caselli, S.; Doenst, T.; Ederhy, S.; Erba, P.A.; et al. 2023 ESC Guidelines for the management of endocarditis. Eur. Heart J. 2023, 44, 3948–4042. [Google Scholar] [PubMed]
- Muñoz, P.; Kestler, M.; De Alarcon, A.; Miro, J.M.; Bermejo, J.; Rodríguez-Abella, H.; Fariñas, M.C.; Cobo Belaustegui, M.; Mestres, C.; Llinares, P.; et al. Current Epidemiology and Outcome of Infective Endocarditis: A Multicenter, Prospective, Cohort Study. Medicine 2015, 94, e1816. [Google Scholar] [CrossRef]
- Cahill, T.J.; Baddour, L.M.; Habib, G.; Hoen, B.; Salaun, E.; Pettersson, G.B.; Schäfers, H.J.; Prendergast, B.D. Challenges in infective endocarditis. J. Am. Coll. Cardiol. 2017, 69, 325–344. [Google Scholar] [CrossRef]
- Khaledi, M.; Sameni, F.; Afkhami, H.; Hemmati, J.; Asareh Zadegan Dezfuli, A.; Sanae, M.J.; Validi, M. Infective endocarditis by HACEK: A review. J. Cardiothorac. Surg. 2022, 17, 185. [Google Scholar] [CrossRef]
- Burban, A.; Słupik, D.; Reda, A.; Szczerba, E.; Grabowski, M.; Kołodzińska, A. Novel Diagnostic Methods for Infective Endocarditis. Int. J. Mol. Sci. 2024, 25, 1245. [Google Scholar] [CrossRef]
- Liesman, R.M.; Pritt, B.S.; Maleszewski, J.J.; Patel, R. Laboratory Diagnosis of Infective Endocarditis. J. Clin. Microbiol. 2017, 55, 2599–2608. [Google Scholar] [CrossRef]
- Rajani, R.; Klein, J.L. Infective endocarditis: A contemporary update. Clin. Med. 2020, 20, 31–35. [Google Scholar] [CrossRef]
- Fournier, P.E.; Gouriet, F.; Casalta, J.P.; Lepidi, H.; Chaudet, H.; Thuny, F.; Collart, F.; Habib, G.; Raoult, D. Blood culture-negative endocarditis: Improving the diagnostic yield using new diagnostic tools. Medicine 2017, 96, e8392. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e72–e227. [Google Scholar] [PubMed]
- Kouijzer, J.J.P.; Noordermeer, D.J.; van Leeuwen, W.J.; Verkaik, N.J.; Lattwein, K.R. Native valve, prosthetic valve, and cardiac device-related infective endocarditis: A review and update on current innovative diagnostic and therapeutic strategies. Front. Cell Dev. Biol. 2022, 10, 995508. [Google Scholar] [CrossRef] [PubMed]
- Mularoni, A.; Mikulska, M.; Barbera, F.; Graziano, E.; Medaglia, A.A.; Di Carlo, D.; Monaco, F.; Bellavia, D.; Cascio, A.; Raffa, G.; et al. Molecular Analysis With 16S rRNA PCR/Sanger Sequencing and Molecular Antibiogram Performed on DNA Extracted from Valve Improve Diagnosis and Targeted Therapy of Infective Endocarditis: A Prospective Study. Clin. Infect. Dis. 2023, 76, e1484–e1491. [Google Scholar] [CrossRef] [PubMed]
- von Zeppelin, M.; Gharoony, S.A.; Holubcova, Z.; Salem, R.; Hlavicka, J.; Heyl, S.; Ochs, M.; Wichelhaus, T.A.; Kessel, J.; Moritz, A.; et al. Intraoperative Polymerase Chain Reaction from Cardiac Valve Tissue Is Beneficial for Guiding Further Therapy in Patients with Infective Endocarditis. J. Clin. Med. 2024, 13, 4319. [Google Scholar] [CrossRef]
- Ely, D.; Tan, C.D.; Rodriguez, E.R.; Hussain, S.; Pettersson, G.; Gordon, S.; Shrestha, N. Histological Findings in Infective Endocarditis. Open Forum Infect. Dis. 2016, 3, 1111. [Google Scholar] [CrossRef]
- Houpikian, P.; Raoult, D. Blood culture-negative endocarditis in a reference center. Medicine 2005, 84, 162–173. [Google Scholar] [CrossRef]
- Oberbach, A.; Schlichting, N.; Feder, S.; Lehmann, S.; Kullnick, Y.; Buschmann, T.; Blumert, C.; Horn, F.; Neuhaus, J.; Neujahr, R.; et al. New insights into valve-related intramural and intracellular bacterial diversity in infective endocarditis. PLoS ONE 2017, 12, e0175569. [Google Scholar] [CrossRef]
- Zeng, X.; Wu, J.; Li, X.; Xiong, W.; Tang, L.; Li, X.; Zhuang, J.; Yu, R.; Chen, J.; Jian, X.; et al. Application of Metagenomic Next-Generation Sequencing in the Etiological Diagnosis of Infective Endocarditis During the Perioperative Period of Cardiac Surgery: A Prospective Cohort Study. Front. Cardiovasc. Med. 2022, 9, 811492. [Google Scholar] [CrossRef]
- Haddad, S.F.; DeSimone, D.C.; Chesdachai, S.; Gerberi, D.J.; Baddour, L.M. Utility of metagenomic next-generation sequencing in infective endocarditis: A systematic review. Antibiotics 2022, 11, 1798. [Google Scholar] [CrossRef]
- Clarridge, J.E. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 2004, 1, 840–862. [Google Scholar] [CrossRef] [PubMed]
- Anton-Vazquez, V.; Dworakowski, R.; Cannata, A.; Amin-Youssef, G.; Gunning, M.; Papachristidis, A.; MacCarthy, P.; Baghai, M.; Deshpande, R.; Khan, H.; et al. 16S rDNA PCR for the aetiological diagnosis of culture-negative infective endocarditis. Infection 2022, 50, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Sontakke, S.; Cadenas, M.B.; Maggi, R.G.; Diniz, P.P.; Breitschwerdt, E.B. Use of broad range16S rDNA PCR in clinical microbiology. J. Microbiol. Methods 2009, 76, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Chalupova, M.; Skalova, A.; Hajek, T.; Geigerova, L.; Kralova, D.; Liska, P.; Hecova, H.; Molacek, J.; Hrabak, J. Bacterial DNA detected on pathologically changed heart valves using 16S rRNA gene amplification. Folia Microbiol. 2018, 63, 707–711. [Google Scholar] [CrossRef]
- Fowler, V.G.; Durack, D.T.; Selton-Suty, C.; Athan, E.; Bayer, A.S.; Chamis, A.L.; Dahl, A.; DiBernardo, L.; Durante-Mangoni, E.; Duval, X.; et al. The 2023 Duke-International Society for Cardiovascular Infectious Diseases Criteria for Infective Endocarditis: Updating the Modified Duke Criteria. Clin. Infect. Dis. 2023, 77, 518–526. [Google Scholar] [CrossRef]
- Fadrosh, D.W.; Ma, B.; Gajer, P.; Sengamalay, N.; Ott, S.; Brotman, R.M.; Ravel, J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014, 2, 6. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Edgar, R.C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 2016, 081257. [Google Scholar] [CrossRef]
- Edgar, R.C. SINTAX, a Simple Non-Bayesian Taxonomy Classifier for 16S and ITS Sequences. bioRxiv 2016, 074161. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Martínez-Sellés, M.; Muñoz, P. Epidemiology, Diagnosis, Treatment, and Prognosis of Infective Endocarditis. J. Clin. Med. 2023, 12, 5705. [Google Scholar] [CrossRef] [PubMed]
- Liesenborghs, L.; Meyers, S.; Vanassche, T.; Verhamme, P. Coagulation: At the heart of infective endocarditis. J. Thromb. Haemost. 2020, 18, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- Braï, M.A.; Hannachi, N.; El Gueddari, N.; Baudoin, J.-P.; Dahmani, A.; Lepidi, H.; Habib, G.; Camoin-Jau, L. The Role of Platelets in Infective Endocarditis. Int. J. Mol. Sci. 2023, 24, 7540. [Google Scholar] [CrossRef] [PubMed]
- Fernández Guerrero, M.L.; Álvarez, B.; Manzarbeitia, F.; Renedo, G. Infective endocarditis at autopsy: A review of pathologic manifestations and clinical correlates. Medicine 2012, 91, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Meidrops, K.; Groma, V.; Goldins, N.R.; Apine, L.; Skuja, S.; Svirskis, S.; Gudra, D.; Fridmanis, D.; Stradins, P. Understanding Bartonella-Associated Infective Endocarditis: Examining Heart Valve and Vegetation Appearance and the Role of Neutrophilic Leukocytes. Cells 2024, 13, 43. [Google Scholar] [CrossRef]
- Chambers, H.F.; Bayer, A.S. Native-valve infective endocarditis. N. Engl. J. Med. 2020, 383, 567–576. [Google Scholar] [CrossRef]
- Cai, S.; Yang, Y.; Pan, J.; Miao, Q.; Jin, W.; Ma, Y.; Zhou, C.; Gao, X.; Wang, C.; Hu, B. The clinical value of valve metagenomic next-generation sequencing when applied to the etiological diagnosis of infective endocarditis. Ann. Transl. Med. 2021, 9, 1490. [Google Scholar] [CrossRef]
- Li, S.L.; Zhao, X.; Tao, J.Z.; Yue, Z.Z.; Zhao, X.Y. Application of metagenomic next-generation sequencing in patients with infective endocarditis. Front. Cell Infect. Microbiol. 2023, 13, 1107170. [Google Scholar] [CrossRef]
- Johansson, G.; Sunnerhagen, T.; Ragnarsson, S.; Rasmussen, M. Clinical Significance of a 16S-rDNA Analysis of Heart Valves in Patients with Infective Endocarditis: A Retrospective Study. Microbiol. Spectr. 2023, 11, e0113623. [Google Scholar] [CrossRef]
- Habib, G.; Erba, P.A.; Iung, B.; Donal, E.; Cosyns, B.; Laroche, C.; Popescu, B.A.; Prendergast, B.; Tornos, P.; Sadeghpour, A.; et al. Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EURO-ENDO (European infective endocarditis) registry: A prospective cohort study. Eur. Heart J. 2019, 40, 3222–3232. [Google Scholar] [CrossRef]
- Conwell, M.; Dooley, J.S.G.; Naughton, P.J. Enterococcal biofilm-A nidus for antibiotic resistance transfer? J. Appl. Microbiol. 2022, 132, 3444–3460. [Google Scholar] [CrossRef] [PubMed]
- Lecomte, R.; Laine, J.B.; Issa, N.; Revest, M.; Gaborit, B.; Le Turnier, P.; Deschanvres, C.; Benezit, F.; Asseray, N.; Le Tourneau, T.; et al. Long-term Outcome of Patients with Nonoperated Prosthetic Valve Infective Endocarditis: Is Relapse the Main Issue? Clin. Infect. Dis. 2020, 71, 1316–1319. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Parra, J.; Kestler, M.; Ramos-Martínez, A.; Bouza, E.; Valerio, M.; de Alarcón, A.; Luque, R.; Goenaga, M.Á.; Echeverría, T.; Fariñas, M.C.; et al. Clinical Factors Associated with Reinfection versus Relapse in Infective Endocarditis: Prospective Cohort Study. J. Clin. Med. 2021, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- Danneels, P.; Hamel, J.F.; Picard, L.; Rezig, S.; Martinet, P.; Lorleac’h, A.; Talarmin, J.P.; Buzelé, R.; Guimard, T.; Le Moal, G.; et al. Impact of Enterococcus faecalis endocarditis treatment on risk of relapse. Clin. Infect. Dis. 2023, 76, 281–290. [Google Scholar] [CrossRef]
- Park, S.W.; Back, J.H.; Lee, S.W.; Song, J.H.; Shin, C.H.; Kim, G.E.; Kim, M.J. Successful antibiotic treatment of Pseudomonas stutzeri-induced peritonitis without peritoneal dialysis catheter removal in continuous ambulatory peritoneal dialysis. Kidney Res. Clin. Pract. 2013, 32, 81–83. [Google Scholar] [CrossRef]
- Lin, T.I.; Huang, Y.F.; Liu, P.Y.; Chou, C.A.; Chen, Y.S.; Chen, Y.Y.; Hsieh, K.S.; Chen, Y.S. Pseudomonas aeruginosa infective endocarditis in patients who do not use intravenous drugs: Analysis of risk factors and treatment outcomes. J. Microbiol. Immunol. Infect. 2016, 49, 516–522. [Google Scholar] [CrossRef]
- Halabi, Z.; Mocadie, M.; El Zein, S.; Kanj, S.S. Pseudomonas stutzeri prosthetic valve endocarditis: A case report and review of the literature. J. Infect. Public Health 2019, 12, 434–437. [Google Scholar] [CrossRef]
- Alwazzeh, M.J.; Alkuwaiti, F.A.; Alqasim, M.; Alwarthan, S.; El-Ghoneimy, Y. Infective Endocarditis Caused by Pseudomonas stutzeri: A Case Report and Literature Review. Infect. Dis. Rep. 2020, 12, 105–109. [Google Scholar] [CrossRef]
- Alabdely, M.; Alazmah, M.; Alamro, B.; Alabdaljabar, M.S.; Halim, M. A relapsed Pseudomonas stutzeri prosthetic valve endocarditis: A case report and review of the literature. J. Med. Case Rep. 2021, 15, 507. [Google Scholar] [CrossRef]
- Alhalimi, A.A.; AlShammari, L.T.; Al-Qurayn, A.K.; Al Rashed, A.S. Infective Endocarditis Caused by Pseudomonas luteola in a Pediatric Patient. A Case Report and Review of Literature. Am. J. Case Rep. 2022, 23, e935743. [Google Scholar] [CrossRef]
- Ioannou, P.; Mavrikaki, V.; Kofteridis, D.P. Infective endocarditis by Acinetobacter species: A systematic review. J. Chemother. 2021, 33, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front. Cell Infect. Microbiol. 2017, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Gaca, J.G.; Chu, V.H. Management considerations in infective endocarditis: A review. JAMA 2018, 320, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, P.R.; Teng, L.J.; Yang, P.C.; Chen, Y.C.; Pan, H.J.; Ho, S.W.; Luh, K.T. Nosocomial infections caused by Sphingomonas paucimobilis: Clinical features and microbiological characteristics. Clin. Infect. Dis. 1998, 26, 676–681. [Google Scholar] [CrossRef]
- Rognrud, K.; Diaz, A.M.; Hill, C.; Kershaw, M.A. Bacterial Endocarditis Caused by Sphingomonas paucimobilis: A Case Report and Literature Review. Case Rep. Infect. Dis. 2020, 2020, 7185834. [Google Scholar] [CrossRef]
- Saboe, A.; Adrian, Y.; Widyatmoko, L.; Hasan, M.; Cool, C.J.; Hartantri, Y.; Rahmadi, A.R.; Nusjirwan, R.; Akbar, M.R. A fatal case of early prosthetic valve endocarditis caused by multidrug-resistant (MDR)—Sphingomonas paucimobilis. IDCases 2021, 24, e01152. [Google Scholar] [CrossRef]
- Tang, W.; Das, S.; Sarvepalli, S. Sphingomonas paucimobilis bacteremia and tricuspid valve endocarditis in a patient with intravenous drug use. IDCases 2022, 27, e01399. [Google Scholar] [CrossRef]
- Assi, F.; Hammoud, R.; Ezzedine, A.; Rahal, H. Sphingomonas paucimobilis native valve endocarditis and mycotic cerebral aneurysm in a patient with Crohn’s disease: Case report and review of literature. IDCases 2023, 31, e01687. [Google Scholar] [CrossRef]
- Kawasaki, S.; Moriguchi, R.; Sekiya, K.; Nakai, T.; Ono, E.; Kume, K.; Kawahara, K. The cell envelope structure of the lipopolysaccharide-lacking gram- negative bacterium Sphingomonas paucimobilis. J. Bacteriol. 1994, 176, 284–290. [Google Scholar] [CrossRef]
- Orme, J.; Rivera-Bonilla, T.; Loli, A.; Blattman, N.N. Native Valve Endocarditis due to Ralstonia pickettii: A Case Report and Literature Review. Case Rep. Infect. Dis. 2015, 2015, 324675. [Google Scholar]
- Basso, M.; Venditti, C.; Raponi, G.; Navazio, A.S.; Alessandri, F.; Giombini, E.; Nisii, C.; Di Caro, A.; Venditti, M. A case of persistent bacteraemia by Ralstonia mannitolilytica and Ralstonia pickettii in an intensive care unit. Infect. Drug Resist. 2019, 12, 2391–2395. [Google Scholar] [CrossRef] [PubMed]
- Carreira, M.; Gomes, C.; Silva, M.; Duro, R. Ralstonia mannitollylitica endocarditis: A case report. IDCases 2020, 22, e01003. [Google Scholar] [CrossRef] [PubMed]
- Wright, W.F. Central venous access device-related Bacillus cereus endocarditis: A case report and review of the literature. Clin. Med. Res. 2016, 14, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Gopinathan, A.; Kumar, A.; Sen, A.C.; Sudha, S.; Varma, P.; Gs, S.; Eapen, M.; Dinesh, K.R. A Case Series and Review of Bacillus Cereus Endocarditis from India. Open Microbiol. J. 2018, 12, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Patnaik, S.; Wongrakpanich, S.; Alhamshari, Y.; Alnabelsi, T. Infective endocarditis due to Bacillus cereus in a pregnant female: A case report and literature review. IDCases 2015, 2, 120–123. [Google Scholar] [CrossRef]
- Edmond, M.B.; Riddler, S.A.; Baxter, C.M.; Wicklund, B.M.; Pasculle, A.W. Agrobacterium radiobacter: A recently recognized opportunistic pathogen. Clin. Infect. Dis. 1993, 16, 388–391. [Google Scholar] [CrossRef]
- Hulse, M.; Johnson, S.; Ferrieri, P. Agrobacterium infections in humans: Experience at one hospital and review. Clin. Infect. Dis. 1993, 16, 112–117. [Google Scholar] [CrossRef]
- Guerra, N.C.; Nobre, A.; Cravino, J. Native mitral valve endocarditis due to Rhizobium Radiobacter—First case report. Rev. Port Cir. Cardiotorac. Vasc. 2013, 20, 203–205. [Google Scholar]
- Piñerúa Gonsálvez, J.F.; Zambrano Infantinot Rdel, C.; Calcaño, C.; Montaño, C.; Fuenmayor, Z.; Rodney, H.; Rodney, M. Endocarditis infecciosa por Rhizobium radiobacter. Reporte de un caso [Infective endocarditis by Rhizobium radiobacter. A case report]. Investig. Clin. 2013, 54, 68–73. [Google Scholar]
- Zahoor, B.A. Rhizobium radiobacter Endocarditis in an Intravenous Drug User: Clinical Presentation, Diagnosis, and Treatment. Ann. Vasc. Surg. 2016, 35, 206.e9–206.e11. [Google Scholar] [CrossRef]
- Halas, R.; Jacob, C.; Badwal, K.; Mir, R. Rare case of Rhizobium radiobacter bioprosthetic mitral valve endocarditis. IDCases 2017, 20, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Van Vlasselaer, A.; Rasmussen, M.; Nilsson, J.; Olaison, L.; Ragnarsson, S. Native aortic versus mitral valve infective endocarditis: A nationwide registry study. Open Heart 2019, 6, e000926. [Google Scholar] [CrossRef] [PubMed]
Indicator | Value | |
---|---|---|
Clicinal-Demografic Indicators | ||
Gender | Males, n (%) | 5 (62.5%) |
Females, n (%) | 3 (37.5%) | |
Mean age, Median (Q1; Q3) | 37 (33; 57) | |
Left ventricular ejection fraction, Mean ± SD | 61.88 ± 11.74 | |
Preoperative antibiotic therapy, n (%) | 8 (100%) | |
Intravenous drug use, n (%) | 1 (12.5%) | |
Affected heart valve (n = 10) | Aortic, n (%) | 4 (40%) |
Mitral, n (%) | 5 (50%) | |
Tricuspid, n (%) | 1 (10%) | |
Laboratory Indicators | ||
Leucocites (109/L), Mean ± SD | 8.46 ± 3.16 | |
Neutophils (109/L), Mean ± SD | 5.57 ± 2.61 | |
C-reactive protein (mg/L), Mean ± SD | 9.58 ± 12.51 | |
Erythrocyte sedimentation rate (mm/h), Mean ± SD | 23.89 ± 22.09 | |
Results of Blood Culture for Pathogen Identification | ||
Positive, n (%) | 2 (25%) | |
Negative, n (%) | 6 (75%) |
Patient | Case | Affected Heart Valve | Identified Bacteria | ||
---|---|---|---|---|---|
Blood Culture | Gram Stain of Heart Valves | 16S rRNA Metabarcoding * | |||
1 | Case 1 | Aortic | Sterile | Negative | Pseudomonas stutzeri (27%) unc_Acinetobacter (14%) unc_Roseateles (9%) unc_Pseudomonas (8%) unc_Sphingomonas (6%) |
2 | Case 2 | Aortic | Enterococcusfaecalis | Negative | unc_Bacillus (67%) unc_Enterococcus (8.3%) |
Case 3 | Mitral | Enterococcusfaecalis | Negative | unc_Enterococcus (100%) | |
3 | Case 4 | Aortic | Sterile | Bacilli, cocci | Ralstonia pickettii (55%) Pseudomonas stutzeri (5.5%) |
4 | Case 5 | Mitral | Sterile | Negative | unc_Roseateles (15%) Pseudomonas stutzeri (11%) unc_Acinetobacter (6.7%) unc_Reyranella (6.1%) |
5 | Case 6 | Mitral | Sterile | Negative | Pseudomonas stutzeri (19%) Sphingobium limneticum (9.6%) unc_Acinetobacter (8.4%) unc_Pseudomonas (8.0%) unc_Roseateles (6.7%) unc_Agrobacterium (6.4%) |
6 | Case 7 | Aortic | Streptococcusgordonii | Negative | Pseudomonas stutzeri (19%) unc_Streptococcus (13%) unc_Agrobacterium (10%) unc_Pseudomonas (6.3%) unc_Roseateles (5.8%) unc_Sphingomonas (5.5%) |
Case 8 | Mitral | Streptococcusgordonii | Cocci | unc_Streptococcus (47%) Pseudomonas stutzeri (12%) | |
7 | Case 9 | Tricuspid | Sterile | Negative | Pseudomonas stutzeri (16%) unc_Roseateles (15%) unc_Sphingomonas (11%) unc_Acinetobacter (13%) Sphingobium limneticum (9.7%) |
8 | Case 10 | Mitral | Sterile | Bacilli, cocci | unc_Enterococcus (22%) unc_Sphingomonas (22%) unc_Roseateles (19%) unc_Reyranella (6.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinitskaya, A.; Kostyunin, A.; Asanov, M.; Khutornaya, M.; Klyueva, A.; Poddubnyak, A.; Tupikin, A.; Kabilov, M.; Sinitsky, M. Bacterial Diversity in Native Heart Valves in Infective Endocarditis. Biomedicines 2025, 13, 245. https://doi.org/10.3390/biomedicines13010245
Sinitskaya A, Kostyunin A, Asanov M, Khutornaya M, Klyueva A, Poddubnyak A, Tupikin A, Kabilov M, Sinitsky M. Bacterial Diversity in Native Heart Valves in Infective Endocarditis. Biomedicines. 2025; 13(1):245. https://doi.org/10.3390/biomedicines13010245
Chicago/Turabian StyleSinitskaya, Anna, Alexander Kostyunin, Maxim Asanov, Maria Khutornaya, Anastasia Klyueva, Alyona Poddubnyak, Alexey Tupikin, Marsel Kabilov, and Maxim Sinitsky. 2025. "Bacterial Diversity in Native Heart Valves in Infective Endocarditis" Biomedicines 13, no. 1: 245. https://doi.org/10.3390/biomedicines13010245
APA StyleSinitskaya, A., Kostyunin, A., Asanov, M., Khutornaya, M., Klyueva, A., Poddubnyak, A., Tupikin, A., Kabilov, M., & Sinitsky, M. (2025). Bacterial Diversity in Native Heart Valves in Infective Endocarditis. Biomedicines, 13(1), 245. https://doi.org/10.3390/biomedicines13010245