Development of a Pain Measurement Device Using 3D Printing and Electronic Air Pressure Control
Abstract
:1. Introduction
2. Materials and Methods
- fitting inside the MRI scanner;
- possibility of selecting manually from a range of pressures;
- possibility of selecting tests with a predetermined pressure and duration;
- possibility of storing the results obtained with different patients during an evaluation.
3. Results
3.1. Measurement of Surface Hardness of Printed Parts
3.2. Cylinder Bore Surface Roughness
3.3. Proposed Geometry for Cylinder and O-Rings
3.4. Measurement of the Force Exerted by the Pneumatic Cylinder as a Function of the Pressure Exerted for Different Geometries and Materials
3.5. Device Control Elements
4. Discussion
- It has the ability to exert variable force on the thumb, defined by a neurologist.
- Ergonomic design, which allows it to be used with both hands (left or right).
- It is a reliable piece of equipment, capable of providing a smooth and continuous movement.
- Repeatability of thumb force at the same air pressure.
- Control system allows the test time and pressure to be preselected.
- The time to be applied for each pressure can be selected by control system.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Culmone, C.; Smit, G.; Breedveld, P. Additive manufacturing of medical instruments: A state-of-the-art review. Addit. Manuf. 2019, 27, 461–473, ISSN 2214-8604. [Google Scholar] [CrossRef]
- 3D Printing in Medicine; Kalaskar, D.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-08-100717-4. [Google Scholar]
- Aimar, A.; Palermo, A.; Innocenti, B. The Role of 3D Printing in Medical Applications: A State of the Art. J. Healthc. Eng. 2019, 2019, 5340616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghomi, E.R.; Khosravi, F.; Neisiany, R.E.; Singh, S.; Ramakrishna, S. Future of additive manufacturing in healthcare. Curr. Opin. Biomed. Eng. 2021, 17, 100255, ISSN 2468-4511. [Google Scholar] [CrossRef]
- Beyene Mamo, H.; Adamiak, M.; Kunwar, A. 3D printed biomedical devices and their applications: A review on state-of-the-art technologies, existing challenges, and future perspectives. J. Mech. Behav. Biomed. Mater. 2023, 143, 105930. [Google Scholar] [CrossRef]
- Zhou, H.; Bhaduri, S.B. 3D printing in the research and development of medical devices. In Biomaterials in Translational Medicine; A Biomaterials Approach Woodhead Publishing Series in Biomaterials; Academic Press: Cambridge, MA, USA, 2019; pp. 269–289. [Google Scholar] [CrossRef]
- Cano-Vicent, A.; Tambuwala, M.M.; Hassan, S.S.; Barh, D.; Aljabali, A.A.A.; Birkett, M.; Arjunan, A.; Serrano-Aroca, Á. Fused deposition modelling: Current status, methodology, applications and future prospects. Addit. Manuf. 2021, 47, 102378. [Google Scholar] [CrossRef]
- Sierra, J.M.; Rodríguez, J.I.; Villazon, M.M.; Cortizo, J.L.; Fernandez, M.R. Evaluation of a rapid prototyping application for stomas. Rapid Prototyp. J. 2020, 26, 1525–1533. [Google Scholar] [CrossRef]
- Rodríguez-García, J.I.; Sierra-Velasco, J.M.; García-Santos, G.; Villazon, M.; García-Flórez, L.J.; Fernández-Rodríguez, M.R. Transanal endoscopic surgery with a 3D printed device. Tech. Coloproctology 2021, 25, 965–969. [Google Scholar] [CrossRef]
- Schubert, C.; van Langeveld, M.C.; Donoso, L.A. Innovations in 3D printing: A 3D overview from optics to organs. Br. J. Ophthalmol. 2014, 98, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.R.; Silva, A.F.; Carneiro, O.S. Multi-Material 3D Printing: The Relevance of Materials Affinity on the Boundary Interface Performance. Addit. Manuf. 2018, 23, 45–52. [Google Scholar] [CrossRef]
- ISO/ASTM 52900:2021; Additive Manufacturing—General Principles—Fundamentals and Vocabulary. AENOR: Madrid, Spain, 2022.
- Gajdoš, I.; Spišák, E.; Kaščák, L.; Krasinskyi, V. Surface Finish Techniques for FDM Parts. In Materials Science Forum; Trans Tech Publications, Ltd.: Wollerau, Switzerland, 2015; Volume 818, pp. 45–48. [Google Scholar] [CrossRef]
- Mertz, L. Dream it, design it, print it in 3-D: What can 3-D printing do for you? IEEE Pulse 2013, 4, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Stano, G.; Ovy, S.M.A.I.; Edwards, J.R.; Cianchetti, M.; Percoco, G.; Tadesse, Y. One-shot additive manufacturing of robotic finger with embedded sensing and actuation. Int. J. Adv. Manuf. Technol. 2023, 124, 467–485. [Google Scholar] [CrossRef]
- Espalin, D.; Muse, D.W.; MacDonald, E.; Wicker, R.B. 3D Printing multifunctionality: Structures with electronics. Int. J. Adv. Manuf. Technol. 2014, 72, 963–978. [Google Scholar] [CrossRef]
- Qureshi, A.G.; Jha, S.K.; Iskander, J.; Avanthika, C.; Jhaveri, S.; Patel, V.H.; Potini, B.R.; Azam, A.T. Diagnostic Challenges and Management of Fibromyalgia. Cureus 2021, 13, e18692. [Google Scholar] [CrossRef] [PubMed]
- NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases. U.S. Department of Health and Human Services. Available online: https://www.niams.nih.gov/health-topics/fibromyalgia/diagnosis-treatment-and-steps-to-take (accessed on 15 February 2023).
- Wolfe, F.; Smythe, H.A.; Yunus, M.B.; Bennett, R.M.; Bombardier, C.; Goldenberg, D.L.; Tugwell, P.; Campbell, S.M.; Abeles, M.; Clark, P.; et al. The American College of Rheumatology 1990 criteria for the classification of fibromyalgia. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1990, 33, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Ly, F.; Santander, T.; Turki, E.; Zhao, Y.; Yoo, J.; Lonergan, K.; Gray, J.; Li, C.H.; Yang, H.; et al. Preliminary study: Quantification of chronic pain from physiological data. PAIN Rep. 2022, 7, e1039. [Google Scholar] [CrossRef]
- Davis, K.D.; Flor, H.; Greely, H.T.; Iannetti, G.D.; Mackey, S.; Ploner, M.; Pustilnik, A.; Tracey, I.; Treede, R.; Wager, T.D. Brain imaging tests for chronic pain: Medical, legal and ethical issues and recommendations. Nat. Rev. Neurol. 2017, 13, 624–638. [Google Scholar] [CrossRef] [PubMed]
- Gracely, R.H.; Petzke, F.; Wolf, J.M.; Clauw, D.J. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheumatol. 2002, 46, 1333–1343. [Google Scholar] [CrossRef] [PubMed]
- Wagemakers, S.H.; van der Velden, J.M.; Gerlich, A.S.; Hindriks-Keegstra, A.W.; van Dijk, J.F.M.; Verhoeff, J.J.C. A Systematic Review of Devices and Techniques that Objectively Measure Patients’ Pain. Pain Physician 2019, 22, 1–13. [Google Scholar] [PubMed]
- Tousignant, N. The Rise and Fall of the Dolorimeter: Pain, Analgesics, and the Management of Subjectivity in Mid-twentieth-Century United States. J. Hist. Med. Allied Sci. 2011, 66, 145–179. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, O.-K.; Baik, H.-H.; Kim, J.-H. Development of a Pain Measurement Device Using Electrical Stimulation and Pressure: A Pilot study. J. Sens. 2018, 2018, 6205896. [Google Scholar] [CrossRef]
- Ricci, M.; Cimini, A.; Grivet Fojaja, M.R.; Ullo, M.; Carabellese, B.; Frantellizzi, V.; Lubrano, E. Novel Approaches in Molecular Imaging and Neuroimaging of Fibromyalgia. Int. J. Mol. Sci. 2022, 23, 15519. [Google Scholar] [CrossRef] [PubMed]
- Hassanpour, S.; Algitami, H.; Umraw, M.; Merletti, J.; Keast, B.; Stroman, P.W. Investigating Descending Pain Regulation in Fibromyalgia and the Link to Altered Autonomic Regulation by Means of Functional MRI Data. Brain Sci. 2024, 14, 450. [Google Scholar] [CrossRef]
- Murga, I.; Guillen, V.; Lafuente, J.V. Cambios en la resonancia magnética cerebral asociados al síndrome de fibromialgia. Med. Clínica 2017, 148, 511–516, ISSN 0025-7753. [Google Scholar] [CrossRef] [PubMed]
- Leon-Llamas, J.L.; Villafaina, S.; Murillo-Garcia, A.; Gusi, N. Impact of Fibromyalgia in the Hippocampal Subfields Volumes of Women—An MRI Study. Int. J. Environ. Res. Public Health 2021, 18, 1549. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Parras, M.T.; Sánchez-Campusano, R.; Castellanos, N.P.; del-Pozo, F.; Gruart, A.; Delgado-García, J.M. Differential Contribution of Hippocampal Circuits to Appetitive and Consummatory Behaviors during Operant Conditioning of Behaving Mice. J. Neurosci. 2013, 33, 2293–2304. [Google Scholar] [CrossRef] [PubMed]
- Hedayatyanfard, K.; Sadeghi, S.M.; Habibi, I. Introducing a Device for Measuring Pain Intensity; a Letter to Editor. Emergency 2018, 6, e32. [Google Scholar] [PubMed] [PubMed Central]
- Rodríguez, J.I.; Sierra, J.M.; Villazón, M.; Cabrera, A.; Sosa, V.; Cortizo, J.L. Design Engineering in Surgery. How to Design, Test and Market Surgical Devices Made With 3 D Printing. Cirugía Española (Engl. Ed.). 2018, 96, 198–204. [Google Scholar] [CrossRef]
- Vian, W.D.; Denton, N.L. Hardness Comparison of Polymer Specimens Produced with Different Processes. 2018. ASEE IL-IN Section Conference. 3. Available online: https://docs.lib.purdue.edu/aseeil-insectionconference/2018/tech/3 (accessed on 3 March 2020).
- Zhiani Hervan, S.; Altınkaynak, A.; Parlar, Z. Hardness, friction and wear characteristics of 3D-printed PLA polymer. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 1590–1598. [Google Scholar] [CrossRef]
- Ahlers, S.J.; van Gulik, L.; van der Veen, A.M.; van Dongen, H.P.; Bruins, P.; Belitser, S.V.; de Boer, A.; Tibboel, D.; Knibbe, C.A. Comparison of different pain scoring systems in critically ill patients in a general ICU. Crit Care. 2008, 12, R15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhardwaj, P.; Yadav, R. Measuring pain in clinical trials: Pain scales, endpoints, and challenges. Int. J. Clin. Exp. Physiol. 2015, 2, 151–156. Available online: https://www.ijcep.org/index.php/ijcep/article/view/86 (accessed on 19 December 2024). [CrossRef]
Material | 3D Printer | Shore D Literature Data | Shore D Average | Deviation σ | Variance σ2 |
---|---|---|---|---|---|
PLA (1) | Prusa i3 | 83 | 73.50 | 6.70 | 44.94 |
ABS (2) | HP Designjet 3D | 100 | 78.00 | 1.89 | 3.56 |
PLA Tough (3) | Ultimaker | 79 | 79.00 | 1.05 | 1.11 |
ABS M30i (4) | 3D Fortus 450 m Stratasys | 80 | 78.70 | 2.83 | 8.01 |
PC (4) | 80 | 79.90 | 2.73 | 7.43 | |
Nylon (4) | 80 | 74.30 | 1.70 | 2.90 |
Test Number | Air Pressure [bar] | Maximum Time [s] | Force on Thumbnail [N] | |
---|---|---|---|---|
Prototype: PLA Tough (Oiled) | Prototype: PLA Tough (Dry) | |||
1 | 0.5 | 25 | 9.45 | 9.05 |
2 | 1 | 20 | 13.05 | 12.17 |
3 | 1.5 | 15 | 22.45 | 19.13 |
4 | 2 | 10 | 30.06 | 27.07 |
5 | 2.5 | 5 | 39.14 | 35.58 |
6 | 3 | 5 | 50.15 | 44.10 |
O-ring B_Dg = 11.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierra, J.M.; Fernández, M.d.R.; Cortizo, J.L.; González, J.D. Development of a Pain Measurement Device Using 3D Printing and Electronic Air Pressure Control. Biomedicines 2025, 13, 254. https://doi.org/10.3390/biomedicines13020254
Sierra JM, Fernández MdR, Cortizo JL, González JD. Development of a Pain Measurement Device Using 3D Printing and Electronic Air Pressure Control. Biomedicines. 2025; 13(2):254. https://doi.org/10.3390/biomedicines13020254
Chicago/Turabian StyleSierra, José Manuel, Mª del Rocío Fernández, José Luis Cortizo, and Juan Díaz González. 2025. "Development of a Pain Measurement Device Using 3D Printing and Electronic Air Pressure Control" Biomedicines 13, no. 2: 254. https://doi.org/10.3390/biomedicines13020254
APA StyleSierra, J. M., Fernández, M. d. R., Cortizo, J. L., & González, J. D. (2025). Development of a Pain Measurement Device Using 3D Printing and Electronic Air Pressure Control. Biomedicines, 13(2), 254. https://doi.org/10.3390/biomedicines13020254