Comprehensive Analysis Reveals Midnolin as a Potential Prognostic, Therapeutic, and Immunological Cancer Biomarker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Expression Analysis of MIDN in Normal and Tumor Tissues
2.2. Prognosis Analysis of MIDN in Cancers
2.3. Genomic Analysis of MIDN in Cancers
2.4. Analysis of MIDN Interacting Proteins in Cancers
2.5. Methylation Analysis of MIDN in Cancers
2.6. Single-Cell State Atlas of MIDN in Cancers
2.7. Correlation Analyses of MIDN Expression with Tumor Immune Microenvironment, Immune Cell Infiltration, Stemness, Tumor Mutational Burden (TMB), Immune Checkpoint Genes, and RNA Modification Genes in Cancers
2.8. Cell Culture
2.9. qRT-PCR Assay
2.10. Colony Formation Assay
2.11. Western Blot Assay
2.12. Statistical Analysis
3. Results
3.1. MIDN Expression in Tumor Tissues, Cancer Cell Lines, and Normal Tissues
3.2. Correlation Analysis of MIDN Level with Cancer Stages
3.3. Prognosis Value of MIDN Expression in Cancers
3.4. Genomic Changes in MIDN in Cancers
3.5. Interacting Proteins of MIDN in Cancers
3.6. Methylation Status of MIDN in Cancers
3.7. Single-Cell Analysis of MIDN in Cancers
3.8. Correlation Analysis of the Tumor Immune Microenvironment with MIDN Levels in Cancers
3.9. Correlation Analysis of the Immune Cell Infiltration, Stemness, and Tumor Mutational Burden with MIDN Expression in Cancers
3.10. Correlation Analysis of the Immune Checkpoint Genes with MIDN in Cancers
3.11. Correlation Analysis of the RNA Modification Genes and MIDN in Cancers
3.12. The Knockdown of MIDN Suppresses Colony Formation and Declines the Expression of Cell Cycle-Associated and Stemness-Associated Genes in Breast Cancer
3.13. Knockdown of MIDN Upregulates FTO in Gastric Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | adrenocortical carcinoma |
ADPC | androgen-dependent prostate cancer |
AIPC | androgen-independent prostate cancer |
ALL | acute lymphoblastic leukemia |
BLCA | bladder urothelial carcinoma |
BRCA | breast invasive carcinoma |
CESC | cervical squamous cell carcinoma |
CHOL | cholangiocarcinoma |
COAD | colon carcinoma |
COADREAD | colon and rectum carcinoma |
DFI | disease-free interval |
DFS | disease-free survival |
DLBC | diffuse large B cell lymphoma |
DSS | disease-specific survival |
EAC | esophageal adenocarcinoma |
EBVaGC | Epstein–Barr virus-associated gastric cancer |
ESCA | esophageal carcinoma |
ESCC | esophageal squamous cell carcinoma |
GBM | glioblastoma multiforme |
GBMLGG | glioblastoma multiforme and brain lower grade glioma |
HCC | hepatocellular carcinoma |
HNSC | head and neck squamous cell carcinoma |
HPA | Human Protein Atlas |
IEGs | immediate-early-genes |
KICH | kidney chromophobe |
KIRP | kidney renal papillary cell carcinoma |
LAML | LGG and acute myeloid leukemia |
LGG | lower grade glioma |
LIHC | liver hepatocellular carcinoma |
LUSC | lung squamous cell carcinoma |
MIDN | midnolin |
OS | overall survival |
OV | ovarian serous cystadenocarcinoma |
PCPG | pheochromocytoma and paraganglioma |
PD | Parkinson’s disease |
PFI | progression-free interval |
PFS | progression-free survival |
PROTAC | proteolysis-targeting protein |
READ | rectum adenocarcinoma |
RFS | relapse-free survival |
SKCM | skin cutaneous melanoma |
STAD | stomach adenocarcinoma |
STES | stomach and esophageal carcinoma |
TGCTs | testicular germ cell tumors |
THYM | thymoma |
TMB | tumor mutational burden |
TMB | tumor mutational burden |
Ubl | ubiquitin-like |
UCEC | uterine corpus endometrial carcinoma |
UCS | uterine carcinosarcoma |
UVM | uveal melanoma |
WT | Wilms tumor |
References
- Xu, J.; Murphy, S.L.; Kochanek, K.D.; Arias, E. Mortality in the United States, 2021. NCHS Data Brief 2022, 456, 1–8. [Google Scholar]
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Pineros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2024; Available online: https://gco.iarc.who.int/today (accessed on 11 December 2024).
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Zheng, X.; Niu, M.; Zhu, S.; Ge, H.; Wu, K. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol. Cancer 2022, 21, 28. [Google Scholar] [CrossRef]
- Marzio, A.; Kurz, E.; Sahni, J.M.; Di Feo, G.; Puccini, J.; Jiang, S.; Hirsch, C.A.; Arbini, A.A.; Wu, W.L.; Pass, H.I.; et al. EMSY inhibits homologous recombination repair and the interferon response, promoting lung cancer immune evasion. Cell 2022, 185, 169–183.e19. [Google Scholar] [CrossRef]
- Bekes, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov. 2022, 21, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Hofmeister-Brix, A.; Kollmann, K.; Langer, S.; Schultz, J.; Lenzen, S.; Baltrusch, S. Identification of the ubiquitin-like domain of midnolin as a new glucokinase interaction partner. J. Biol. Chem. 2013, 288, 35824–35839. [Google Scholar] [CrossRef] [PubMed]
- Obara, Y.; Sato, H.; Nakayama, T.; Kato, T.; Ishii, K. Midnolin is a confirmed genetic risk factor for Parkinson’s disease. Ann. Clin. Transl. Neurol. 2019, 6, 2205–2211. [Google Scholar] [CrossRef] [PubMed]
- Obara, Y.; Imai, T.; Sato, H.; Takeda, Y.; Kato, T.; Ishii, K. Midnolin is a novel regulator of parkin expression and is associated with Parkinson’s Disease. Sci. Rep. 2017, 7, 5885. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Ishii, K.; Obara, Y. Structural Variants of Midnolin, a Genetic Risk Factor for Parkinson’s Disease, in a Yamagata Cohort. Biol. Pharm. Bull. 2023, 46, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Kweon, S.M.; Kim, G.; Jeong, Y.; Huang, W.; Lee, J.S.; Lai, K.K.Y. Midnolin Regulates Liver Cancer Cell Growth In Vitro and In Vivo. Cancers 2022, 14, 1421. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Nardone, C.; Kamitaki, N.; Mao, A.; Elledge, S.J.; Greenberg, M.E. The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation. Science 2023, 381, eadh5021. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.Z.; Wang, W.J.; Chen, Y.X.; Fan, Z.W.; Xie, X.F.; Yang, L.Y.; Chang, C.; Cai, Y.; Hao, J.J.; Wang, M.R.; et al. The miR-1224-5p/TNS4/EGFR axis inhibits tumour progression in oesophageal squamous cell carcinoma. Cell Death Dis. 2020, 11, 597. [Google Scholar] [CrossRef]
- Du, J.; Zhang, J.; He, T.; Li, Y.; Su, Y.; Tie, F.; Liu, M.; Harte, P.J.; Zhu, A.J. Stuxnet Facilitates the Degradation of Polycomb Protein during Development. Dev. Cell 2016, 37, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Peddada, N.; Moresco, J.; Wang, J.; Jiang, Y.; Rios, J.; Moresco, E.; Choi, J.; Beutler, B. Viable mutations of mouse midnolin suppress B cell malignancies. J. Exp. Med. 2024, 221, e20232132. [Google Scholar] [CrossRef] [PubMed]
- Obara, Y.; Ishii, K. Transcriptome Analysis Reveals That Midnolin Regulates mRNA Expression Levels of Multiple Parkinson’s Disease Causative Genes. Biol. Pharm. Bull. 2018, 41, 20–23. [Google Scholar] [CrossRef]
- Wang, W.; Kong, P.; Feng, K.; Liu, C.; Gong, X.; Sun, T.; Duan, X.; Sang, Y.; Jiang, Y.; Li, X.; et al. Exosomal miR-222-3p contributes to castration-resistant prostate cancer by activating mTOR signaling. Cancer Sci. 2023, 114, 4252–4269. [Google Scholar] [CrossRef]
- Wen, F.; Han, Y.; Zhang, H.; Zhao, Z.; Wang, W.; Chen, F.; Qin, W.; Ju, J.; An, L.; Meng, Y.; et al. Epstein-Barr virus infection upregulates extracellular OLFM4 to activate YAP signaling during gastric cancer progression. Nat. Commun. 2024, 15, 10543. [Google Scholar] [CrossRef]
- Chiba, A.; Kato, C.; Nakagawa, T.; Osaki, T.; Nakamura, K.; Norota, I.; Nagashima, M.; Hosoi, T.; Ishii, K.; Obara, Y. Midnolin, a Genetic Risk Factor for Parkinson’s Disease, Promotes Neurite Outgrowth Accompanied by Early Growth Response 1 Activation in PC12 Cells. Mol. Cell Biol. 2024, 44, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Lu, H.; Li, J.; Yan, X.; Xiao, M.; Hao, J.; Alekseev, A.; Khong, H.; Chen, T.; et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 2019, 567, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Golczer, G.; Wittner, B.S.; Langenbucher, A.; Zachariah, M.; Dubash, T.D.; Hong, X.; Comaills, V.; Burr, R.; Ebright, R.Y.; et al. NR4A1 regulates expression of immediate early genes, suppressing replication stress in cancer. Mol. Cell 2021, 81, 4041–4058.e15. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Lin, Z.; Wan, A.; Chen, H.; Liang, H.; Sun, L.; Wang, Y.; Li, X.; Xiong, X.F.; Wei, B.; et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol. Cancer 2019, 18, 46. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ye, S.; Zhang, N.; Zheng, S.; Liu, H.; Zhou, K.; Wang, L.; Cao, Y.; Sun, P.; Wang, T. The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer. Cancer Commun. 2020, 40, 484–500. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Lu, X.; Gao, X.; Jin, C.; Mao, J. Demethylase FTO inhibits the occurrence and development of triple-negative breast cancer by blocking m (6)A-dependent miR-17-5p maturation-induced ZBTB4 depletion. Acta Biochim. Biophys. Sin. 2024, 56, 114–128. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Q.; Deng, H.; Xu, B.; Zhou, Y.; Liu, J.; Liu, Y.; Shi, Y.; Zheng, X.; Jiang, J. N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via m(6)A modification of caveolin-1 and metabolic regulation of mitochondrial dynamics. Cell Death Dis. 2022, 13, 72. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, D.; Wang, F.; Xu, Y.; Yu, H.; Zhang, H. Expression of Demethylase Genes, FTO and ALKBH1, Is Associated with Prognosis of Gastric Cancer. Dig. Dis. Sci. 2019, 64, 1503–1513. [Google Scholar] [CrossRef]
- Wang, D.; Qu, X.; Lu, W.; Wang, Y.; Jin, Y.; Hou, K.; Yang, B.; Li, C.; Qi, J.; Xiao, J.; et al. N(6)-Methyladenosine RNA Demethylase FTO Promotes Gastric Cancer Metastasis by Down-Regulating the m6A Methylation of ITGB1. Front. Oncol. 2021, 11, 681280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, L.X.; Wang, W.; Zhang, T.; Dong, F.Y.; Ding, W.P. M(6) A demethylase fat mass and obesity-associated protein regulates cisplatin resistance of gastric cancer by modulating autophagy activation through ULK1. Cancer Sci. 2022, 113, 3085–3096. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Li, T.; Shen, A.; Bao, X.Q.; Lin, J.F.; Guo, L.Z.; Meng, Q.; Ruan, D.Y.; Zhang, Q.H.; Zuo, Z.X.; et al. FTO up-regulation induced by MYC suppresses tumour progression in Epstein-Barr virus-associated gastric cancer. Clin. Transl. Med. 2023, 13, e1505. [Google Scholar] [CrossRef] [PubMed]
- Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019, 575, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Kim, M.J.; Han, T.H.; Lee, J.Y.; Kim, S.; Kim, H.; Oh, K.J.; Kim, W.K.; Han, B.S.; Bae, K.H.; et al. FSP1 confers ferroptosis resistance in KEAP1 mutant non-small cell lung carcinoma in NRF2-dependent and -independent manner. Cell Death Dis. 2023, 14, 567. [Google Scholar] [CrossRef] [PubMed]
- Xavier da Silva, T.N.; Schulte, C.; Alves, A.N.; Maric, H.M.; Friedmann Angeli, J.P. Molecular characterization of AIFM2/FSP1 inhibition by iFSP1-like molecules. Cell Death Dis. 2023, 14, 281. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Jia, H.; Li, S.; Huang, L.; Aikemu, B.; Yang, G.; Zhang, S.; Sun, J.; Zheng, M. Comprehensive Analysis of Ferroptosis-Related Markers for the Clinical and Biological Value in Gastric Cancer. Oxid. Med. Cell Longev. 2021, 2021, 7007933. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.-G.; Li, W.-T.; Jin, X.; Fu, C.; Jiang, W.; Bai, J.; Shi, Z.-Z. Comprehensive Analysis Reveals Midnolin as a Potential Prognostic, Therapeutic, and Immunological Cancer Biomarker. Biomedicines 2025, 13, 276. https://doi.org/10.3390/biomedicines13020276
Zhang X-G, Li W-T, Jin X, Fu C, Jiang W, Bai J, Shi Z-Z. Comprehensive Analysis Reveals Midnolin as a Potential Prognostic, Therapeutic, and Immunological Cancer Biomarker. Biomedicines. 2025; 13(2):276. https://doi.org/10.3390/biomedicines13020276
Chicago/Turabian StyleZhang, Xin-Guo, Wen-Ting Li, Xin Jin, Chuang Fu, Wen Jiang, Jie Bai, and Zhi-Zhou Shi. 2025. "Comprehensive Analysis Reveals Midnolin as a Potential Prognostic, Therapeutic, and Immunological Cancer Biomarker" Biomedicines 13, no. 2: 276. https://doi.org/10.3390/biomedicines13020276
APA StyleZhang, X.-G., Li, W.-T., Jin, X., Fu, C., Jiang, W., Bai, J., & Shi, Z.-Z. (2025). Comprehensive Analysis Reveals Midnolin as a Potential Prognostic, Therapeutic, and Immunological Cancer Biomarker. Biomedicines, 13(2), 276. https://doi.org/10.3390/biomedicines13020276