Phenolic Content, Antioxidant Activity and In Vitro Anti-Inflammatory and Antitumor Potential of Selected Bulgarian Propolis Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Propolis
2.2. Preparation of Propolis Extracts
2.3. Cell Culture
2.4. Total Phenolic Content
2.5. Total Flavonoid Content
2.6. Total Caffeic Acid Derivatives
2.7. High-Performance Liquid Chromatography (HPLC) Analysis of Phenolic Compounds
2.8. Antioxidant Activity
2.8.1. DPPH Radical Scavenging Assay
2.8.2. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.9. In Vitro Anti-Inflammatory Activity (Inhibition of Albumin Denaturation)
2.10. MTT Assay for Cell Cytotoxicity
2.11. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content (TPC), Total Flavonoid Content (TFC), and Total Caffeic Acid Derivatives Content (TCADC)
Propolis Sample | Total Phenolic Content, mg GAE/g of Extract | Total Flavonoid Content, mg QE/g of Extract | Total Caffeic Acid Derivatives, mg CAE/g of Extract |
---|---|---|---|
P1 | 226.8 ± 0.20 | 62.7 ± 0.10 | 8.2 ± 0.20 |
P2 | 301.3 ± 0.20 | 77.0 ± 0.10 | 12.1 ± 0.20 |
P3 | 190.4 ± 0.60 | 53.4 ± 0.03 | 5.9 ± 0.10 |
P4 | 317.0 ± 0.70 | 79.3 ± 0.06 | 11.6 ± 0.10 |
P5 | 233.0 ± 0.11 * | 71.3 ± 0.10 * | 9.7 ± 0.10 |
P6 | 243.4 ± 0.30 | 71.7 ± 0.10 | 8.9 ± 0.10 |
Phenolic Compounds, mg/g of Extract | Propolis Samples | |||||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | |
Phenolic acids | ||||||
Caffeic acid | 3.16 ± 0.02 | 5.52 ± 0.00 | 3.46 ± 0.01 | 4.73 ± 0.00 | 4.91 ± 0.03 | 4.24 ± 0.04 |
p-coumaric acid | 3.05 ± 0.03 | 3.97 ± 0.00 | 2.87 ± 0.01 | 4.96 ± 0.06 | 3.78 ± 0.00 | 3.30 ± 0.02 |
Sinapic acid | 1.57 ± 0.00 | 2.27 ± 0.00 | 2.03 ± 0.02 | 4.05 ± 0.03 | 1.57 ± 0.01 | 1.69 ± 0.00 |
Caffeic acid benzyl ester | 3.23 ± 0.03 | 4.05 ± 0.05 | 2.33 ± 0.06 | 5.13 ± 0.05 | 3.45 ± 0.02 | 4.18 ± 0.03 |
Cinnamic acid | 0.86 ± 0.01 | 1.98 ± 0.04 | 0.28 ± 0.00 | 1.97 ± 0. 03 | 1.58 ± 0.01 | 1.15 ± 0.00 |
Flavonoids | ||||||
Isorhamnetin | 0.91 ± 0.03 | 2.05 ± 0.02 | 1.32 ± 0.06 | 1.85 ± 0.05 | 1.83 ± 0.06 | 1.78 ± 0.01 |
Pinocembrin | 9.41 ± 0.09 | 16.94 ± 0.10 | 8.17 ± 0.13 | 13.60 ± 0.11 | 20.24 ± 0.30 | 17.34 ± 0.35 |
Chrysin | 29.71 ± 0.42 | 38.56 ± 0.46 | 42.59 ± 0.33 | 80.02 ± 0.55 | 64.61 ± 0.65 | 62.87 ± 0.32 |
Pinobanksin-3-O-propionate | 30.56 ± 0.22 | 40.61 ± 0.18 | 25.39 ± 0.09 | 65.92 ± 0.51 | 46.87 ± 0.31 | 44.22 ± 0.12 |
3.2. Phenolic Compounds Profile
3.3. Antioxidant Activity
3.4. In Vitro Anti-Inflammatory Activity
3.5. In Vitro Antitumor Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuropatnicki, A.K.; Szliszka, E.; Krol, W. Historical Aspects of Propolis Research in Modern Times. Evid. Based Complement. Alternat. Med. 2013, 2013, 964149. [Google Scholar] [CrossRef]
- Wieczorek, P.P.; Hudz, N.; Yezerska, O.; Horčinová-Sedláčková, V.; Shanaida, M.; Korytniuk, O.; Jasicka-Misiak, I. Chemical Variability and Pharmacological Potential of Propolis as a Source for the Development of New Pharmaceutical Products. Molecules 2022, 27, 1600. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.; Popova, M.; Trusheva, B. New Emerging Fields of Application of Propolis. Maced. J. Chem. Chem. Eng. 2016, 35, 1–11. [Google Scholar] [CrossRef]
- Fernández-Calderón, M.C.; Navarro-Pérez, M.L.; Blanco-Roca, M.T.; Gómez-Navia, C.; Pérez-Giraldo, C.; Vadillo-Rodríguez, V. Chemical Profile and Antibacterial Activity of a Novel Spanish Propolis with New Polyphenols Also Found in Olive Oil and High Amounts of Flavonoids. Molecules 2020, 25, 3318. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.; Popova, M.; Bogdanov, S.; Sabatini, A. Chemical Composition of European Propolis: Expected and Unexpected Results. Z. Naturforsch. C 2002, 57, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Stanoeva, J.P.; Stefova, M.; Trusheva, B.; Popova, M.; Antonova, D.; Bankova, V. Comparison between Bulgarian and Macedonian Propolis: Chemical Composition and Plant Origin. Maced. Pharm. Bull. 2020, 66, 11–14. [Google Scholar] [CrossRef]
- Martinotti, S.; Ranzato, E. Propolis: A New Frontier for Wound Healing? Burns Trauma 2015, 3, 1–7. [Google Scholar] [CrossRef]
- Vilhelmova-Ilieva, N.M.; Nikolova, I.N.; Nikolova, N.Y.; Petrova, Z.D.; Trepechova, M.S.; Holechek, D.I.; Todorova, M.M.; Topuzova, M.G.; Ivanov, I.G.; Tumbarski, Y.D. Antiviral Potential of Specially Selected Bulgarian Propolis Extracts: In Vitro Activity Against Structurally Different Viruses. Life 2023, 13, 1611. [Google Scholar] [CrossRef] [PubMed]
- Salomao, K.; Dantas, A.P.; Borbac, C.M.; Campos, L.C.; Machado, D.G.; Aquino Neto, F.R.; de Castro, S.L. Chemical Composition and Microbicidal Activity of Extracts from Brazilian and Bulgarian Propolis. Lett. Appl. Microbiol. 2004, 38, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Sforcin, J.M. Biological Properties and Therapeutic Applications of Propolis. Phytother. Res. 2016, 30, 894–905. [Google Scholar] [CrossRef]
- Bobiş, O. Plants: Sources of Diversity in Propolis Properties. Plants 2022, 11, 2298. [Google Scholar] [CrossRef] [PubMed]
- Balica, G.; Vostinaru, O.; Stefanescu, C.; Mogoşan, C.; Iaru, I.; Cristina, A.; Pop, C.E. Potential Role of Propolis in the Prevention and Treatment of Metabolic Diseases. Plants 2021, 10, 883. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.; Somensi, L.B.; da Silva, R.C.M.V.A.F.; Mariano, L.N.B.; Boeing, T.; Longo, B.; Perfoll, E.; de Souza, P.; Gushiken, L.F.S.; Pellizzon, C.H.; et al. Role of the Antioxidant Properties in the Gastroprotective and Gastric Healing Activity Promoted by Brazilian Green Propolis and the Healing Efficacy of Artepillin C. Inflammopharmacology 2020, 28, 1009–1025. [Google Scholar] [CrossRef] [PubMed]
- El-Sakhawy, M.; Salama, A.; Mohamed, S.A.A. Propolis applications in food industries and packaging. Biomass Conv. Bioref. 2024, 14, 13731–13746. [Google Scholar] [CrossRef]
- Pant, K.; Sharma, A.; Chopra, H.K.; Nanda, V. Impact of biodiversification on propolis composition, functionality, and application in foods as natural preservative: A review. Food Control 2024, 155, 110097. [Google Scholar] [CrossRef]
- Tumbarski, Y.; Todorova, M.; Topuzova, M.; Gineva, G.; Yanakieva, V.; Ivanov, I.; Petkova, N. Comparative Study on Physicochemical, Antioxidant and Antimicrobial Properties of Propolis Collected from Different Regions of Bulgaria. J. Apic. Sci. 2023, 67, 37–56. [Google Scholar] [CrossRef]
- Ivanov, I.; Vrancheva, R.; Marchev, A.; Petkova, N.; Aneva, I.; Denev, P.; Georgiev, V.; Pavlov, A. Antioxidant Activities and Phenolic Compounds in Bulgarian Fumaria Species. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 296–306. [Google Scholar]
- Ivanov, I. Polyphenols Content and Antioxidant Activities of Taraxacum officinale F.H. Wigg (Dandelion) Leaves. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 889–893. [Google Scholar]
- Stoyanova, M.A.; Perifanova-Nemska, M.N. Biologically Active Compounds from Tussilago farfara L. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1031, 012103. [Google Scholar] [CrossRef]
- Milusheva, M.; Gledacheva, V.; Stefanova, I.; Feizi-Dehnayebi, M.; Mihaylova, R.; Nedialkov, P.; Cherneva, E.; Tumbarski, Y.; Tsoneva, S.; Todorova, M.; et al. Synthesis, Molecular Docking, and Biological Evaluation of Novel Anthranilic Acid Hybrid and Its Diamides as Antispasmodics. Int. J. Mol. Sci. 2023, 24, 13855. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Hassim, N.; Markom, M.; Anuar, N.; Baharum, S.N. Solvent Selection in Extraction of Essential Oil and Bioactive Compounds from Polygonum minus. J. Appl. Sci. 2014, 14, 1440–1444. [Google Scholar] [CrossRef]
- Wang, X.; Sankarapandian, K.; Cheng, Y.; Woo, S.O.; Kwon, H.W.; Perumalsamy, H.; Ahn, Y.-J. Relationship Between Total Phenolic Contents and Biological Properties of Propolis from 20 Different Regions in South Korea. BMC Complement. Altern. Med. 2016, 16, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Segueni, N.; Keskin, Ş.; Kadour, B.; Kolayli, S.; Salah, A. Comparison Between Phenolic Content, Antioxidant, and Antibacterial Activity of Algerian and Turkish Propolis. Comb. Chem. High Throughput Screen. 2021, 24, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Aliyazıcıoğlu, R.; Sahin, H.; Erturk, O.; Ulusoy, E.; Kolayli, S. Properties of Phenolic Composition and Biological Activity of Propolis from Turkey. Int. J. Food Prop. 2013, 16, 277–287. [Google Scholar] [CrossRef]
- Celli, N.; Dragani, L.K.; Murzilli, S.; Pagliani, T.; Poggi, A. In Vitro and In Vivo Stability of Caffeic Acid Phenethyl Ester, a Bioactive Compound of Propolis. J. Agric. Food Chem. 2007, 55, 3398–3407. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.; Oliveira, C.; Borges, F. Caffeic Acid Derivatives, Analogs and Applications: A Patent Review (2009–2013). Expert Opin. Ther. Pat. 2014, 24, 1257–1270. [Google Scholar] [CrossRef]
- Tumbarski, Y.D.; Petrova, N.; Ivanov, I.; Petkova, N.; Ivanova, P.; Yanakieva, V.; Vasilev, K.; Mihalev, K. Assessment of the Bioactivity, Preservation Potential and Sensory Acceptance of a Propolis Extract Applied in a Functional Fruit-Herbal Beverage. Food Sci. Appl. Biotechnol. 2023, 6, 320–330. [Google Scholar] [CrossRef]
- Socha, R.; Gałkowska, D.; Bugaj, M.; Juszczak, L. Phenolic Composition and Antioxidant Activity of Propolis from Various Regions of Poland. Nat. Prod. Res. 2015, 29, 416–422. [Google Scholar] [CrossRef]
- Özkök, A.; Keskin, M.; Samancı, A.E.T.; Önder, E.Y.; Takma, C. Determination of Antioxidant Activity and Phenolic Compounds for Basic Standardization of Turkish Propolis. Appl. Biol. Chem. 2021, 64, 37. [Google Scholar] [CrossRef] [PubMed]
- Miłek, M.; Bonikowski, R.; Dżugan, M. The Effect of Extraction Conditions on the Chemical Profile of Obtained Raw Poplar Propolis Extract. Chem. Pap. 2024, 78, 6709–6720. [Google Scholar] [CrossRef]
- Wagh, V.D. Propolis: A Wonder Bee Product and Its Pharmacological Potentials. Adv. Pharmacol. Sci. 2013, 2013, 308249. [Google Scholar] [CrossRef] [PubMed]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Świerczek-Zięba, G. Structure and Antioxidant Activity of Polyphenols Derived from Propolis. Molecules 2014, 19, 78–101. [Google Scholar] [CrossRef] [PubMed]
- Jayashree, V.; Bagyalakshmi, S.; Manjula, D.K.; Richard Daniel, D. In Vitro Anti-Inflammatory Activity of 4-Benzylpiperidine. Asian J. Pharm. Clin. Res. 2016, 9, 108–110. [Google Scholar]
- Manolov, S.P.; Ivanov, I.I.; Bojilov, D.G. Microwave-Assisted Synthesis of 1,2,3,4-Tetrahydroisoquinoline Sulfonamide Derivatives and Their Biological Evaluation. J. Serb. Chem. Soc. 2021, 86, 139–151. [Google Scholar] [CrossRef]
- Laine, L.; Smith, R.; Min, K.; Chen, C.; Dubois, R.W. Systematic Review: The Lower Gastrointestinal Adverse Effects of Non-Steroidal Anti-Inflammatory Drugs. Aliment. Pharmacol. Ther. 2006, 24, 751–767. [Google Scholar] [CrossRef] [PubMed]
- Manolov, S.; Bojilov, D.; Ivanov, I.; Marc, G.; Bataklieva, N.; Oniga, S.; Oniga, O.; Nedialkov, P. Synthesis, Molecular Docking, Molecular Dynamics Studies, and In Vitro Biological Evaluation of New Biofunctional Ketoprofen Derivatives with Different N-Containing Heterocycles. Processes 2023, 11, 1837. [Google Scholar] [CrossRef]
- Hougardy, D.M.C.; Peterson, G.M.; Bleasel, M.D.; Randall, C.T.C. Is Enough Attention Being Given to the Adverse Effects of Corticosteroid Therapy? J. Clin. Pharm. Ther. 2000, 25, 227–234. [Google Scholar] [CrossRef]
- Toutou, Z.; Fatmi, S.; Chibani, N.; Bensidhoum, L.; Skiba, M.; Iguerouada, M. Optimization, Characterization and Biological Effects of Algerian Propolis. Acta Fytotech. Zootech. 2022, 25, 269–278. [Google Scholar] [CrossRef]
- Araújo, C.; Oliveira Dias, R.; Pinto-Ribeiro, F.; Almeida-Aguiar, C. An Insight on the Biomedical Potential of Portuguese Propolis from Gerês. Foods 2022, 11, 3431. [Google Scholar] [CrossRef] [PubMed]
- Afonso, A.M.; Gonçalves, J.; Lu, Â.; Gallardo, E.; Duarte, A.P. Evaluation of the In Vitro Wound-Healing Activity and Phytochemical Characterization of Propolis and Honey. Appl. Sci. 2020, 10, 1845. [Google Scholar] [CrossRef]
- Mendez-Encinas, M.A.; Valencia, D.; Ortega-García, J.; Carvajal-Millan, E.; Díaz-Ríos, J.C.; Mendez-Pfeiffer, P.; Soto-Bracamontes, C.M.; Garibay-Escobar, A.; Alday, E.; Velazquez, C. Anti-Inflammatory Potential of Seasonal Sonoran Propolis Extracts and Some of Their Main Constituents. Molecules 2023, 28, 4496. [Google Scholar] [CrossRef]
- Altabbal, S.; Athamnah, K.; Rahma, A.; Wali, A.F.; Eid, A.H.; Iratni, R.; Al Dhaheri, Y. Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms. Pharmaceuticals 2023, 16, 450. [Google Scholar] [CrossRef]
- Georgieva, K.; Trusheva, B.; Uzunova, V.; Stoyanova, T.; Valcheva, V.; Popova, M.; Tzoneva, R.; Bankova, V. New Cycloartane Triterpenes from Bioactive Extract of Propolis from Pitcairn Island. Fitoterapia 2018, 128, 233–241. [Google Scholar] [CrossRef]
- Elbatreek, M.H.; Mahdi, I.; Ouchari, W.; Mahmoud, M.F.; Sobeh, M. Current Advances on the Therapeutic Potential of Pinocembrin: An Updated Review. Biomed. Pharmacother. 2023, 157, 114032. [Google Scholar] [CrossRef]
- Salari, N.; Faraji, F.; Jafarpour, S.; Faraji, F.; Rasoulpoor, S.; Dokaneheifard, S.; Mohammadi, M. Anti-Cancer Activity of Chrysin in Cancer Therapy: A Systematic Review. Indian J. Surg. Oncol. 2022, 13, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Elangovan, B. A Review on Pharmacological Studies of Natural Flavanone: Pinobanksin. 3 Biotech 2024, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Abutaha, N.; AL-Zharani, M.; Alotaibi, A.; Cordero, M.A.W.; Bepari, A.; Alarifi, S. In vitro and in vivo investigation of polypharmacology of propolis extract as anticancer, antibacterial, anti-inflammatory, and chemical properties. Open Chem. 2021, 19, 864–874. [Google Scholar] [CrossRef]
- Mohamed, W.A.S.; Ismail, N.Z.; Omar, E.A.; Abdul Samad, N.; Adam, S.K.; Mohamad, S. GC-MS Evaluation, Antioxidant Content, and Cytotoxic Activity of Propolis Extract from Peninsular Malaysian Stingless Bees, Tetrigona apicalis. Evid. Based Complement. Alternat. Med. 2020, 2020, 8895262. [Google Scholar] [CrossRef] [PubMed]
- Shehata, M.G.; Ahmad, F.T.; Badr, A.N.; Masry, S.H.; El-Sohaimy, S.A. Chemical analysis, antioxidant, cytotoxic and antimicrobial properties of propolis from different geographic regions. Ann. Agric. Sci. 2020, 65, 209–217. [Google Scholar] [CrossRef]
Propolis Sample | Village | District/Region | GPS Coordinates |
---|---|---|---|
P1 (67) * | Gamzovo | Vidin | 44°05′ N 22°45′ E |
P2 (74) | Parsha | Gabrovo | 42°57′ N 25°29′ E |
P3 (75) | Ritya | Gabrovo | 42°59′ N 25°25′ E |
P4 (76) | Kozi rog | Gabrovo | 42°57′ N 25°16′ E |
P5 (77) | Burya | Gabrovo | 43°02′ N 25°19′ E |
P6 (79) | Malinovo | Lovech | 42°90′ N 24°90′ E |
Propolis Sample | Antioxidant Activity | ||
---|---|---|---|
DPPH, mM TE/g of Extract | IC50, μg/mL of Extract | FRAP, mM TE/g of Extract | |
P1 | 1127.7 ± 1.20 | 41.99 ± 0.46 | 708.4 ± 1.30 |
P2 | 1563.5 ± 0.90 | 30.57 ± 0.18 | 1062.8 ± 0.70 |
P3 | 1000.3 ± 0.30 | 47.14 ± 0.14 | 634.1 ± 1.00 |
P4 | 1606.0 ± 3.70 | 29.80 ± 1.03 | 1134.5 ± 1.20 |
P5 | 1407.1 ± 2.37 * | 33.90 ± 1.26 | 950.6 ± 1.02 * |
P6 | 1447.3 ± 2.20 | 32.97 ± 0.49 | 959.5 ± 1.20 |
Propolis Sample | IC50, mg/mL |
---|---|
P1 | 6.45 ± 0.07 |
P2 | 6.80 ± 0.14 |
P3 | 6.54 ± 0.02 |
P4 | 6.44 ± 0.05 |
P5 | 6.38 ± 0.18 |
P6 | 6.46 ± 0.22 |
Aspirin | 8.56 ± 0.06 |
Prednisolone Cortico | 8.72 ± 0.03 |
Propolis Sample | IC50, µg/mL, 24 h | IC50, µg/mL, 48 h | IC50, µg/mL, 72 h |
---|---|---|---|
P1 | 107.3 ± 4.38 | 33.07 ± 3.41 | 19.65 ± 6.40 |
P2 | 92.44 ± 1.57 | 37.33 ± 10.13 | 15.31 ± 2.67 |
P3 | 140.3 ± 14.07 | 58.60 ± 7.96 | 21.22 ± 9.32 |
P4 | 60.56 ± 1.02 | 23.06 ± 4.17 | 9.26 ± 2.11 |
P5 | 73.78 ± 5.28 | 44.04 ± 5.04 | 13.62 ± 0.69 |
P6 | 60.71 ± 10.61 | 26.11 ± 3.20 | 9.24 ± 2.67 |
“Kleeva tinktura” | - | - | 64.71 ± 6.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumbarski, Y.; Ivanov, I.; Todorova, M.; Apostolova, S.; Tzoneva, R.; Nikolova, K. Phenolic Content, Antioxidant Activity and In Vitro Anti-Inflammatory and Antitumor Potential of Selected Bulgarian Propolis Samples. Biomedicines 2025, 13, 334. https://doi.org/10.3390/biomedicines13020334
Tumbarski Y, Ivanov I, Todorova M, Apostolova S, Tzoneva R, Nikolova K. Phenolic Content, Antioxidant Activity and In Vitro Anti-Inflammatory and Antitumor Potential of Selected Bulgarian Propolis Samples. Biomedicines. 2025; 13(2):334. https://doi.org/10.3390/biomedicines13020334
Chicago/Turabian StyleTumbarski, Yulian, Ivan Ivanov, Mina Todorova, Sonia Apostolova, Rumiana Tzoneva, and Krastena Nikolova. 2025. "Phenolic Content, Antioxidant Activity and In Vitro Anti-Inflammatory and Antitumor Potential of Selected Bulgarian Propolis Samples" Biomedicines 13, no. 2: 334. https://doi.org/10.3390/biomedicines13020334
APA StyleTumbarski, Y., Ivanov, I., Todorova, M., Apostolova, S., Tzoneva, R., & Nikolova, K. (2025). Phenolic Content, Antioxidant Activity and In Vitro Anti-Inflammatory and Antitumor Potential of Selected Bulgarian Propolis Samples. Biomedicines, 13(2), 334. https://doi.org/10.3390/biomedicines13020334