NELL2-PAX7 Transcriptional Cascade Suggests Activation Mechanism for RAD52-Dependent Alternative Lengthening of Telomeres During Malignant Transformation of Malignant Peripheral Nerve Sheath Tumors: Elongation of Telomeres and Poor Survival
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Whole-Genome Sequencing (WGS)
2.3. Whole-Transcriptome Sequencing (WTS)
2.4. DEG Selection
2.5. Measuring the Length of Telomeres
2.6. Statistical Analysis
3. Results
3.1. Differentially Expressed Genes During MPNST Malignant Transformation
3.2. NELL2 Activates PAX7 During Oncogenesis of MPNST
3.3. PAX7 Activates RAD52-Dependent ALT During Oncogenesis of MPNST
3.4. RAD52-Dependent ALT Elongates Telomeres During Oncogenesis of MPNST, Which Results in Poor Survival
4. Discussion
Limitations of This Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watson, J.D. Origin of Concatemeric T7DNA. Nat. New Biol. 1972, 239, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, R.; Okazaki, T.; Sakabe, K.; Sugimoto, K.; Sugino, A. Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc. Natl. Acad. Sci. USA 1968, 59, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Trojani, M.; Contesso, G.; Coindre, J.M.; Rouesse, J.; Bui, N.B.; de Mascarel, A.; Goussot, J.F.; David, M.; Bonichon, F.; Lagarde, C. Soft-tissue sarcomas of adults; study of pathological prognostic variables and definition of a histopathological grading system. Int. J. Cancer 1984, 33, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Guillou, L.; Coindre, J.M.; Bonichon, F.; Nguyen, B.B.; Terrier, P.; Collin, F.; Vilain, M.O.; Mandard, A.M.; Le Doussal, V.; Leroux, A.; et al. Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft tissue sarcoma. J. Clin. Oncol. 1997, 15, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Greider, C.W.; Blackburn, E.H. Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell 1985, 43, 405–413. [Google Scholar] [CrossRef]
- Greider, C.W.; Blackburn, E.H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 1989, 337, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Chakravarti, D.; Labella, K.A.; Depinho, R.A. Telomeres: History, health, and hallmarks of aging. Cell 2021, 184, 306–322. [Google Scholar] [CrossRef]
- Ghanim, G.E.; Fountain, A.J.; Van Roon, A.-M.M.; Rangan, R.; Das, R.; Collins, K.; Nguyen, T.H.D. Structure of human telomerase holoenzyme with bound telomeric DNA. Nature 2021, 593, 449–453. [Google Scholar] [CrossRef]
- Cesare, A.J.; Reddel, R.R. Alternative lengthening of telomeres: Models, mechanisms and implications. Nat. Rev. Genet. 2010, 11, 319–330. [Google Scholar] [CrossRef]
- Shay, J.W.; Wright, W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019, 20, 299–309. [Google Scholar] [CrossRef]
- Conomos, D.; Pickett, H.A.; Reddel, R.R. Alternative lengthening of telomeres: Remodeling the telomere architecture. Front. Oncol. 2013, 3, 27. [Google Scholar] [CrossRef]
- Kramara, J.; Osia, B.; Malkova, A. Break-Induced Replication: The Where, The Why, and The How. Trends Genet. 2018, 34, 518–531. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Wright, W.E.; Shay, J.W. Alternative Lengthening of Telomeres Mediated by Mitotic DNA Synthesis Engages Break-Induced Replication Processes. Mol. Cell Biol. 2017, 37, e00226-17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.M.; Yadav, T.; Ouyang, J.; Lan, L.; Zou, L. Alternative Lengthening of Telomeres through Two Distinct Break-Induced Replication Pathways. Cell Rep. 2019, 26, 955–968.e953. [Google Scholar] [CrossRef] [PubMed]
- Summers, M.A.; Quinlan, K.G.; Payne, J.M.; Little, D.G.; North, K.N.; Schindeler, A. Skeletal muscle and motor deficits in Neurofibromatosis Type 1. J. Musculoskelet. Neuronal Interact. 2015, 15, 161–170. [Google Scholar] [PubMed]
- Friedman, J.M. Epidemiology of neurofibromatosis type 1. Am. J. Med. Genet. 1999, 89, 1–6. [Google Scholar] [CrossRef]
- Venturini, L.; Daidone, M.G.; Motta, R.; Cimino-Reale, G.; Hoare, S.F.; Gronchi, A.; Folini, M.; Keith, W.N.; Zaffaroni, N. Telomere maintenance mechanisms in malignant peripheral nerve sheath tumors: Expression and prognostic relevance. Neuro-Oncol. 2012, 14, 736–744. [Google Scholar] [CrossRef]
- Rodriguez, F.J.; Graham, M.K.; Brosnan-Cashman, J.A.; Barber, J.R.; Davis, C.; Vizcaino, M.A.; Palsgrove, D.N.; Giannini, C.; Pekmezci, M.; Dahiya, S.; et al. Telomere alterations in neurofibromatosis type 1-associated solid tumors. Acta Neuropathol. Commun. 2019, 7, 139. [Google Scholar] [CrossRef]
- Cho, N.W.; Dilley, R.L.; Lampson, M.A.; Greenberg, R.A. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 2014, 159, 108–121. [Google Scholar] [CrossRef]
- Bhowmick, R.; Minocherhomji, S.; Hickson, I.D. RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress. Mol. Cell 2016, 64, 1117–1126. [Google Scholar] [CrossRef]
- Sotiriou, S.K.; Kamileri, I.; Lugli, N.; Evangelou, K.; Da-Ré, C.; Huber, F.; Padayachy, L.; Tardy, S.; Nicati, N.L.; Barriot, S.; et al. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks. Mol. Cell 2016, 64, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Hoang, S.M.; O’Sullivan, R.J. Alternative Lengthening of Telomeres: Building Bridges To Connect Chromosome Ends. Trends Cancer 2020, 6, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Sobinoff, A.P.; Pickett, H.A. Alternative Lengthening of Telomeres: DNA Repair Pathways Converge. Trends Genet. 2017, 33, 921–932. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Lee, J.; Kim, H.; Kim, Y.J.; Kim, S.H. TGF-β superfamily-induced transcriptional activation pathways establish the RAD52-dependent ALT machinery during malignant transformation of MPNSTs. Sci. Rep. 2024, 14, 26475. [Google Scholar] [CrossRef]
- Feuerbach, L.; Sieverling, L.; Deeg, K.I.; Ginsbach, P.; Hutter, B.; Buchhalter, I.; Northcott, P.A.; Mughal, S.S.; Chudasama, P.; Glimm, H.; et al. TelomereHunter—in silico estimation of telomere content and composition from cancer genomes. BMC Bioinform. 2019, 20, 272. [Google Scholar] [CrossRef]
- Li, F.; Kim, H.; Ji, Z.; Zhang, T.; Chen, B.; Ge, Y.; Hu, Y.; Feng, X.; Han, X.; Xu, H.; et al. The BUB3-BUB1 Complex Promotes Telomere DNA Replication. Mol. Cell 2018, 70, 395–407.e394. [Google Scholar] [CrossRef]
- Pak, J.S.; Deloughery, Z.J.; Wang, J.; Acharya, N.; Park, Y.; Jaworski, A.; Özkan, E. NELL2-Robo3 complex structure reveals mechanisms of receptor activation for axon guidance. Nat. Commun. 2020, 11, 1489. [Google Scholar] [CrossRef]
- Jayabal, P.; Zhou, F.; Lei, X.; Ma, X.; Blackman, B.; Weintraub, S.T.; Houghton, P.J.; Shiio, Y. NELL2-cdc42 signaling regulates BAF complexes and Ewing sarcoma cell growth. Cell Rep. 2021, 36, 109254. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Zhang, L.; Chen, Y.; Zhang, S. m6A demethylase FTO induces NELL2 expression by inhibiting E2F1 m6A modification leading to metastasis of non-small cell lung cancer. Mol. Ther. Oncolytics 2021, 21, 367–376. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, H.R.; Choi, E.J.; Kim, D.Y.; Kim, K.K.; Kim, B.S.; Park, J.W.; Lee, B.J. Neural Epidermal Growth Factor-Like Like Protein 2 (NELL2) Promotes Aggregation of Embryonic Carcinoma P19 Cells by Inducing N-Cadherin Expression. PLoS ONE 2014, 9, e85898. [Google Scholar] [CrossRef]
- Kalathil, D.; John, S.; Nair, A.S. FOXM1 and Cancer: Faulty Cellular Signaling Derails Homeostasis. Front. Oncol. 2020, 10, 626836. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Deshmukh, H.; Payton, J.E.; Dunham, C.; Scheithauer, B.W.; Tihan, T.; Prayson, R.A.; Guha, A.; Bridge, J.A.; Ferner, R.E.; et al. Array-Based Comparative Genomic Hybridization Identifies CDK4 and FOXM1 Alterations as Independent Predictors of Survival in Malignant Peripheral Nerve Sheath Tumor. Clin. Cancer Res. 2011, 17, 1924–1934. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, S.; Lu, C.; Ji, T.; Yang, W.; Li, T.; Lv, J.; Hu, W.; Yang, Y.; Jin, Z. SOX11: Friend or foe in tumor prevention and carcinogenesis? Ther. Adv. Med. Oncol. 2019, 11, 175883591985344. [Google Scholar] [CrossRef]
- Lambert, J.M.R.; Gorzov, P.; Veprintsev, D.B.; Söderqvist, M.; Segerbäck, D.; Bergman, J.; Fersht, A.R.; Hainaut, P.; Wiman, K.G.; Bykov, V.J.N. PRIMA-1 Reactivates Mutant p53 by Covalent Binding to the Core Domain. Cancer Cell 2009, 15, 376–388. [Google Scholar] [CrossRef]
- Mlakar, V.; Jurkovic Mlakar, S.; Lesne, L.; Marino, D.; Rathi, K.S.; Maris, J.M.; Ansari, M.; Gumy-Pause, F. PRIMA-1MET-induced neuroblastoma cell death is modulated by p53 and mycn through glutathione level. J. Exp. Clin. Cancer Res. 2019, 38, 69. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Naidoo, M.; Machado, L.R.; Anthony, K. The Duchenne muscular dystrophy gene and cancer. Cell. Oncol. 2021, 44, 19–32. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, B. MicroRNA miR-3646 promotes malignancy of lung adenocarcinoma cells by suppressing sorbin and SH3 domain-containing protein 1 via the c-Jun NH2-terminal kinase signaling pathway. Bioengineered 2022, 13, 4869–4884. [Google Scholar] [CrossRef] [PubMed]
- Dahl, E.; Koseki, H.; Balling, R. Pax genes and organogenesis. Bioessays 1997, 19, 755–765. [Google Scholar] [CrossRef]
- Li, C.G.; Eccles, M.R. PAX Genes in Cancer; Friends or Foes? Front. Genet. 2012, 3, 6. [Google Scholar] [CrossRef]
- Robson, E.J.; He, S.J.; Eccles, M.R. A PANorama of PAX genes in cancer and development. Nat. Rev. Cancer 2006, 6, 52–62. [Google Scholar] [CrossRef]
- Buckingham, M.; Relaix, F. The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu. Rev. Cell Dev. Biol. 2007, 23, 645–673. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Larsson, C.; Xu, D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: Old actors and new players. Oncogene 2019, 38, 6172–6183. [Google Scholar] [CrossRef] [PubMed]
- Nersisyan, L.; Simonyan, A.; Binder, H.; Arakelyan, A. Telomere Maintenance Pathway Activity Analysis Enables Tissue- and Gene-Level Inferences. Front. Genet. 2021, 12, 662464. [Google Scholar] [CrossRef] [PubMed]
- Nersisyan, L.; Arakelyan, A. A Transcriptome and Literature Guided Algorithm for Reconstruction of Pathways to Assess Activity of Telomere Maintenance Mechanisms; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 2017. [Google Scholar]
- Dyer, M.A.; Qadeer, Z.A.; Valle-Garcia, D.; Bernstein, E. ATRX and DAXX: Mechanisms and Mutations. Cold Spring Harb. Perspect. Med. 2017, 7, a026567. [Google Scholar] [CrossRef]
- Potts, P.R.; Yu, H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 2007, 14, 581–590. [Google Scholar] [CrossRef]
NF | MPNST | p | ||
---|---|---|---|---|
Patient demographics | ||||
Age at diagnosis of MPNST (years, mean ± SD) (Min–Max) | 36.55 ± 14.58 (16–71) | - | ||
Sex n (%) | Male | 10 (50.0) | - | |
Female | 10 (50.0) | - | ||
AJCC stage 1 n (%) | I | - | 4 (20.0) | - |
II and IIIA | 10 (50.0) | |||
IIIB and IV (Metastatic) | 6 (30.0) | |||
5-Year Survival n (%) | OS 2 | - | 7 (35.0) | - |
DOD | 10 (50.0) | |||
DOC | 3 (15.0) | |||
Metastasis n (%) | Free | - | 4 (28.6) | |
Positive | 10 (71.4) | |||
Tumor characteristics | ||||
Size (cm, mean ± SD) 2 | 5.31 ± 5.57 | 7.44 ± 3.49 | 0.430 | |
MPNST histologic grade (FNCLCC) n (%) | 1 | - | 4 (20.0) | - |
2 | 6 (30.0) | |||
3 | 10 (50.0) | |||
Location 3 n (%) | Visceral | 0 (0) | 2 (10.0) | 0.625 |
Axial | 5 (25.0) | 5 (25.0) | ||
Extremity | 15 (75.0) | 13 (65.0) | ||
Telomere length 4 (mean ± SD) | 999.96 ± 423.69 | 727.32 ± 490.75 | 0.043 |
PAX7 | |||||||
---|---|---|---|---|---|---|---|
Linear Regression | Generalized Linear Model (MPNST–Telomere) | ||||||
ΔPAX7 | MPNST-PAX7 | ||||||
B (95% CI) | p | B (95% CI) | p | B (95% CI) | p | ||
Upregulated DEGs | NUF2 | 0.485 (0.158 to 0.813) | 0.006 | 0.487 (0.159 to 0.815) | 0.006 | 116.359 (5.496 to 227.221) | 0.040 |
ASPM | 0.493 (0.166 to 0.821) | 0.005 | 0.493 (0.165 to 0.822) | 0.005 | 0.996 (−112.384 to 114.376) | 0.986 | |
SOX11 | 0.346 (−0.506 to 1.198) | 0.405 | 0.341 (−0.514 to 1.195) | 0.413 | −300.907 (−451.046 to −150.769) | 0.000 | |
BUB1 | 0.570 (0.274 to 0.866) | 0.001 | 0.571 (0.274 to 0.867) | 0.001 | 109.500 (−80.466 to 299.466) | 0.259 | |
ANLM | 0.216 (−0.023 to 0.454) | 0.074 | 0.215 (−0.024 to 0.454) | 0.075 | −56.385 (−135.771 to 23.002) | 0.164 | |
KCNE3 | 0.052 (−0.545 to 0.649) | 0.857 | 0.051 (−0.547 to 0.650) | 0.806 | −84.948 (−242.311 to 72.415) | 0.290 | |
FOXM1 | 0.671 (0.300 to 1.041) | 0.001 | 0.672 (0.300 to 1.043) | 0.001 | −12.323 (−153.227 to 129.581) | 0.864 | |
NELL2 | 0.335 (0.167 to 0.503) | 0.001 | 0.335 (0.167 to 0.504) | 0.001 | 123.100 (42.249 to 203.951) | 0.003 | |
FOXG1 | 0.391 (0.172 to 0.610) | 0.001 | 0.392 (0.172 to 0.611) | 0.001 | 81.632 (−73.011 to 236.275) | 0.301 | |
DLGAP5 | 0.248 (−0.153 to 0.650) | 0.211 | 0.249 (−0.154 to 0.651) | 0.210 | 85.342 (−57.173 to 227.856) | 0.241 | |
Downregulated DEGs | SIX1 | 0.223 (−0.055 to 0.500) | 0.109 | 0.221 (−0.057 to 0.500) | 0.112 | −41.602 (−100.271 to 17.067) | 0.165 |
GRIK3 | 0.057 (−0.201 to 0.316) | 0.647 | 0.057 (−0.202 to 0.316) | 0.648 | −115.882 (−212.860 to −18.904) | 0.019 | |
CHL1 | 0.043 (−0.212 to 0.298) | 0.727 | 0.044 (−0.212 to 0.300) | 0.722 | 114.147 (46.262 to 182.032) | 0.001 | |
CLDN1 | 0.147 (−0.514 to 0.087) | 0.646 | 0.142 (−0.520 to 0.804) | 0.657 | −19.451 (−156.377 to 117.474) | 0.781 | |
BAI3 | 0.116 (−0.244 to 0.475) | 0.508 | 0.116 (−0.244 to 0.476) | 0.507 | 23.655 (−132.529 to 179.840) | 0.767 | |
SORBS1 | −0.059 (−0.413 to 0.295) | 0.729 | −0.059 (−0.413 to 0.296) | 0.731 | −22.310 (−136.696 to 92.076) | 0.702 | |
ARHGAP20 | 0.229 (−0.246 to 0.703) | 0.325 | 0.230 (−0.245 to 0.705) | 0.322 | 40.714 (−54.309 to 135.737) | 0.401 | |
PRIMA1 | −0.205 (−0.533 to 0.123) | 0.206 | −0.206 (−0.534 to 0.123) | 0.205 | −92.957 (−174.910 to −11.005) | 0.026 | |
LPCAT2 | 0.083 (−0.157 to 0.322) | 0.478 | 0.082 (−0.158 to 0.322) | 0.480 | −36.528 (−129.540 to 56.484) | 0.441 | |
CDH19 | −0.088 (−0.332 to 0.156) | 0.460 | −0.087 (−0.331 to 0.157) | 0.464 | 24.981 (−82.583 to 132.545) | 0.649 | |
DMD | −0.093 (−0.424 to 0.238) | 0.562 | −0.093 (−0.425 to 0.239) | 0.564 | −47.753 (−191.314 to 95.808) | 0.514 | |
SLITRK2 | 0.178 (−0.321 to 0.676) | 0.464 | 0.178 (−0.321 to 0.678) | 0.463 | 10.067 (−129.352 to 149.486) | 0.887 |
ΔTelomere | MPNST–Telomere | ||||||||
---|---|---|---|---|---|---|---|---|---|
Simple | Multiple | Simple | Multiple | ||||||
B (95% CI) | p | B (95% CI) | p | B (95% CI) | p | B (95% CI) | p | ||
NELL2-PAX7 cascade | NELL2 | 11.182 (−113.352 to 135.716) | 0.851 | −21.980 (−125.042 to 81.083) | 0.656 | ||||
PAX7 | −199.533 (−517.046 to 117.981) | 0.200 | −75.310 (−338.079 to 187.459) | 0.550 | |||||
RAD52 | 157.857 (−3.536 to 319.250) | 0.055 | 161.989 (28.423 to 295.556) | 0.021 | |||||
DNA damage signal | H2AFX | 57.652 (−126.096 to 241.400) | 0.512 | −2.110 (−161.392 to 157.171) | 0.978 | ||||
RAD51 | −98.099 (−259.197 to 62.999) | 0.213 | −34.669 (−174.317 to 104.979) | 0.603 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Choi, E.; Kim, H.; Kim, Y.-J.; Kim, S.H. NELL2-PAX7 Transcriptional Cascade Suggests Activation Mechanism for RAD52-Dependent Alternative Lengthening of Telomeres During Malignant Transformation of Malignant Peripheral Nerve Sheath Tumors: Elongation of Telomeres and Poor Survival. Biomedicines 2025, 13, 281. https://doi.org/10.3390/biomedicines13020281
Lee J, Choi E, Kim H, Kim Y-J, Kim SH. NELL2-PAX7 Transcriptional Cascade Suggests Activation Mechanism for RAD52-Dependent Alternative Lengthening of Telomeres During Malignant Transformation of Malignant Peripheral Nerve Sheath Tumors: Elongation of Telomeres and Poor Survival. Biomedicines. 2025; 13(2):281. https://doi.org/10.3390/biomedicines13020281
Chicago/Turabian StyleLee, Jungwoo, Eunji Choi, Hyoju Kim, Young-Joon Kim, and Seung Hyun Kim. 2025. "NELL2-PAX7 Transcriptional Cascade Suggests Activation Mechanism for RAD52-Dependent Alternative Lengthening of Telomeres During Malignant Transformation of Malignant Peripheral Nerve Sheath Tumors: Elongation of Telomeres and Poor Survival" Biomedicines 13, no. 2: 281. https://doi.org/10.3390/biomedicines13020281
APA StyleLee, J., Choi, E., Kim, H., Kim, Y.-J., & Kim, S. H. (2025). NELL2-PAX7 Transcriptional Cascade Suggests Activation Mechanism for RAD52-Dependent Alternative Lengthening of Telomeres During Malignant Transformation of Malignant Peripheral Nerve Sheath Tumors: Elongation of Telomeres and Poor Survival. Biomedicines, 13(2), 281. https://doi.org/10.3390/biomedicines13020281