A Standardized Extract of Zingiber officinale Roscoe Regulates Clinical and Biological Outcomes in Two Different EAE Mouse Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Ethics Approval
2.2. EAE Model
2.3. Drug Administration
2.4. Behavioral Testing
2.4.1. Mechanical Allodynia
2.4.2. Hot Plate Test
2.4.3. Clinical Disease Score
2.4.4. Rotarod Test
2.4.5. Weight Control
2.4.6. Calculation of Index of Disease Progression for Each Behavioral Parameter
2.5. Evaluation of BBB Disruption in Brain and Spinal Cord
2.6. Cell Culture
2.7. Cell Viability
2.8. Determination of TNF-α, IL-1β, IL-6, and IL-17 from Plasma
2.9. Western Blotting Analysis
2.10. Statistical Analyses
3. Results
3.1. Attenuation of EAE-Associated Symptom by Daily Administration of ZOE
3.2. ZOE Reduced Damage to BBB Permeability in Spinal Cord PLP-EAE
3.3. Effect of ZOE on Plasma and Spinal Cytokines Levels in PLP/EAE and MOG/EAE Mice
3.4. Contribution of ZOE Main Constituents to the Neuroprotective Effect
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MS | Multiple Sclerosis |
EAE | Experimental Autoimmune Encephalomyelitis |
ZOE | Zingiber officinale Roscoe extract |
BBB | Blood–Brain Barrier |
References
- Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple Sclerosis. Nat. Rev. Dis. Primers 2018, 4, 43. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.L.; Cree, B.A.C. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390.e2. [Google Scholar] [CrossRef]
- Spain, R.I.; Piccio, L.; Langer-Gould, A.M. The Role of Diet in Multiple Sclerosis: Food for Thought. Neurology 2023, 100, 167–168. [Google Scholar] [CrossRef] [PubMed]
- Namiecinska, M.; Piatek, P.; Lewkowicz, P. Nervonic Acid Synthesis Substrates as Essential Components in Profiled Lipid Supplementation for More Effective Central Nervous System Regeneration. Int. J. Mol. Sci. 2024, 25, 3792. [Google Scholar] [CrossRef] [PubMed]
- Barcutean, L.; Maier, S.; Burai-Patrascu, M.; Farczadi, L.; Balasa, R. The Immunomodulatory Potential of Short-Chain Fatty Acids in Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 3198. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.J.; Bergien, S.O.; Staerk, D. A Systematic Review of Possible Interactions for Herbal Medicines and Dietary Supplements Used Concomitantly with Disease-Modifying or Symptom-Alleviating Multiple Sclerosis Drugs. Phytother. Res. 2021, 35, 3610–3631. [Google Scholar] [CrossRef] [PubMed]
- Moudgil, K.D.; Venkatesha, S.H. The Anti-Inflammatory and Immunomodulatory Activities of Natural Products to Control Autoimmune Inflammation. Int. J. Mol. Sci. 2022, 24, 95. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Zhou, Q.; Wang, H.; Liao, F.; Hua, L.; Zhang, H.; Huang, L.; Lin, Y.; Zheng, G. Chinese Herbal Medicine Adjunct Therapy in Patients with Acute Relapse of Multiple Sclerosis: A Systematic Review and Meta-Analysis. Complement. Ther. Med. 2017, 31, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Tredinnick, A.R.; Probst, Y.C. Evaluating the Effects of Dietary Interventions on Disease Progression and Symptoms of Adults with Multiple Sclerosis: An Umbrella Review. Adv. Nutr. 2020, 11, 1603–1615. [Google Scholar] [CrossRef]
- Dolati, S.; Aghebati-Maleki, L.; Ahmadi, M.; Marofi, F.; Babaloo, Z.; Ayramloo, H.; Jafarisavari, Z.; Oskouei, H.; Afkham, A.; Younesi, V.; et al. Nanocurcumin Restores Aberrant MiRNA Expression Profile in Multiple Sclerosis, Randomized, Double-Blind, Placebo-Controlled Trial. J. Cell. Physiol. 2018, 233, 5222–5230. [Google Scholar] [CrossRef]
- Dolati, S.; Babaloo, Z.; Ayromlou, H.; Ahmadi, M.; Rikhtegar, R.; Rostamzadeh, D.; Roshangar, L.; Nouri, M.; Mehdizadeh, A.; Younesi, V.; et al. Nanocurcumin Improves Regulatory T-Cell Frequency and Function in Patients with Multiple Sclerosis. J. Neuroimmunol. 2019, 327, 15–21. [Google Scholar] [CrossRef]
- Petracca, M.; Quarantelli, M.; Moccia, M.; Vacca, G.; Satelliti, B.; D’Ambrosio, G.; Carotenuto, A.; Ragucci, M.; Assogna, F.; Capacchione, A.; et al. ProspeCtive Study to Evaluate Efficacy, Safety and TOlerability of Dietary SupplemeNT of Curcumin (BCM95) in Subjects with Active Relapsing MultIple Sclerosis Treated with SubcutaNeous Interferon Beta 1a 44 Mcg TIW (CONTAIN): A Randomized, Controlled Trial. Mult. Scler. Relat. Disord. 2021, 56, 103274. [Google Scholar] [CrossRef]
- Klumpers, L.E.; Beumer, T.L.; van Hasselt, J.G.C.; Lipplaa, A.; Karger, L.B.; Kleinloog, H.D.; Freijer, J.I.; de Kam, M.L.; van Gerven, J.M.A. Novel Δ(9)-Tetrahydrocannabinol Formulation Namisol® Has Beneficial Pharmacokinetics and Promising Pharmacodynamic Effects. Br. J. Clin. Pharmacol. 2012, 74, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Zajicek, J.P.; Sanders, H.P.; Wright, D.E.; Vickery, P.J.; Ingram, W.M.; Reilly, S.M.; Nunn, A.J.; Teare, L.J.; Fox, P.J.; Thompson, A.J. Cannabinoids in Multiple Sclerosis (CAMS) Study: Safety and Efficacy Data for 12 Months Follow Up. J. Neurol. Neurosurg. Psychiatry 2005, 76, 1664–1669. [Google Scholar] [CrossRef]
- Ungerleider, J.T.; Andyrsiak, T.; Fairbanks, L.; Ellison, G.W.; Myers, L.W. Delta-9-THC in the Treatment of Spasticity Associated with Multiple Sclerosis. Adv. Alcohol. Subst. Abuse 1987, 7, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Mahran, R.I.; Hagras, M.M.; Sun, D.; Brenner, D.E. Bringing Curcumin to the Clinic in Cancer Prevention: A Review of Strategies to Enhance Bioavailability and Efficacy. AAPS J. 2017, 19, 54–81. [Google Scholar] [CrossRef]
- Yallapu, M.M.; Nagesh, P.K.B.; Jaggi, M.; Chauhan, S.C. Therapeutic Applications of Curcumin Nanoformulations. AAPS J. 2015, 17, 1341–1356. [Google Scholar] [CrossRef] [PubMed]
- Ronen, A.; Gershon, P.; Drobiner, H.; Rabinovich, A.; Bar-Hamburger, R.; Mechoulam, R.; Cassuto, Y.; Shinar, D. Effects of THC on Driving Performance, Physiological State and Subjective Feelings Relative to Alcohol. Accid. Anal. Prev. 2008, 40, 926–934. [Google Scholar] [CrossRef]
- Arcusa, R.; Villaño, D.; Marhuenda, J.; Cano, M.; Cerdà, B.; Zafrilla, P. Potential Role of Ginger (Zingiber officinale Roscoe) in the Prevention of Neurodegenerative Diseases. Front. Nutr. 2022, 9, 809621. [Google Scholar] [CrossRef]
- Choi, J.G.; Kim, S.Y.; Jeong, M.; Oh, M.S. Pharmacotherapeutic Potential of Ginger and Its Compounds in Age-Related Neurological Disorders. Pharmacol. Ther. 2018, 182, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Altucci, C.; Bajardi, F.; Barchiesi, E.; Basti, A.; Beverini, N.; Braun, T.; Carelli, G.; Capozziello, S.; Castellano, S.; Ciampini, D.; et al. Ginger. Oncol. Nurse Ed. 2010, 24, 203–234. [Google Scholar] [CrossRef]
- Unuofin, J.O.; Masuku, N.P.; Paimo, O.K.; Lebelo, S.L. Ginger from Farmyard to Town: Nutritional and Pharmacological Applications. Front. Pharmacol. 2021, 12, 779352. [Google Scholar] [CrossRef]
- Pázmándi, K.; Szöllősi, A.G.; Fekete, T. The “Root” Causes behind the Anti-Inflammatory Actions of Ginger Compounds in Immune Cells. Front. Immunol. 2024, 15, 1400956. [Google Scholar] [CrossRef] [PubMed]
- Jalali, M.; Mahmoodi, M.; Moosavian, S.P.; Jalali, R.; Ferns, G.; Mosallanezhad, A.; Imanieh, M.H.; Mosallanezhad, Z. The Effects of Ginger Supplementation on Markers of Inflammatory and Oxidative Stress: A Systematic Review and Meta-Analysis of Clinical Trials. Phytother. Res. 2020, 34, 1723–1733. [Google Scholar] [CrossRef] [PubMed]
- Foshati, S.; Poursadeghfard, M.; Heidari, Z.; Amani, R. The Effect of Ginger (Zingiber officinale) Supplementation on Clinical, Biochemical, and Anthropometric Parameters in Patients with Multiple Sclerosis: A Double-Blind Randomized Controlled Trial. Food Funct. 2023, 14, 3701–3711. [Google Scholar] [CrossRef] [PubMed]
- Borgonetti, V.; Governa, P.; Biagi, M.; Pellati, F.; Galeotti, N. Zingiber officinale Roscoe Rhizome Extract Alleviates Neuropathic Pain by Inhibiting Neuroinflammation in Mice. Phytomedicine 2020, 78, 153307. [Google Scholar] [CrossRef]
- Kohn, O.F.; Lew, S.Q.; Wong, S.S.M.; Sam, R.; Chen, H.C.; Raimann, J.G.; Leehey, D.J.; Tzamaloukas, A.H.; Ing, T.S. Using Herbs Medically without Knowing Their Composition: Are We Playing Russian Roulette? Curr. Med. Res. Opin. 2022, 38, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood-Brain Barrier Breakdown in Alzheimer Disease and Other Neurodegenerative Disorders. Nat. Rev. Neurol. 2018, 14, 133–150. [Google Scholar] [CrossRef]
- Balasa, R.; Barcutean, L.; Mosora, O.; Manu, D. Reviewing the Significance of Blood-Brain Barrier Disruption in Multiple Sclerosis Pathology and Treatment. Int. J. Mol. Sci. 2021, 22, 8370. [Google Scholar] [CrossRef] [PubMed]
- McGrath, J.C.; Lilley, E. Implementing Guidelines on Reporting Research Using Animals (ARRIVE Etc.): New Requirements for Publication in BJP. Br. J. Pharmacol. 2015, 172, 3189–3193. [Google Scholar] [CrossRef]
- Sanna, M.D.; Quattrone, A.; Galeotti, N. Silencing of the RNA-Binding Protein HuR Attenuates Hyperalgesia and Motor Disability in Experimental Autoimmune Encephalomyelitis. Neuropharmacology 2017, 123, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Borgonetti, V.; Governa, P.; Manetti, F.; Galeotti, N. Zingiberene, a Non-Zinc-Binding Class I HDAC Inhibitor: A Novel Strategy for the Management of Neuropathic Pain. Phytomedicine 2023, 111, 154670. [Google Scholar] [CrossRef]
- Borgonetti, V.; Roberts, A.J.; Bajo, M.; Galeotti, N.; Roberto, M. Chronic Alcohol Induced Mechanical Allodynia by Promoting Neuroinflammation: A Mouse Model of Alcohol-Evoked Neuropathic Pain. Br. J. Pharmacol. 2023, 180, 2377–2392. [Google Scholar] [CrossRef]
- Sanna, M.D.; Ghelardini, C.; Galeotti, N. Activation of JNK Pathway in Spinal Astrocytes Contributes to Acute Ultra-Low-Dose Morphine Thermal Hyperalgesia. Pain 2015, 156, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Peiris, M.; Monteith, G.R.; Roberts-Thomson, S.J.; Cabot, P.J. A Model of Experimental Autoimmune Encephalomyelitis (EAE) in C57BL/6 Mice for the Characterisation of Intervention Therapies. J. Neurosci. Methods 2007, 163, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, N.; Bartolini, A.; Ghelardini, C. Blockade of Intracellular Calcium Release Induces an Antidepressant-like Effect in the Mouse Forced Swimming Test. Neuropharmacology 2006, 50, 309–316. [Google Scholar] [CrossRef]
- Borgonetti, V.; Sanna, M.D.; Lucarini, L.; Galeotti, N. Targeting the RNA-Binding Protein HuR Alleviates Neuroinflammation in Experimental Autoimmune Encephalomyelitis: Potential Therapy for Multiple Sclerosis. Neurotherapeutics 2021, 18, 412–429. [Google Scholar] [CrossRef] [PubMed]
- Curtis, M.J.; Alexander, S.; Cirino, G.; Docherty, J.R.; George, C.H.; Giembycz, M.A.; Hoyer, D.; Insel, P.A.; Izzo, A.A.; Ji, Y.; et al. Experimental Design and Analysis and Their Reporting II: Updated and Simplified Guidance for Authors and Peer Reviewers. Br. J. Pharmacol. 2018, 175, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Motulsky, H.J.; Brown, R.E. Detecting Outliers When Fitting Data with Nonlinear Regression—A New Method Based on Robust Nonlinear Regression and the False Discovery Rate. BMC Bioinform. 2006, 7, 123. [Google Scholar] [CrossRef] [PubMed]
- Jakimovski, D.; Bittner, S.; Zivadinov, R.; Morrow, S.A.; Benedict, R.H.; Zipp, F.; Weinstock-Guttman, B. Multiple Sclerosis. Lancet 2024, 403, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Procaccini, C.; De Rosa, V.; Pucino, V.; Formisano, L.; Matarese, G. Animal Models of Multiple Sclerosis. Eur. J. Pharmacol. 2015, 759, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Tuohy, V.K.; Yu, M.; Weinstock-Guttman, B.; Kinkel, R.P. Diversity and Plasticity of Self Recognition during the Development of Multiple Sclerosis. J. Clin. Investig. 1997, 99, 1682–1690. [Google Scholar] [CrossRef]
- Tompkins, S.M.; Padilla, J.; Dal Canto, M.C.; Ting, J.P.-Y.; Van Kaer, L.; Miller, S.D. De Novo Central Nervous System Processing of Myelin Antigen Is Required for the Initiation of Experimental Autoimmune Encephalomyelitis. J. Immunol. 2002, 168, 4173–4183. [Google Scholar] [CrossRef] [PubMed]
- ’t Hart, B.A.; Gran, B.; Weissert, R. EAE: Imperfect but Useful Models of Multiple Sclerosis. Trends Mol. Med. 2011, 17, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Aharoni, R.; Vainshtein, A.; Stock, A.; Eilam, R.; From, R.; Shinder, V.; Arnon, R. Distinct Pathological Patterns in Relapsing-Remitting and Chronic Models of Experimental Autoimmune Enchephalomyelitis and the Neuroprotective Effect of Glatiramer Acetate. J. Autoimmun. 2011, 37, 228–241. [Google Scholar] [CrossRef]
- Jafarzadeh, A.; Mohammadi-Kordkhayli, M.; Ahangar-Parvin, R.; Azizi, V.; Khoramdel-Azad, H.; Shamsizadeh, A.; Ayoobi, A.; Nemati, M.; Hassan, Z.M.; Moazeni, S.M.; et al. Ginger Extracts Influence the Expression of IL-27 and IL-33 in the Central Nervous System in Experimental Autoimmune Encephalomyelitis and Ameliorates the Clinical Symptoms of Disease. J. Neuroimmunol. 2014, 276, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Min, D.; Lee, D.; Kim, W. Zingiber officinale Roscoe Rhizomes Attenuate Oxaliplatin-Induced Neuropathic Pain in Mice. Molecules 2021, 26, 548. [Google Scholar] [CrossRef]
- Shen, C.L.; Wang, R.; Santos, J.M.; Elmassry, M.M.; Stephens, E.; Kim, N.; Neugebauer, V. Ginger Alleviates Mechanical Hypersensitivity and Anxio-Depressive Behavior in Rats with Diabetic Neuropathy through Beneficial Actions on Gut Microbiome Composition, Mitochondria, and Neuroimmune Cells of Colon and Spinal Cord. Nutr. Res. 2024, 124, 73–84. [Google Scholar] [CrossRef]
- Fajrin, F.A.; Purwandhono, A.; Christianty, F.M.; Sulistyaningrum, G.D.; Afifah; Imandasari, N.; Barki, T. Antihyperalgesia Potency of Zingiber officinale Var. Rubrum in Inflammatory and Neuropathy-Induced Chronic Pain Condition in Mice. Pak. J. Pharm. Sci. 2019, 32, 1663–1669. [Google Scholar] [PubMed]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of Multiple Sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef]
- Jafarzadeh, A.; Azizi, S.V.; Nemati, M.; Khoramdel-Azad, H.; Shamsizadeh, A.; Ayoobi, F.; Taghipour, Z.; Hassan, Z.M. Ginger Extract Reduces the Expression of IL-17 and IL-23 in the Sera and Central Nervous System of EAE Mice. Iran. J. Immunol. 2015, 12, 288–301. [Google Scholar] [PubMed]
- Jafarzadeh, A.; Arabi, Z.; Ahangar-Parvin, R.; Mohammadi-Kordkhayli, M.; Nemati, M. Ginger Extract Modulates the Expression of Chemokines CCL20 and CCL22 and Their Receptors (CCR6 and CCR4) in the Central Nervous System of Mice with Experimental Autoimmune Encephalomyelitis. Drug Res. 2017, 67, 632–639. [Google Scholar] [CrossRef]
- Jafarzadeh, A.; Ahangar-Parvin, R.; Nemat, M.; Taghipour, Z.; Shamsizadeh, A.; Ayoobi, F.; Hassan, Z.M. Ginger Extract Modulates the Expression of IL-12 and TGF-β in the Central Nervous System and Serum of Mice with Experimental Autoimmune Encephalomyelitis. Avicenna J. Phytomed. 2017, 7, 54–65. [Google Scholar] [PubMed]
- Han, J.J.; Li, X.; Ye, Z.Q.; Lu, X.Y.; Yang, T.; Tian, J.; Wang, Y.Q.; Zhu, L.; Wang, Z.Z.; Zhang, Y. Treatment with 6-Gingerol Regulates Dendritic Cell Activity and Ameliorates the Severity of Experimental Autoimmune Encephalomyelitis. Mol. Nutr. Food Res. 2019, 63, 1801356. [Google Scholar] [CrossRef]
- Sapkota, A.; Park, S.J.; Choi, J.W. Neuroprotective Effects of 6-Shogaol and Its Metabolite, 6-Paradol, in a Mouse Model of Multiple Sclerosis. Biomol. Ther. 2019, 27, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Foshati, S.; Poursadeghfard, M.; Heidari, Z.; Amani, R. The Effects of Ginger Supplementation on Common Gastrointestinal Symptoms in Patients with Relapsing-Remitting Multiple Sclerosis: A Double-Blind Randomized Placebo-Controlled Trial. BMC Complement. Med. Ther. 2023, 23, 383. [Google Scholar] [CrossRef] [PubMed]
- Lete, I.; Allué, J. The Effectiveness of Ginger in the Prevention of Nausea and Vomiting during Pregnancy and Chemotherapy. Integr. Med. Insights 2016, 11, 11–17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgonetti, V.; Governa, P.; Morozzi, M.; Sasia, C.; Videtta, G.; Biagi, M.; Galeotti, N. A Standardized Extract of Zingiber officinale Roscoe Regulates Clinical and Biological Outcomes in Two Different EAE Mouse Models. Biomedicines 2025, 13, 278. https://doi.org/10.3390/biomedicines13020278
Borgonetti V, Governa P, Morozzi M, Sasia C, Videtta G, Biagi M, Galeotti N. A Standardized Extract of Zingiber officinale Roscoe Regulates Clinical and Biological Outcomes in Two Different EAE Mouse Models. Biomedicines. 2025; 13(2):278. https://doi.org/10.3390/biomedicines13020278
Chicago/Turabian StyleBorgonetti, Vittoria, Paolo Governa, Martina Morozzi, Chiara Sasia, Giacomina Videtta, Marco Biagi, and Nicoletta Galeotti. 2025. "A Standardized Extract of Zingiber officinale Roscoe Regulates Clinical and Biological Outcomes in Two Different EAE Mouse Models" Biomedicines 13, no. 2: 278. https://doi.org/10.3390/biomedicines13020278
APA StyleBorgonetti, V., Governa, P., Morozzi, M., Sasia, C., Videtta, G., Biagi, M., & Galeotti, N. (2025). A Standardized Extract of Zingiber officinale Roscoe Regulates Clinical and Biological Outcomes in Two Different EAE Mouse Models. Biomedicines, 13(2), 278. https://doi.org/10.3390/biomedicines13020278