Effect of PCSK9 Inhibitors on Regulators of Lipoprotein Homeostasis, Inflammation and Coagulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Controls
2.2. Clinical Examination
2.3. Laboratory Analyses
2.4. Gene Expression Measurement
2.5. Statistical Analysis
3. Results
3.1. Subjects’ Characteristics
3.2. The Results of Expression of the Tested Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
- Roth, E.M.; Davidson, M.H. PCSK9 Inhibitors: Mechanism of Action, Efficacy, and Safety. Rev. Cardiovasc. Med. 2018, 19, 31–46. [Google Scholar] [CrossRef]
- Paciullo, F.; Momi, S.; Gresele, P. PCSK9 in Haemostasis and Thrombosis: Possible Pleiotropic Effects of PCSK9 Inhibitors in Cardiovascular Prevention. Thromb. Haemost. 2019, 119, 359–367. [Google Scholar] [CrossRef]
- Doi, T.; Hori, M.; Harada-Shiba, M.; Kataoka, Y.; Onozuka, D.; Nishimura, K.; Nishikawa, R.; Tsuda, K.; Ogura, M.; Son, C.; et al. Patients with LDLR and PCSK9 Gene Variants Experienced Higher Incidence of Cardiovascular Outcomes in Heterozygous Familial Hypercholesterolemia. J. Am. Heart Assoc. 2021, 10, e018263. [Google Scholar] [CrossRef]
- Peng, C.; Lei, P.; Li, X.; Xie, H.; Yang, X.; Zhang, T.; Cao, Z.; Zhang, J. Down-Regulated of SREBP-1 in Circulating Leukocyte Is a Risk Factor for Atherosclerosis: A Case Control Study. Lipids Health Dis. 2019, 18, 177. [Google Scholar] [CrossRef]
- Sobati, S.; Shakouri, A.; Edalati, M.; Mohammadnejad, D.; Parvan, R.; Masoumi, J.; Abdolalizadeh, J. PCSK9: A Key Target for the Treatment of Cardiovascular Disease (CVD). Adv. Pharm. Bull. 2020, 10, 502–511. [Google Scholar] [CrossRef]
- Dijk, W.; Di Filippo, M.; Kooijman, S.; van Eenige, R.; Rimbert, A.; Caillaud, A.; Thedrez, A.; Arnaud, L.; Pronk, A.; Garçon, D.; et al. Identification of a Gain-of-Function LIPC Variant as a Novel Cause of Familial Combined Hypocholesterolemia. Circulation 2022, 146, 724–739. [Google Scholar] [CrossRef]
- Ramesh, S.; Morrell, C.N.; Tarango, C.; Thomas, G.D.; Yuhanna, I.S.; Girardi, G.; Herz, J.; Urbanus, R.T.; de Groot, P.G.; Thorpe, P.E.; et al. Antiphospholipid Antibodies Promote Leukocyte–Endothelial Cell Adhesion and Thrombosis in Mice by Antagonizing ENOS via Β2GPI and ApoER2. J. Clin. Investig. 2011, 121, 120–131. [Google Scholar] [CrossRef]
- Yang, X.V.; Banerjee, Y.; Fernández, J.A.; Deguchi, H.; Xu, X.; Mosnier, L.O.; Urbanus, R.T.; de Groot, P.G.; White-Adams, T.C.; McCarty, O.J.T.; et al. Activated Protein C Ligation of ApoER2 (LRP8) Causes Dab1-Dependent Signaling in U937 Cells. Proc. Natl. Acad. Sci. USA 2009, 106, 274–279. [Google Scholar] [CrossRef]
- Yang, M.; Li, W.; Harberg, C.; Chen, W.; Yue, H.; Ferreira, R.B.; Wynia-Smith, S.L.; Carroll, K.S.; Zielonka, J.; Flaumenhaft, R.; et al. Cysteine Sulfenylation by CD36 Signaling Promotes Arterial Thrombosis in Dyslipidemia. Blood Adv. 2020, 4, 4494–4507. [Google Scholar] [CrossRef]
- Hamamoto, K.; Ohga, S.; Nomura, S.; Yasunaga, K. Cellular Distribution of CD63 Antigen in Platelets and in Three Megakaryocytic Cell Lines. Histochem. J. 1994, 26, 367–375. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Z.; Lei, Z.; Lei, P. CD14: Biology and Role in the Pathogenesis of Disease. Cytokine Growth Factor. Rev. 2019, 48, 24–31. [Google Scholar] [CrossRef]
- Sharygin, D.; Koniaris, L.G.; Wells, C.; Zimmers, T.A.; Hamidi, T. Role of CD14 in Human Disease. Immunology 2023, 169, 260–270. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Hrovat, K.; Rehberger Likozar, A.; Zupan, J.; Šebeštjen, M. Gene Expression Profiling of Markers of Inflammation, Angiogenesis, Coagulation and Fibrinolysis in Patients with Coronary Artery Disease with Very High Lipoprotein(a) Levels Treated with PCSK9 Inhibitors. J. Cardiovasc. Dev. Dis. 2022, 9, 211. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- SREBP2. Available online: https://www.Origene.Com/Catalog/Gene-Expression/Qpcr-Primer-Pairs/Hp207891-Srebp2-Srebf2-Human-Qpcr-Primer-Pair-Nm-004599 (accessed on 31 July 2023).
- ApoER2 (LRP8). Available online: https://www.Origene.Com/Catalog/Gene-Expression/Qpcr-Primer-Pairs/Hp231155-Apoer2-Lrp8-Human-Qpcr-Primer-Pair-Nm-004631 (accessed on 31 May 2024).
- CD36. Available online: https://www.Origene.Com/Catalog/Gene-Expression/Qpcr-Primer-Pairs/Hp200058-Cd36-Human-Qpcr-Primer-Pair-Nm-000072 (accessed on 31 May 2024).
- CD63. Available online: https://www.Origene.Com/Catalog/Gene-Expression/Qpcr-Primer-Pairs/Hp227481-Cd63-Human-Qpcr-Primer-Pair-Nm-001780 (accessed on 28 June 2024).
- CD14. Available online: https://www.Origene.Com/Catalog/Gene-Expression/Qpcr-Primer-Pairs/Hp200558-Cd14-Human-Qpcr-Primer-Pair-Nm-000591 (accessed on 28 June 2024).
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Varghese, J.F.; Patel, R.; Yadav, U.C.S. Sterol Regulatory Element Binding Protein (SREBP) -1 Mediates Oxidized Low-Density Lipoprotein (OxLDL) Induced Macrophage Foam Cell Formation through NLRP3 Inflammasome Activation. Cell Signal 2019, 53, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Horton, J.D.; Shimomura, I. Sterol Regulatory Element-Binding Proteins. Curr. Opin. Lipidol. 1999, 10, 143–150. [Google Scholar] [CrossRef]
- Roglans, N.; Verd, J.C.; Peris, C.; Alegret, M.; Vázquez, M.; Adzet, T.; Diaz, C.; Hernández, G.; Laguna, J.C.; Sánchez, R.M. High Doses of Atorvastatin and Simvastatin Induce Key Enzymes Involved in VLDL Production. Lipids 2002, 37, 445–454. [Google Scholar] [CrossRef]
- Retterstøl, K.; Svendsen, M.; Narverud, I.; Holven, K.B. Effect of Low Carbohydrate High Fat Diet on LDL Cholesterol and Gene Expression in Normal-Weight, Young Adults: A Randomized Controlled Study. Atherosclerosis 2018, 279, 52–61. [Google Scholar] [CrossRef]
- Zhang, L.; McCabe, T.; Condra, J.H.; Ni, Y.G.; Peterson, L.B.; Wang, W.; Strack, A.M.; Wang, F.; Pandit, S.; Hammond, H.; et al. An Anti-PCSK9 Antibody Reduces LDL-Cholesterol On Top Of A Statin And Suppresses Hepatocyte SREBP-Regulated Genes. Int. J. Biol. Sci. 2012, 8, 310–327. [Google Scholar] [CrossRef]
- Young, S.G.; Fong, L.G. Lowering Plasma Cholesterol by Raising LDL Receptors—Revisited. N. Engl. J. Med. 2012, 366, 1154–1155. [Google Scholar] [CrossRef]
- Santamarina-Fojo, S.; González-Navarro, H.; Freeman, L.; Wagner, E.; Nong, Z. Hepatic Lipase, Lipoprotein Metabolism, and Atherogenesis. Arter. Thromb. Vasc. Biol. 2004, 24, 1750–1754. [Google Scholar] [CrossRef]
- Brunzell, J.D.; Zambon, A.; Deeb, S.S. The Effect of Hepatic Lipase on Coronary Artery Disease in Humans Is Influenced by the Underlying Lipoprotein Phenotype. Biochim. et Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2012, 1821, 365–372. [Google Scholar] [CrossRef]
- Han, H.; Dai, D.; Wang, W.; Zhu, J.; Zhu, Z.; Lu, L.; Zhang, R. Impact of Serum Levels of Lipoprotein Lipase, Hepatic Lipase, and Endothelial Lipase on the Progression of Coronary Artery Disease. J. Interv. Med. 2019, 2, 16–20. [Google Scholar] [CrossRef]
- Yu, X.; Lu, J.; Li, J.; Guan, W.; Deng, S.; Deng, Q.; Ye, H.; Han, W.; Yu, Y.; Zhang, R. Serum Triglyceride Lipase Concentrations Are Independent Risk Factors for Coronary Artery Disease and In-Stent Restenosis. J. Atheroscler. Thromb. 2019, 26, 762–774. [Google Scholar] [CrossRef]
- Shen, G.-Q.; Li, L.; Girelli, D.; Seidelmann, S.B.; Rao, S.; Fan, C.; Park, J.E.; Xi, Q.; Li, J.; Hu, Y.; et al. An LRP8 Variant Is Associated with Familial and Premature Coronary Artery Disease and Myocardial Infarction. Am. J. Hum. Genet. 2007, 81, 780–791. [Google Scholar] [CrossRef]
- Ackers, I.; Szymanski, C.; Duckett, K.J.; Consitt, L.A.; Silver, M.J.; Malgor, R. Blocking Wnt5a Signaling Decreases CD36 Expression and Foam Cell Formation in Atherosclerosis. Cardiovasc. Pathol. 2018, 34, 1–8. [Google Scholar] [CrossRef]
- Shu, H.; Peng, Y.; Hang, W.; Nie, J.; Zhou, N.; Wang, D.W. The Role of CD36 in Cardiovascular Disease. Cardiovasc. Res. 2022, 118, 115–129. [Google Scholar] [CrossRef]
- Li, N. Platelets as an Inter-player between Hyperlipidaemia and Atherosclerosis. J. Intern. Med. 2024, 296, 39–52. [Google Scholar] [CrossRef]
- Schrör, K.; Verheugt, F.W.A.; Trenk, D. Drug–Drug Interaction between Antiplatelet Therapy and Lipid-Lowering Agents (Statins and PCSK9 Inhibitors). Thromb. Haemost. 2023, 123, 166–176. [Google Scholar] [CrossRef]
- Demers, A.; Samami, S.; Lauzier, B.; Des Rosiers, C.; Ngo Sock, E.T.; Ong, H.; Mayer, G. PCSK9 Induces CD36 Degradation and Affects Long-Chain Fatty Acid Uptake and Triglyceride Metabolism in Adipocytes and in Mouse Liver. Arter. Thromb. Vasc. Biol. 2015, 35, 2517–2525. [Google Scholar] [CrossRef]
- Murakami, T.; Komiyama, Y.; Masuda, M.; Kido, H.; Nomura, S.; Fukuhara, S.; Karakawa, M.; Iwasaka, T.; Takahashi, H. Flow Cytometric Analysis of Platelet Activation Markers CD62P and CD63 in Patients with Coronary Artery Disease. Eur. J. Clin. Investig. 1996, 26, 996–1003. [Google Scholar] [CrossRef]
- Cha, J.-K.; Jeong, M.-H.; Jang, J.-Y.; Bae, H.-R.; Lim, Y.-J.; Kim, J.S.; Kim, S.-H.; Kim, J.W. Serial Measurement of Surface Expressions of CD63, P-Selectin and CD40 Ligand on Platelets in Atherosclerotic Ischemic Stroke. Cerebrovasc. Dis. 2003, 16, 376–382. [Google Scholar] [CrossRef]
- Du, P.; Guo, R.; Gao, K.; Yang, S.; Yao, B.; Cui, H.; Zhao, M.; Jia, S. Identification of Differentially Expressed Genes and the Role of PDK4 in CD14+ Monocytes of Coronary Artery Disease. Biosci. Rep. 2021, 41, BSR20204124. [Google Scholar] [CrossRef]
- Krychtiuk, K.A.; Lenz, M.; Hohensinner, P.; Distelmaier, K.; Schrutka, L.; Kastl, S.P.; Huber, K.; Dostal, E.; Oravec, S.; Hengstenberg, C.; et al. Circulating Levels of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Are Associated with Monocyte Subsets in Patients with Stable Coronary Artery Disease. J. Clin. Lipidol. 2021, 15, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Filatova, A.Y.; Afanasieva, O.I.; Arefieva, T.I.; Potekhina, A.V.; Tyurina, A.V.; Klesareva, E.A.; Razova, O.A.; Ezhov, M.V.; Pokrovsky, S.N. The Concentration of PCSK9-Lp(a) Complexes and the Level of Blood Monocytes in Males with Coronary Atherosclerosis. J. Pers. Med. 2023, 13, 1077. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur Heart J 2020, 41, 111–188, Erratum in Eur. Heart J. 2020, 41, 4255. https://doi.org/10.1093/eurheartj/ehz826. [Google Scholar] [CrossRef]
- Krychtiuk, K.A.; Kastl, S.P.; Hofbauer, S.L.; Wonnerth, A.; Goliasch, G.; Ozsvar-Kozma, M.; Katsaros, K.M.; Maurer, G.; Huber, K.; Dostal, E.; et al. Monocyte Subset Distribution in Patients with Stable Atherosclerosis and Elevated Levels of Lipoprotein(a). J. Clin. Lipidol. 2015, 9, 533–541. [Google Scholar] [CrossRef]
- O’Donoghue, M.L.; Fazio, S.; Giugliano, R.P.; Stroes, E.S.G.; Kanevsky, E.; Gouni-Berthold, I.; Im, K.; Lira Pineda, A.; Wasserman, S.M.; Češka, R.; et al. Lipoprotein(a), PCSK9 Inhibition, and Cardiovascular Risk. Circulation 2019, 139, 1483–1492. [Google Scholar] [CrossRef]
Patients (n = 96) | Controls (n = 25) | p Value | |
---|---|---|---|
Gender (M/F) | 91/5 | 23/2 | 0.641 |
Age (years) | 50.46 ± 8.74 | 48.92 ± 7.14 | 0.076 |
BMI (kg/m2) | 28.57 ± 3.79 | 25.40 ± 3.32 | * 0.045 |
Total cholesterol [mmol/L] | 4.25 ± 0.88 | 5.80 ± 0.67 | * 0.034 |
LDL-C [mmol/L] | 2.33 ± 0.77 | 3.56 ± 0.63 | * 0.023 |
HDL-C [mmol/L] | 1.17 ± 0.27 | 1.52 ± 0.42 | * 0.034 |
TG [mmol/L] | 1.47 (1.04–2.10) | 1.31 (0.99–2.01) | 0.096 |
Lp(a) [mg/L] | 1431.00 (1203.00–1658.00) | 11.00 (4.00–18.50) | ** <0.001 |
Patients (n = 96) | Controls (n = 25) | p Value | |
---|---|---|---|
SREBP1 | 0.82 (0.60–1.11) | 0.80 (0.49–1.72) | 0.976 |
SREBP2 | 0.77 (0.63–0.89) | 2.33 (1.90–2.87) | ** <0.001 |
LDLR | 1.18 (0.89–2.24) | 1.32 (1.04–2.33) | ** <0.001 |
LIPC | 0.35 (0.14–2.60) | 0.08 (0.06–0.11) | ** <0.001 |
LRP8 | 1.56 (0.94–2.73) | 0.75 (0.52–1.20) | ** <0.001 |
CD36 | 0.86 (0.72–1.02) | 1.69 (1.34–2.14) | ** <0.001 |
CD63 | 0.87 (0.76–1.02) | 1.23 (1.03–1.48) | ** <0.001 |
CD14 | 1.07 (0.85–1.25) | 1.31 (1.13–1.74) | ** <0.001 |
ΔSREBP1 | ΔSREBP2 | ΔLDLR | ΔLIPC | ΔLRP8 | ΔCD36 | ΔCD63 | ΔCD14 | |
---|---|---|---|---|---|---|---|---|
ΔTC | ρ = 0.252 p = 0.045 | ρ = −0.077 p = 0.544 | ρ = −0.023 p = 0.859 | ρ = 0.163 p = 0.198 | ρ = −0.062 p = 0.641 | ρ = 0.072 p = 0.576 | ρ = 0.218 p = 0.086 | ρ = −0.065 p = 0.610 |
ΔLDL-C | ρ = 0.082 p = 0.521 | ρ = −0.031 p = 0.806 | ρ = −0.136 p = 0.282 | ρ = 0.091 p = 0.477 | ρ = −0.015 p = 0.910 | ρ = 0.144 p = 0.263 | ρ = 0.230 p = 0.069 | ρ = 0.050 p = 0.694 |
ΔHDL-C | ρ = −0.094 p = 0.461 | ρ = −0.075 p = 0.554 | ρ = −0.043 p = 0.734 | ρ = −0.172 p = 0.173 | ρ = −0.123 p = 0.354 | ρ = −0.055 p = 0.672 | ρ = −0.294 p = 0.019 | ρ = −0.231 p = 0.066 |
ΔTG | ρ = 0.108 p = 0.397 | ρ = −0.043 p = 0.735 | ρ = 0.089 p = 0.483 | ρ = −0.044 p = 0.728 | ρ = −0.156 p = 0.237 | ρ = −0.081 p = 0.531 | ρ = 0.179 p = 0.160 | ρ = −0.021 p = 0.871 |
ΔLp(a) | ρ = −0.013 p = 0.921 | ρ = −0.096 p = 0.457 | ρ = −0.002 p = 0.985 | ρ = 0.098 p = 0.450 | ρ = 0.050 p = 0.715 | ρ = 0.105 p = 0.427 | ρ = 0.187 p = 0.149 | ρ = 0.053 p = 0.684 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lunar, P.; Meglič, H.; Vehar, M.; Ugovšek, S.; Rehberger Likozar, A.; Šebeštjen, M.; Zupan, J. Effect of PCSK9 Inhibitors on Regulators of Lipoprotein Homeostasis, Inflammation and Coagulation. Biomedicines 2025, 13, 294. https://doi.org/10.3390/biomedicines13020294
Lunar P, Meglič H, Vehar M, Ugovšek S, Rehberger Likozar A, Šebeštjen M, Zupan J. Effect of PCSK9 Inhibitors on Regulators of Lipoprotein Homeostasis, Inflammation and Coagulation. Biomedicines. 2025; 13(2):294. https://doi.org/10.3390/biomedicines13020294
Chicago/Turabian StyleLunar, Patricija, Hana Meglič, Mateja Vehar, Sabina Ugovšek, Andreja Rehberger Likozar, Miran Šebeštjen, and Janja Zupan. 2025. "Effect of PCSK9 Inhibitors on Regulators of Lipoprotein Homeostasis, Inflammation and Coagulation" Biomedicines 13, no. 2: 294. https://doi.org/10.3390/biomedicines13020294
APA StyleLunar, P., Meglič, H., Vehar, M., Ugovšek, S., Rehberger Likozar, A., Šebeštjen, M., & Zupan, J. (2025). Effect of PCSK9 Inhibitors on Regulators of Lipoprotein Homeostasis, Inflammation and Coagulation. Biomedicines, 13(2), 294. https://doi.org/10.3390/biomedicines13020294