Anti-Drug Antibody Response to Therapeutic Antibodies and Potential Mitigation Strategies
Abstract
:1. Anti-Drug Antibodies (ADA): What Are They and How Do They Interfere with Therapeutic Efficacy?
1.1. History
1.2. What Are Anti-Drug Antibodies?
1.3. Formation of ADAs
1.4. Factors That Influence Development of ADAs
2. Mechanisms of ADA-Mediated Clearance of Recombinant mAbs
Where on mAbs Do ADAs Form?
3. Strategies to Prevent ADA Formation
3.1. Shipping and Storage
3.2. mAb Isotype
3.3. Predicting ADA
3.3.1. In Silico Prediction Tools
3.3.2. In Vitro Analysis of Immunogenicity
3.4. Deimmunization
3.5. Antibody Modifications and Engineering
3.6. Comedication
3.7. High Zone Tolerance/Immune Tolerance Induction/Drug Desensitization
3.8. Nanoparticles
3.9. Oral Tolerance
3.10. Delivery Method
3.11. Vectorized Expression of Therapeutic mAbs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saldanha, J.W. Humanization of Recombinant Antibodies. In Recombinant Antibodies for Immunotherapy; Little, M., Ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 3–19. [Google Scholar] [CrossRef]
- Ulitzka, M.; Carrara, S.; Grzeschik, J.; Kornmann, H.; Hock, B.; Kolmar, H. Engineering Therapeutic Antibodies for Patient Safety: Tackling the Immunogenicity Problem. Protein Eng. Des. Sel. 2020, 33, gzaa025. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Kudchodkar, S.B.; Chung, C.N.; Park, Y.K.; Xu, Z.; Pardi, N.; Abdel-Mohsen, M.; Muthumani, K. Expanding the Reach of Monoclonal Antibodies: A Review of Synthetic Nucleic Acid Delivery in Immunotherapy. Antibodies 2023, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Kandari, D.; Bhatnagar, R. Antibody Engineering and Its Therapeutic Applications. Int. Rev. Immunol. 2023, 42, 156–183. [Google Scholar] [CrossRef] [PubMed]
- Carrara, S.C.; Ulitzka, M.; Grzeschik, J.; Kornmann, H.; Hock, B.; Kolmar, H. From Cell Line Development to the Formulated Drug Product: The Art of Manufacturing Therapeutic Monoclonal Antibodies. Int. J. Pharm. 2021, 594, 120164. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of Therapeutic Antibodies for the Treatment of Diseases. J. Biomed. Sci. 2020, 27, 1. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. FDA Approves 100th Monoclonal Antibody Product. Nat. Rev. Drug Discov. 2021, 20, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.T.; Cohen, S. Reducing Immunogenicity by Design: Approaches to Minimize Immunogenicity of Monoclonal Antibodies. BioDrugs 2024, 38, 205–226. [Google Scholar] [CrossRef] [PubMed]
- BioSpace. Monoclonal Antibodies Industry Is Rising Rapidly. Available online: https://www.biospace.com/monoclonal-antibodies-industry-is-rising-rapidly (accessed on 6 August 2024).
- Wang, B.; Gallolu Kankanamalage, S.; Dong, J.; Liu, Y. Optimization of Therapeutic Antibodies. Antib. Ther. 2021, 4, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Sauna, Z.E.; Lagassé, D.; Pedras-Vasconcelos, J.; Golding, B.; Rosenberg, A.S. Evaluating and Mitigating the Immunogenicity of Therapeutic Proteins. Trends Biotechnol. 2018, 36, 1068–1084. [Google Scholar] [CrossRef]
- Wang, E.Q.; Kaila, N.; Plowchalk, D.; Gibiansky, L.; Yunis, C.; Sweeney, K. Population PK/PD Modeling of Low-Density Lipoprotein Cholesterol Response in Hypercholesterolemic Participants Following Administration of Bococizumab, a Potent Anti-PCSK9 Monoclonal Antibody. CPT Pharmacomet. Syst. Pharmacol. 2023, 12, 2013–2026. [Google Scholar] [CrossRef]
- Singh, R.; Chandley, P.; Rohatgi, S. Recent Advances in the Development of Monoclonal Antibodies and Next-Generation Antibodies. ImmunoHorizons 2023, 7, 886–897. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-L.; Nopsopon, T.; Akenroye, A. Incidence of Anti-Drug Antibodies to Monoclonal Antibodies in Asthma: A Systematic Review and Meta-Analysis. J. Allergy Clin. Immunol. Pract. 2023, 11, 1475–1484.e20. [Google Scholar] [CrossRef]
- Kishimoto, T.K. Development of ImmTOR Tolerogenic Nanoparticles for the Mitigation of Anti-Drug Antibodies. Front. Immunol. 2020, 11, 969. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Qian, M.G.; Zhang, X. T and B Cell Epitope Analysis for the Immunogenicity Evaluation and Mitigation of Antibody-Based Therapeutics. mAbs 2024, 16, 2324836. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Cohen, S.; Swanson, S.J. The Immunogenicity of Human-Origin Therapeutic Antibodies Are Associated with V Gene Usage. Front. Immunol. 2023, 14, 1237754. [Google Scholar] [CrossRef] [PubMed]
- Vaisman-Mentesh, A.; Gutierrez-Gonzalez, M.; DeKosky, B.J.; Wine, Y. The Molecular Mechanisms That Underlie the Immune Biology of Anti-Drug Antibody Formation Following Treatment With Monoclonal Antibodies. Front. Immunol. 2020, 11, 1951. [Google Scholar] [CrossRef]
- Nabhan, M.; Pallardy, M.; Turbica, I. Immunogenicity of Bioproducts: Cellular Models to Evaluate the Impact of Therapeutic Antibody Aggregates. Front. Immunol. 2020, 11, 725. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.H.; Mirakhur, B.; Chan, E.; Le, Q.-T.; Berlin, J.; Morse, M.; Murphy, B.A.; Satinover, S.M.; Hosen, J.; Mauro, D.; et al. Cetuximab-Induced Anaphylaxis and IgE Specific for Galactose-α-1,3-Galactose. N. Engl. J. Med. 2008, 358, 1109–1117. [Google Scholar] [CrossRef]
- Zeunik, R.; Ryuzoji, A.F.; Peariso, A.; Wang, X.; Lannan, M.; Spindler, L.J.; Knierman, M.; Copeland, V.; Patel, C.; Wen, Y. Investigation of Immune Responses to Oxidation, Deamidation, and Isomerization in Therapeutic Antibodies Using Preclinical Immunogenicity Risk Assessment Assays. J. Pharm. Sci. 2022, 111, 2217–2229. [Google Scholar] [CrossRef] [PubMed]
- Middelburg, J.; Sluijter, M.; Schaap, G.; Göynük, B.; Lloyd, K.; Ovcinnikovs, V.; Zom, G.G.; Marijnissen, R.J.; Groeneveldt, C.; Griffioen, L.; et al. T-Cell Stimulating Vaccines Empower CD3 Bispecific Antibody Therapy in Solid Tumors. Nat. Commun. 2024, 15, 48. [Google Scholar] [CrossRef]
- Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; von Bergwelt-Baildon, M.S. Cytokine Release Syndrome. J. Immunother. Cancer 2018, 6, 56. [Google Scholar] [CrossRef] [PubMed]
- Harding, F.A.; Stickler, M.M.; Razo, J.; DuBridge, R. The Immunogenicity of Humanized and Fully Human Antibodies: Residual Immunogenicity Resides in the CDR Regions. mAbs 2010, 2, 256–265. [Google Scholar] [CrossRef]
- Dunn, N.; Juto, A.; Ryner, M.; Manouchehrinia, A.; Piccoli, L.; Fink, K.; Piehl, F.; Fogdell-Hahn, A. Rituximab in Multiple Sclerosis: Frequency and Clinical Relevance of Anti-Drug Antibodies. Mult. Scler. J. 2018, 24, 1224–1233. [Google Scholar] [CrossRef]
- Lundahl, M.L.E.; Fogli, S.; Colavita, P.E.; Scanlan, E.M. Aggregation of Protein Therapeutics Enhances Their Immunogenicity: Causes and Mitigation Strategies. RSC Chem. Biol. 2021, 2, 1004–1020. [Google Scholar] [CrossRef]
- Liu, L. Pharmacokinetics of Monoclonal Antibodies and Fc-Fusion Proteins. Protein Cell 2018, 9, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Mosch, R.; Guchelaar, H.-J. Immunogenicity of Monoclonal Antibodies and the Potential Use of HLA Haplotypes to Predict Vulnerable Patients. Front. Immunol. 2022, 13, 885672. [Google Scholar] [CrossRef] [PubMed]
- Berkhout, L.C.; l’Ami, M.J.; Ruwaard, J.; Hart, M.H.; Heer, P.O.; Bloem, K.; Nurmohamed, M.T.; van Vollenhoven, R.F.; Boers, M.; Alvarez, D.F.; et al. Dynamics of Circulating TNF during Adalimumab Treatment Using a Drug-Tolerant TNF Assay. Sci. Transl. Med. 2019, 11, eaat3356. [Google Scholar] [CrossRef]
- Vultaggio, A.; Perlato, M.; Nencini, F.; Vivarelli, E.; Maggi, E.; Matucci, A. How to Prevent and Mitigate Hypersensitivity Reactions to Biologicals Induced by Anti-Drug Antibodies? Front. Immunol. 2021, 12, 765747. [Google Scholar] [CrossRef] [PubMed]
- Shepard, H.M.; Phillips, G.L.; Thanos, C.D.; Feldmann, M. Developments in Therapy with Monoclonal Antibodies and Related Proteins. Clin. Med. 2017, 17, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Hindryckx, P.; Novak, G.; Vande Casteele, N.; Khanna, R.; Laukens, D.; Vipul, J.; Feagan, B.G. Incidence, Prevention and Management of Anti-Drug Antibodies Against Therapeutic Antibodies in Inflammatory Bowel Disease: A Practical Overview. Drugs 2017, 77, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Velikova, T.; Sekulovski, M.; Peshevska-Sekulovska, M. Immunogenicity and Loss of Effectiveness of Biologic Therapy for Inflammatory Bowel Disease Patients Due to Anti-Drug Antibody Development. Antibodies 2024, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Schurgers, E.; Wraith, D.C. Induction of Tolerance to Therapeutic Proteins With Antigen-Processing Independent T Cell Epitopes: Controlling Immune Responses to Biologics. Front. Immunol. 2021, 12, 742695. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.S.; Zheng, W.; Griswold, K.E.; Bailey-Kellogg, C. Optimization Algorithms for Functional Deimmunization of Therapeutic Proteins. BMC Bioinform. 2010, 11, 180. [Google Scholar] [CrossRef] [PubMed]
- Hollevoet, K.; Thomas, D.; Compernolle, G.; Vermeire, G.; De Smidt, E.; De Vleeschauwer, S.; Smith, T.R.F.; Fisher, P.D.; Dewilde, M.; Geukens, N.; et al. Clinically Relevant Dosing and Pharmacokinetics of DNA-Encoded Antibody Therapeutics in a Sheep Model. Front. Oncol. 2022, 12, 1017612. [Google Scholar] [CrossRef]
- van Schie, K.A.; Hart, M.H.; de Groot, E.R.; Kruithof, S.; Aarden, L.A.; Wolbink, G.J.; Rispens, T. The Antibody Response against Human and Chimeric Anti-TNF Therapeutic Antibodies Primarily Targets the TNF Binding Region. Ann. Rheum. Dis. 2015, 74, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Navio, J.M.; Fuchs, S.P.; Pedreño-López, S.; Rakasz, E.G.; Gao, G.; Desrosiers, R.C. Host Anti-Antibody Responses Following Adeno-Associated Virus–Mediated Delivery of Antibodies Against HIV and SIV in Rhesus Monkeys. Mol. Ther. 2016, 24, 76–86. [Google Scholar] [CrossRef]
- Cassotta, A.; Mikol, V.; Bertrand, T.; Pouzieux, S.; Le Parc, J.; Ferrari, P.; Dumas, J.; Auer, M.; Deisenhammer, F.; Gastaldi, M.; et al. A Single T Cell Epitope Drives the Neutralizing Anti-Drug Antibody Response to Natalizumab in Multiple Sclerosis Patients. Nat. Med. 2019, 25, 1402–1407. [Google Scholar] [CrossRef]
- Jin, H.; D’Urso, V.; Neuteboom, B.; McKenna, S.D.; Schweickhardt, R.; Gross, A.W.; Fomekong Nanfack, Y.; Paoletti, A.; Carter, C.; Toleikis, L.; et al. Avelumab Internalization by Human Circulating Immune Cells Is Mediated by Both Fc Gamma Receptor and PD-L1 Binding. OncoImmunology 2021, 10, 1958590. [Google Scholar] [CrossRef] [PubMed]
- Fichter, M.; Richter, G.; Bepperling, A.; Wassmann, P. Pre-Clinical In-Vitro Studies on Parameters Governing Immune Complex Formation. Pharmaceutics 2022, 14, 1254. [Google Scholar] [CrossRef] [PubMed]
- Boysen, L.; Viuff, B.M.; Landsy, L.H.; Lykkesfeldt, J.; Raymond, J.T.; Price, S.A.; Pelzer, H.; Lauritzen, B. Formation and Glomerular Deposition of Immune Complexes in Mice Administered Human Antibodies: Evaluation of Dose, Frequency, and Biomarkers. Toxicol. Pathol. 2020, 48, 570–585. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Tahara, H.; Kagawa, Y. A Method Combining Blue Native Polyacrylamide Gel Electrophoresis with Liquid Chromatography Tandem-Mass Spectrometry to Detect Circulating Immune Complexes between Therapeutic Monoclonal Antibodies and Anti-Drug Antibodies in Animals. J. Pharm. Biomed. Anal. 2020, 186, 113329. [Google Scholar] [CrossRef]
- Vaisman-Mentesh, A.; Rosenstein, S.; Yavzori, M.; Dror, Y.; Fudim, E.; Ungar, B.; Kopylov, U.; Picard, O.; Kigel, A.; Ben-Horin, S.; et al. Molecular Landscape of Anti-Drug Antibodies Reveals the Mechanism of the Immune Response Following Treatment With TNFα Antagonists. Front. Immunol. 2019, 10, 2921. [Google Scholar] [CrossRef] [PubMed]
- Rombach-Riegraf, V.; Karle, A.C.; Wolf, B.; Sordé, L.; Koepke, S.; Gottlieb, S.; Krieg, J.; Djidja, M.-C.; Baban, A.; Spindeldreher, S.; et al. Aggregation of Human Recombinant Monoclonal Antibodies Influences the Capacity of Dendritic Cells to Stimulate Adaptive T-Cell Responses In Vitro. PLoS ONE 2014, 9, e86322. [Google Scholar] [CrossRef]
- Cohrs, M.; Clottens, N.; Ramaut, P.; Braeckmans, K.; De Smedt, S.; Bauters, T.; Svilenov, H.L. Impact of Pneumatic Tube Transportation on the Aggregation of Monoclonal Antibodies in Clinical Practice. Eur. J. Pharm. Sci. 2025, 204, 106952. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Cain, P.; Anguiano, V.; Shih, J.J.; Chai, Q.; Feng, Y. Impact of IgG Subclass on Molecular Properties of Monoclonal Antibodies. mAbs 2021, 13, 1993768. [Google Scholar] [CrossRef] [PubMed]
- Gardner, M.R.; Fetzer, I.; Kattenhorn, L.M.; Davis-Gardner, M.E.; Zhou, A.S.; Alfant, B.; Weber, J.A.; Kondur, H.R.; Martinez-Navio, J.M.; Fuchs, S.P.; et al. Anti-Drug Antibody Responses Impair Prophylaxis Mediated by AAV-Delivered HIV-1 Broadly Neutralizing Antibodies. Mol. Ther. J. Am. Soc. Gene Ther. 2019, 27, 650–660. [Google Scholar] [CrossRef]
- Gokemeijer, J.; Wen, Y.; Jawa, V.; Mitra-Kaushik, S.; Chung, S.; Goggins, A.; Kumar, S.; Lamberth, K.; Liao, K.; Lill, J.; et al. Survey Outcome on Immunogenicity Risk Assessment Tools for Biotherapeutics: An Insight into Consensus on Methods, Application, and Utility in Drug Development. AAPS J. 2023, 25, 55. [Google Scholar] [CrossRef]
- Mattei, A.E.; Gutierrez, A.H.; Seshadri, S.; Tivin, J.; Ardito, M.; Rosenberg, A.S.; Martin, W.D.; De Groot, A.S. In Silico Methods for Immunogenicity Risk Assessment and Human Homology Screening for Therapeutic Antibodies. mAbs 2024, 16, 2333729. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Chung, S.; Spiess, C.; Lundin, V.; Stefanich, E.; Laing, S.T.; Clark, V.; Brumm, J.; Zhou, Y.; Huang, C.; et al. An Integrated Approach for Characterizing Immunogenic Responses toward a Bispecific Antibody. mAbs 2021, 13, 1944017. [Google Scholar] [CrossRef]
- Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The Immune Epitope Database (IEDB): 2018 Update. Nucleic Acids Res. 2019, 47, D339–D343. [Google Scholar] [CrossRef] [PubMed]
- Ramon, A.; Ali, M.; Atkinson, M.; Saturnino, A.; Didi, K.; Visentin, C.; Ricagno, S.; Xu, X.; Greenig, M.; Sormanni, P. Assessing Antibody and Nanobody Nativeness for Hit Selection and Humanization with AbNatiV. Nat. Mach. Intell. 2024, 6, 74–91. [Google Scholar] [CrossRef]
- Hamze, M.; Meunier, S.; Karle, A.; Gdoura, A.; Goudet, A.; Szely, N.; Pallardy, M.; Carbonnel, F.; Spindeldreher, S.; Mariette, X.; et al. Characterization of CD4 T Cell Epitopes of Infliximab and Rituximab Identified from Healthy Donors. Front. Immunol. 2017, 8, 500. [Google Scholar] [CrossRef]
- Davda, J.; Declerck, P.; Hu-Lieskovan, S.; Hickling, T.P.; Jacobs, I.A.; Chou, J.; Salek-Ardakani, S.; Kraynov, E. Immunogenicity of Immunomodulatory, Antibody-Based, Oncology Therapeutics. J. Immunother. Cancer 2019, 7, 105. [Google Scholar] [CrossRef]
- Wickramarachchi, D.; Steeno, G.; You, Z.; Shaik, S.; Lepsy, C.; Xue, L. Fit-for-Purpose Validation and Establishment of Assay Acceptance and Reporting Criteria of Dendritic Cell Activation Assay Contributing to the Assessment of Immunogenicity Risk. AAPS J. 2020, 22, 114. [Google Scholar] [CrossRef] [PubMed]
- Quarmby, V.; Phung, Q.T.; Lill, J.R. MAPPs for the Identification of Immunogenic Hotspots of Biotherapeutics; an Overview of the Technology and Its Application to the Biopharmaceutical Arena. Expert Rev. Proteom. 2018, 15, 733–748. [Google Scholar] [CrossRef] [PubMed]
- Slota, M.; Lim, J.-B.; Dang, Y.; Disis, M.L. ELISpot for Measuring Human Immune Responses to Vaccines. Expert Rev. Vaccines 2011, 10, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Ikuno, T.; Mishima, M.; Yano, M.; Hara, T.; Kuramochi, T.; Sampei, Z.; Wakabayashi, T.; Tabo, M.; Chiba, S.; et al. In Vitro Human Helper T-Cell Assay to Screen Antibody Drug Candidates for Immunogenicity. J. Immunotoxicol. 2019, 16, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Miao, C.H.; Harmeling, B.R.; Ziegler, S.F.; Yen, B.C.; Torgerson, T.; Chen, L.; Yau, R.J.; Peng, B.; Thompson, A.R.; Ochs, H.D.; et al. CD4+FOXP3+ Regulatory T Cells Confer Long-Term Regulation of Factor VIII–Specific Immune Responses in Plasmid-Mediated Gene Therapy–Treated Hemophilia Mice. Blood 2009, 114, 4034–4044. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Zhang, A.-H.; Su, Y.; Rieder, S.A.; Rossi, R.J.; Ettinger, R.A.; Pratt, K.P.; Shevach, E.M.; Scott, D.W. Engineered Antigen-Specific Human Regulatory T Cells: Immunosuppression of FVIII-Specific T- and B-Cell Responses. Blood 2015, 125, 1107–1115. [Google Scholar] [CrossRef]
- Sarkar, D.; Biswas, M.; Liao, G.; Seay, H.R.; Perrin, G.Q.; Markusic, D.M.; Hoffman, B.E.; Brusko, T.M.; Terhorst, C.; Herzog, R.W. Ex Vivo Expanded Autologous Polyclonal Regulatory T Cells Suppress Inhibitor Formation in Hemophilia. Mol. Ther. Methods Clin. Dev. 2014, 1, 14030. [Google Scholar] [CrossRef]
- Selck, C.; Dominguez-Villar, M. Antigen-Specific Regulatory T Cell Therapy in Autoimmune Diseases and Transplantation. Front. Immunol. 2021, 12, 661875. [Google Scholar] [CrossRef] [PubMed]
- De Groot, A.S.; Terry, F.; Cousens, L.; Martin, W. Beyond Humanization and De-Immunization: Tolerization as a Method for Reducing the Immunogenicity of Biologics. Expert Rev. Clin. Pharmacol. 2013, 6, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Meunier, S.; de Bourayne, M.; Hamze, M.; Azam, A.; Correia, E.; Menier, C.; Maillère, B. Specificity of the T Cell Response to Protein Biopharmaceuticals. Front. Immunol. 2020, 11, 1550. [Google Scholar] [CrossRef] [PubMed]
- Mould, D.R.; Meibohm, B. Drug Development of Therapeutic Monoclonal Antibodies. BioDrugs 2016, 30, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Leu, J.; Watson, R.; Xu, Z.; Zhou, H. Investigation of the Mechanism of Therapeutic Protein-Drug Interaction Between Methotrexate and Golimumab, an Anti-TNFα Monoclonal Antibody. AAPS J. 2018, 20, 63. [Google Scholar] [CrossRef] [PubMed]
- de Spéville, B.D.; Moreno, V. Antidrug Antibodies and Drug Development: Challenges in the Immunotherapy Era. Clin. Cancer Res. 2021, 27, 2669–2671. [Google Scholar] [CrossRef] [PubMed]
- Hahn, P.A.; Martins, M.A. Adeno-Associated Virus-Vectored Delivery of HIV Biologics: The Promise of a “Single-Shot” Functional Cure for HIV Infection. J. Virus Erad. 2023, 9, 100316. [Google Scholar] [CrossRef]
- Gelis, S.; Verdesoto, J.-T.; Pascal, M.; Muñoz-Cano, R.M. Hypersensitivity Reactions to Monoclonal Antibodies: New Approaches. Curr. Treat. Options Allergy 2022, 9, 394–408. [Google Scholar] [CrossRef]
- Kivitz, A.; DeHaan, W.; Azeem, R.; Park, J.; Rhodes, S.; Inshaw, J.; Leung, S.S.; Nicolaou, S.; Johnston, L.; Kishimoto, T.K.; et al. Phase 2 Dose-Finding Study in Patients with Gout Using SEL-212, a Novel PEGylated Uricase (SEL-037) Combined with Tolerogenic Nanoparticles (SEL-110). Rheumatol. Ther. 2023, 10, 825–847. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, J.S.S.; Li, X.; Arisa, S.; Kwon, K.-C.; Daniell, H.; Herzog, R.W. Potential Role for Oral Tolerance in Gene Therapy. Cell. Immunol. 2023, 391–392, 104742. [Google Scholar] [CrossRef]
- Rana, J.; Muñoz, M.M.; Biswas, M. Oral Tolerance to Prevent Anti-Drug Antibody Formation in Protein Replacement Therapies. Cell. Immunol. 2022, 382, 104641. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Muhuri, M.; Tai, P.W.L.; Gao, G. Vectored Immunotherapeutics for Infectious Diseases: Can rAAVs Be The Game Changers for Fighting Transmissible Pathogens? Front. Immunol. 2021, 12, 673699. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, S.P.; Martinez-Navio, J.M.; Rakasz, E.G.; Gao, G.; Desrosiers, R.C. Liver-Directed but Not Muscle-Directed AAV-Antibody Gene Transfer Limits Humoral Immune Responses in Rhesus Monkeys. Mol. Ther. Methods Clin. Dev. 2020, 16, 94–102. [Google Scholar] [CrossRef]
- Casazza, J.P.; Cale, E.M.; Narpala, S.; Yamshchikov, G.V.; Coates, E.E.; Hendel, C.S.; Novik, L.; Holman, L.A.; Widge, A.T.; Apte, P.; et al. Safety and Tolerability of AAV8 Delivery of a Broadly Neutralizing Antibody in Adults Living with HIV: A Phase 1, Dose-Escalation Trial. Nat. Med. 2022, 28, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Wongsodirdjo, P.; Caruso, A.C.; Yong, A.K.; Lester, M.A.; Vella, L.J.; Hung, Y.H.; Nisbet, R.M. Messenger RNA-Encoded Antibody Approach for Targeting Extracellular and Intracellular Tau. Brain Commun. 2024, 6, fcae100. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Zhao, S.-Q.; Chen, R.-Y.; Suo, X.-X.; Zhang, R.-R.; Yang, W.-H.; Zhou, D.-S.; Fang, M.; Ying, B.; Deng, Y.-Q.; et al. Rapid Development of Double-Hit mRNA Antibody Cocktail against Orthopoxviruses. Signal Transduct. Target. Ther. 2024, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gan, L.; Ke, D.; Chen, Q.; Fu, Y. Mechanisms and Research Advances in mRNA Antibody Drug-Mediated Passive Immunotherapy. J. Transl. Med. 2023, 21, 693. [Google Scholar] [CrossRef]
- August, A.; Attarwala, H.Z.; Himansu, S.; Kalidindi, S.; Lu, S.; Pajon, R.; Han, S.; Lecerf, J.-M.; Tomassini, J.E.; Hard, M.; et al. A Phase 1 Trial of Lipid-Encapsulated mRNA Encoding a Monoclonal Antibody with Neutralizing Activity against Chikungunya Virus. Nat. Med. 2021, 27, 2224–2233. [Google Scholar] [CrossRef]
- Patel, A.; Bah, M.A.; Weiner, D.B. In Vivo Delivery of Nucleic Acid-Encoded Monoclonal Antibodies. Biodrugs 2020, 34, 273–293. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Rosenke, K.; Parzych, E.M.; Feldmann, F.; Bharti, S.; Griffin, A.J.; Schouest, B.; Lewis, M.; Choi, J.; Chokkalingam, N.; et al. In Vivo Delivery of Engineered Synthetic DNA-Encoded SARS-CoV-2 Monoclonal Antibodies for Pre-Exposure Prophylaxis in Non-Human Primates. Emerg. Microbes Infect. 2024, 13, 2294860. [Google Scholar] [CrossRef] [PubMed]
- Tebas, P. A Phase 1, Open-Label, Single Center, Dose Escalation Study of the Safety and Pharmacokinetics of mAb AZD5396 and mAb AZD8076 Delivered as dMAbs in Healthy Adults; Clinical Trial Registration NCT05293249; Clinicaltrials.gov. 2024. Available online: https://clinicaltrials.gov/study/NCT05293249 (accessed on 20 December 2024).
mAb Name | mAb Format | mAb Target | Mechanisms Underlying ADA Responses | Reference |
---|---|---|---|---|
CD3xTRP1 | Murine IgG2a, bispecific | CD3 | Antibody therapeutics whose goal is to trigger an immune response toward its target antigen, may in turn cause an immune response to be triggered toward itself. | [22] |
4D5-8, 225, 17-1A | Murine IgG1, chimeric IgG1, murine IgG2a, respectively | Her2/neu, EGFR, EpCAM, respectively | Dynamic programming for deimmunizing proteins was successful in deimmunizing these antibody therapeutics. | [35] |
Cetuximab | Chimeric IgG1 | Epidermal growth factor receptor (EGFR) | Glycosylation patterns on exogenously produced mAbs differing from host glycosylation patterns contribute to ADA formation. | [20] |
Infliximab | Chimeric IgG1 | TNF-α | Concomitant administration of methotrexate or azathioprine decreased clearance of the therapeutic mAbs and reduced extent of immunogenicity. | [32] |
Infliximab | Chimeric IgG1 | TNF-α | Higher serum levels of mAb drugs early in the therapeutic regimen are predictive of ADA-negative status for patients. | [32] |
Infliximab | Chimeric IgG1 | TNF-α | mAbs are less immunogenic when delivered subcutaneously than when administered via infusions. | [33] |
Infliximab, Rituximab, and Atezolizumab | Chimeric IgG1, chimeric IgG1, humanized IgG1, respectively | CD20, PD-L1, TNF-α, respectively | Correlation seen between HLA-II haplotype and ADA formation. | [28] |
Infliximab and Rituximab | Chimeric IgG1 | TNFα and CD20, respectively | MAPPs was successful at identifying epitopes that are known to be immunogenic. | [16] |
Rituximab | Chimeric IgG1 | CD20 | Varying frequency of ADA between disease indications for same drug. | [25] |
Alemtuzumab | Humanized IgG1 | CD-52 | mAbs that target cell surface proteins may cause an increased uptake of the mAb–antigen complex by APCs, resulting in an increased immune response to the therapeutic. | [18] |
Trastuzumab | Humanized IgG1 | Human epidermal growth factor receptor 2 (HER2) | Preferential binding to the variable regions of the mAb, including the CDR and framework regions. | [36] |
Trastuzumab and Tocilizumab | Humanized IgG1 | HER2 and IL-6 receptor, respectively | Increased immunogenicity seen for subcutaneous delivery when compared with intravenous delivery. | [5] |
Certolizumab Golimumab and Adalimumab | Humanized IgG1, human IgG1, and human IgG1, repsectively | TNFα | More than 97% of ADAs were directed at the antigen binding region. | [37] |
Adalimumab | Human IgG1 | TNF-α | Five HLA-II haplotypes were found to have a correlation with the ADA response. | [27] |
Adalimumab | Human IgG1 | TNF-α | Correlation seen between baseline levels of TNFalpha and ADA response. Patients with lower baseline levels of drug target more likely to develop an ADA response. | [29] |
Adalimumab | Human IgG1 | TNFα | Vast majority of ADAs were anti-idiotypic. | [37] |
93 different mAbs | Human | Varying targets | Use of rare V alleles corresponded with higher incidence of ADA. | [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howard, E.L.; Goens, M.M.; Susta, L.; Patel, A.; Wootton, S.K. Anti-Drug Antibody Response to Therapeutic Antibodies and Potential Mitigation Strategies. Biomedicines 2025, 13, 299. https://doi.org/10.3390/biomedicines13020299
Howard EL, Goens MM, Susta L, Patel A, Wootton SK. Anti-Drug Antibody Response to Therapeutic Antibodies and Potential Mitigation Strategies. Biomedicines. 2025; 13(2):299. https://doi.org/10.3390/biomedicines13020299
Chicago/Turabian StyleHoward, Erin L., Melanie M. Goens, Leonardo Susta, Ami Patel, and Sarah K. Wootton. 2025. "Anti-Drug Antibody Response to Therapeutic Antibodies and Potential Mitigation Strategies" Biomedicines 13, no. 2: 299. https://doi.org/10.3390/biomedicines13020299
APA StyleHoward, E. L., Goens, M. M., Susta, L., Patel, A., & Wootton, S. K. (2025). Anti-Drug Antibody Response to Therapeutic Antibodies and Potential Mitigation Strategies. Biomedicines, 13(2), 299. https://doi.org/10.3390/biomedicines13020299