Targeting Inflammation with Galectin-3 and PIIINP Modulation Among ST-Segment Elevation Acute Coronary Syndrome Patients Underwent Delayed Percutaneous Coronary Intervention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Randomization and Blinding
2.3. Intervention
2.4. Sample Size Determination
2.5. Monitoring, Safety, and Adverse Events
2.6. Data Collection and Outcome Measures
2.7. Research Variables
2.8. Biomarker Quantification
2.9. PIIINP Measurement Protocol
2.10. Galectin-3 Measurement Protocol
2.11. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Effects of Colchicine on Procollagen Type III N-Terminal Propeptide (PIIINP) Levels
3.3. Effects of Colchicine on Galectin-3 Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Cesare, M.; Perel, P.; Taylor, S.; Kabudula, C.; Bixby, H.; Gaziano, T.A.; McGhie, D.V.; Mwangi, J.; Pervan, B.; Narula, J.; et al. The Heart of the World. Glob. Heart 2024, 19, 11. [Google Scholar] [CrossRef]
- Ralapanawa, U.; Sivakanesan, R. Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review. J. Epidemiol. Glob. Health 2021, 11, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Jenča, D.; Melenovský, V.; Stehlik, J.; Staněk, V.; Kettner, J.; Kautzner, J.; Adámková, V.; Wohlfahrt, P. Heart failure after myocardial infarction: Incidence and predictors. ESC Heart Fail. 2021, 8, 222–237. [Google Scholar] [CrossRef] [PubMed]
- Akbar, H.; Foth, C.; Kahloon, R.A.; Mountfor, S. Acute ST-Segment Elevation Myocardial Infarction (STEMI). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK532281/ (accessed on 31 October 2024).
- Abubakar, M.; Javed, I.; Rasool, H.F.; Raza, S.; Basavaraju, D.; Abdullah, R.M.; Ahmed, F.; Salim, S.S.; Faraz, M.A.; Hassan, K.M.; et al. Advancements in Percutaneous Coronary Intervention Techniques: A Comprehensive Literature Review of Mixed Studies and Practice Guidelines. Cureus 2023, 15, e41311. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.H.A.; Møller, A.L.; Engstrøm, T.; Folke, F.; Pedersen, F.; Køber, L.; Gnesin, F.; Zylyftari, N.; Blomberg, S.N.F.; Kragholm, K.; et al. Time From Distress Call to Percutaneous Coronary Intervention and Outcomes in Myocardial Infarction. JACC Adv. 2024, 3, 101005. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Yin, X.; Pan, X.; Zhang, J.; Fan, X.; Li, J.; Zhai, X.; Jiang, L.; Hao, P.; Wang, J.; et al. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front. Pharmacol. 2023, 14, 1070973. [Google Scholar] [CrossRef]
- Frantz, S.; Hundertmark, M.J.; Schulz-Menger, J.; Bengel, F.M.; Bauersachs, J. Left ventricular remodelling post-myocardial infarction: Pathophysiology, imaging, and novel therapies. Eur. Heart J. 2022, 43, 2549–2561. [Google Scholar] [CrossRef]
- Trimarchi, G.; Pizzino, F.; Lilli, A.; De Caterina, A.R.; Esposito, A.; Dalmiani, S.; Mazzone, A.; Di Bella, G.; Berti, S.; Paradossi, U. Advanced Lung Cancer Inflammation Index as Predictor of All-Cause Mortality in ST-Elevation Myocardial Infarction Patients Undergoing Primary Percutaneous Coronary Intervention. J. Clin. Med. 2024, 13, 6059. [Google Scholar] [CrossRef] [PubMed]
- Paradossi, U.; De Caterina, A.R.; Trimarchi, G.; Pizzino, F.; Bastiani, L.; Dossi, F.; Raccis, M.; Bianchi, G.; Palmieri, C.; de Gregorio, C.; et al. The enigma of the ’smoker’s paradox’: Results from a single-center registry of patients with STEMI undergoing primary percutaneous coronary intervention. Cardiovasc. Revasc. Med. 2024, 69, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Bouabdallaoui, N.; Tardif, J.-C. Colchicine in the Management of Acute and Chronic Coronary Artery Disease. Curr. Cardiol. Rep. 2021, 23, 120. [Google Scholar] [CrossRef] [PubMed]
- Bouabdallaoui, N.; Tardif, J.-C.; Waters, D.D.; Pinto, F.J.; Maggioni, A.P.; Diaz, R.; Berry, C.; Koenig, W.; Lopez-Sendon, J.; Gamra, H.; et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur. Heart J. 2020, 41, 4092–4099. [Google Scholar] [CrossRef]
- Fan, D.; Takawale, A.; Lee, J.; Kassiri, Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenes. Tissue Repair 2012, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Hoeker, G.S.; James, C.C.; Tegge, A.N.; Gourdie, R.G.; Smyth, J.W.; Poelzing, S. Attenuating loss of cardiac conduction during no-flow ischemia through changes in perfusate sodium and calcium. Am. J. Physiol.-Heart Circ. Physiol. 2020, 319, H396–H409. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhao, J.; Rong, J. Pharmacological Modulation of Cardiac Remodeling after Myocardial Infarction. Oxidative Med. Cell. Longev. 2020, 2020, 8815349. [Google Scholar] [CrossRef] [PubMed]
- Leung, Y.Y.; Yao Hui, L.L.; Kraus, V.B. Colchicine—Update on mechanisms of action and therapeutic uses. Semin. Arthritis Rheum. 2015, 45, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, F.A.; Izar, M.C. Role of Inflammation in Cardiac Remodeling After Acute Myocardial Infarction. Front. Physiol. 2022, 13, 927163. [Google Scholar] [CrossRef]
- Gudowska, M.; Gruszewska, E.; Panasiuk, A.; Cylwik, B.; Swiderska, M.; Flisiak, R.; Szmitkowski, M.; Chrostek, L. High serum N-terminal propeptide of procollagen type III concentration is associated with liver diseases. Gastroenterol. Rev. 2017, 3, 203–207. [Google Scholar] [CrossRef] [PubMed]
- de Boer, R.A.; Yu, L.; van Veldhuisen, D.J. Galectin-3 in Cardiac Remodeling and Heart Failure. Curr. Heart Fail. Rep. 2010, 7, 163. [Google Scholar] [CrossRef]
- Díaz-Alvarez, L.; Ortega, E. The Many Roles of Galectin-3, a Multifaceted Molecule, in Innate Immune Responses against Pathogens. Mediat. Inflamm. 2017, 2017, 9247574. [Google Scholar] [CrossRef]
- Dekleva, M.; Djuric, T.; Djordjevic, A.; Soldatovic, I.; Stankovic, A.; Lazic, J.S.; Zivkovic, M. Sex-Related Differences in Heart Failure Development in Patients After First Myocardial Infarction: The Role of Galectin-3. Biomedicines 2024, 12, 2661. [Google Scholar] [CrossRef]
- Handari, S.D.; Rohman, M.S.; Sargowo, D.; Aulanni’am; Nugraha, R.A.; Lestari, B.; Oceandy, D. Novel Impact of Colchicine on Interleukin-10 Expression in Acute Myocardial Infarction: An Integrative Approach. J. Clin. Med. 2024, 13, 4619. [Google Scholar] [CrossRef]
- Singh, A.; Dwivedi, S.; Pradhan, A.; Narain, V.S.; Sethi, R.; Chandra, S.; Vishwakarma, P.; Chaudhary, G.; Bhandari, M.; Sharma, A. Isolated ST-Elevation Myocardial Infarction Involving Leads I and aVL: Angiographic and Electrocardiographic Correlations from a Tertiary Care Center. Cardiol. Res. Pract. 2021, 2021, 7638020. [Google Scholar] [CrossRef] [PubMed]
- Petrie, J.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Fujino, M.; Ishihara, M.; Ogawa, H.; Nakao, K.; Yasuda, S.; Noguchi, T.; Ozaki, Y.; Kimura, K.; Suwa, S.; Fujimoto, K.; et al. Impact of symptom presentation on in-hospital outcomes in patients with acute myocardial infarction. J. Cardiol. 2017, 70, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Gao, W.; Xu, H.; Liang, W.; Ma, G. Role and Mechanism of the Renin-Angiotensin-Aldosterone System in the Onset and Development of Cardiorenal Syndrome. J. Renin-Angiotensin-Aldosterone Syst. 2022, 2022, 3239057. [Google Scholar] [CrossRef]
- Leancă, S.A.; Crișu, D.; Petriș, A.O.; Afrăsânie, I.; Genes, A.; Costache, A.D.; Tesloianu, D.N.; Costache, I.I. Left Ventricular Remodeling after Myocardial Infarction: From Physiopathology to Treatment. Life 2022, 12, 1111. [Google Scholar] [CrossRef]
- Cole, J.; Htun, N.; Lew, R.; Freilich, M.; Quinn, S.; Layland, J. Colchicine to Prevent Periprocedural Myocardial Injury in Percutaneous Coronary Intervention: The COPE-PCI Pilot Trial. Circ. Cardiovasc. Interv. 2021, 14, e009992. [Google Scholar] [CrossRef] [PubMed]
- Frunza, O.; Russo, I.; Saxena, A.; Shinde, A.V.; Humeres, C.; Hanif, W.; Rai, V.; Su, Y.; Frangogiannis, N.G. Myocardial Galectin-3 Expression Is Associated with Remodeling of the Pressure-Overloaded Heart and May Delay the Hypertrophic Response without Affecting Survival, Dysfunction, and Cardiac Fibrosis. Am. J. Pathol. 2016, 186, 1114–1127. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhao, Y.; Li, J.; Huang, C.; Wang, H.; Zhao, X.; Wang, M.; Zhu, W. Galectin-3 Derived from HucMSC Exosomes Promoted Myocardial Fibroblast-to-Myofibroblast Differentiation Associated with β-catenin Upregulation. Int. J. Stem Cells 2021, 14, 320–330. [Google Scholar] [CrossRef]
- Hara, A.; Niwa, M.; Noguchi, K.; Kanayama, T.; Niwa, A.; Matsuo, M.; Hatano, Y.; Tomita, H. Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules 2020, 10, 389. [Google Scholar] [CrossRef]
- Khanna, A.; Zamani, M.; Huang, N.F. Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering. J. Cardiovasc. Dev. Dis. 2021, 8, 137. [Google Scholar] [CrossRef] [PubMed]
- Kochan, A.; Lee, T.; Moghaddam, N.; Milley, G.; Singer, J.; Cairns, J.A.; Wong, G.C.; Jentzer, J.C.; van Diepen, S.; Alviar, C.; et al. Reperfusion Delays and Outcomes Among Patients with ST-Segment–Elevation Myocardial Infarction with and Without Cardiogenic Shock. Circ. Cardiovasc. Interv. 2023, 16, e012810. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Q.; Lei, X.; Huang, Y.; Hu, J. MAP4 as a New Candidate in Cardiovascular Disease. Front. Physiol. 2020, 11, 1044. [Google Scholar] [CrossRef]
- López, B.; González, A.; Ravassa, S.; Beaumont, J.; Moreno, M.U.; José, G.S.; Querejeta, R.; Díez, J. Circulating Biomarkers of Myocardial Fibrosis. J. Am. Coll. Cardiol. 2015, 65, 2449–2456. [Google Scholar] [CrossRef] [PubMed]
- Nikolov, A.; Popovski, N. Extracellular Matrix in Heart Disease: Focus on Circulating Collagen Type I and III Derived Peptides as Biomarkers of Myocardial Fibrosis and Their Potential in the Prognosis of Heart Failure: A Concise Review. Metabolites 2022, 12, 297. [Google Scholar] [CrossRef]
- Plata-Mosquera, C.A.; Bernal-Tórres, W.; Herrera-Escandón, Á.A.; Uribe-Posso, L.P.; Rodríguez-Casanova, Á.M.; Casanova-Valderrama, M.E.; Vivas-Mayor, M.; Puerta-Mesa, A.C.; Martínez-Aristizabal, J. Sacubitril/valsartan reduces levels of procollagen types I and III and correlates with reverse cardiac remodeling. REC CardioClinics 2021, 56, 14–21. [Google Scholar] [CrossRef]
- Richter, B.; Gwechenberger, M.; Socas, A.; Zorn, G.; Albinni, S.; Marx, M.; Wolf, F.; Bergler-Klein, J.; Loewe, C.; Bieglmayer, C.; et al. Time course of markers of tissue repair after ablation of atrial fibrillation and their relation to left atrial structural changes and clinical ablation outcome. Int. J. Cardiol. 2011, 152, 231–236. [Google Scholar] [CrossRef] [PubMed]
Early PCI-Placebo (n = 51) | Early PCI-Colchicine (n = 51) | p-Value | Late PCI-Placebo (n = 27) | Late PCI-Colchicine (n = 35) | p-Value | |
---|---|---|---|---|---|---|
Age, n (%) | 54.18 ± 10.83 | 59.00 ± 9.49 | 0.431 | 54.34 ± 11.91 | 60.20 ± 9.05 | 0.494 |
Sex (Male), n (%) | 43 (84.31%) | 39 (76.47%) | 0.999 | 23 (85.19%) | 29 (82.86%) | 0.455 |
Smoker/Ex-smoker, n (%) | 34 (66.67%) | 32 (62.75%) | 0.455 | 25 (92.59%) | 30 (85.71%) | 0.677 |
Hypertension, n (%) | 33 (67.71%) | 34 (66.67%) | 0.786 | 13 (48.15%) | 15 (42.86%) | 0.999 |
Diabetes Melitus, n (%) | 6 (11.76%) | 12 (23.53%) | 0.999 | 4 (14.81%) | 5 (14.29%) | 0.193 |
Dyslipidemia, n (%) | 5 (9.80%) | 3 (5.88%) | 0.999 | 5 (18.52%) | 11 (22%) | 0.715 |
Infarct-related artery LAD, n (%) | 30 (58.82%) | 33 (64.71%) | 0.999 | 11 (40.74%) | 14 (40%) | 0.684 |
Infarct-related artery non-LAD, n (%) | 21 (41.18%) | 18 (35.29%) | 0.999 | 16 (59.26%) | 21 (60%) | 0.684 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Handari, S.D.; Rohman, M.S.; Sargowo, D.; Aulanni’am; Qosimah, D.; Lestari, B.; Nugraha, R.A. Targeting Inflammation with Galectin-3 and PIIINP Modulation Among ST-Segment Elevation Acute Coronary Syndrome Patients Underwent Delayed Percutaneous Coronary Intervention. Biomedicines 2025, 13, 259. https://doi.org/10.3390/biomedicines13020259
Handari SD, Rohman MS, Sargowo D, Aulanni’am, Qosimah D, Lestari B, Nugraha RA. Targeting Inflammation with Galectin-3 and PIIINP Modulation Among ST-Segment Elevation Acute Coronary Syndrome Patients Underwent Delayed Percutaneous Coronary Intervention. Biomedicines. 2025; 13(2):259. https://doi.org/10.3390/biomedicines13020259
Chicago/Turabian StyleHandari, Saskia Dyah, Mohammad Saifur Rohman, Djanggan Sargowo, Aulanni’am, Dahliatul Qosimah, Bayu Lestari, and Ricardo Adrian Nugraha. 2025. "Targeting Inflammation with Galectin-3 and PIIINP Modulation Among ST-Segment Elevation Acute Coronary Syndrome Patients Underwent Delayed Percutaneous Coronary Intervention" Biomedicines 13, no. 2: 259. https://doi.org/10.3390/biomedicines13020259
APA StyleHandari, S. D., Rohman, M. S., Sargowo, D., Aulanni’am, Qosimah, D., Lestari, B., & Nugraha, R. A. (2025). Targeting Inflammation with Galectin-3 and PIIINP Modulation Among ST-Segment Elevation Acute Coronary Syndrome Patients Underwent Delayed Percutaneous Coronary Intervention. Biomedicines, 13(2), 259. https://doi.org/10.3390/biomedicines13020259