Leucine Potentiates Glucose-mediated 18F-FDG Uptake in Brown Adipose Tissue via β-Adrenergic Activation
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. In Vivo Imaging with PET
4.3. Treatments
4.4. Statistics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
18F-FDG T2D | 2-deoxy-2-(fluorine-18)fluoro-d-glucose Type 2 diabetes |
BAT | Brown adipose tissue |
PET | Positron emission tomography |
UCP-1 | Uncoupling protein one |
DIT | Diet-induced thermogenesis |
IBAT | Interscapular brown adipose tissue |
SUVmean | Average standard uptake values |
SUVMAX | Maximum standard uptake values |
PRP | Propanolol hydrochloride |
SEM | Standard error of the mean |
Rags | Ras-related GTPase |
Rheb | Ras homolog enriched in the brain |
PKA | Protein kinase A |
References
- World Health Organization Global Health Observatory (GHO) Data: Top 10 Causes of Death. Available online: https://www.who.int/gho/mortality_burden_disease/causes_death/top_10/en/ (accessed on 11 June 2020).
- International Diabetes Federation. IDF Diabetes Atlas, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015; ISBN 978-2-930229-81-2. [Google Scholar]
- Chondronikola, M.; Volpi, E.; Børsheim, E.; Porter, C.; Annamalai, P.; Enerbäck, S.; Lidell, M.E.; Saraf, M.K.; Labbe, S.M.; Hurren, N.M.; et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 2014, 63, 4089–4099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cypess, A.M.; Lehman, S.; Williams, G.; Tal, I.; Rodman, D.; Goldfine, A.B.; Kuo, F.C.; Palmer, E.L.; Tseng, Y.-H.; Doria, A.; et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 2009, 360, 1509–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanford, K.I.; Middelbeek, R.J.W.; Townsend, K.L.; An, D.; Nygaard, E.B.; Hitchcox, K.M.; Markan, K.R.; Nakano, K.; Hirshman, M.F.; Tseng, Y.-H.; et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 2013, 123, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loh, R.K.C.; Kingwell, B.A.; Carey, A.L. Human brown adipose tissue as a target for obesity management; beyond cold-induced thermogenesis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2017. [Google Scholar] [CrossRef] [PubMed]
- Peirce, V.; Vidal-Puig, A. Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes Endocrinol. 2013, 1, 353–360. [Google Scholar] [CrossRef]
- Thyagarajan, B.; Foster, M.T. Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Horm. Mol. Biol. Clin. Investig. 2017. [Google Scholar] [CrossRef]
- Mirbolooki, M.R.; Constantinescu, C.C.; Pan, M.-L.; Mukherjee, J. Quantitative assessment of brown adipose tissue metabolic activity and volume using 18F-FDG PET/CT and ß3-adrenergic receptor activation. Ejnmmi Res. 2011, 1, 30. [Google Scholar] [CrossRef] [Green Version]
- Terada, H. Uncouplers of oxidative phosphorylation. Env. Health Perspect. 1990, 87, 213–218. [Google Scholar] [CrossRef]
- Fedorenko, A.; Lishko, P.V.; Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 2012, 151, 400–413. [Google Scholar] [CrossRef] [Green Version]
- Carmean, C.M.; Bobe, A.M.; Yu, J.C.; Volden, P.A.; Brady, M.J. Refeeding-induced brown adipose tissue glycogen hyper-accumulation in mice is mediated by insulin and catecholamines. PLoS ONE 2013, 8, e67807. [Google Scholar] [CrossRef] [Green Version]
- Glick, Z.; Raum, W.J. Norepinephrine turnover in brown adipose tissue is stimulated by a single meal. Am. J. Physiol. 1986, 251, R13–R17. [Google Scholar] [CrossRef] [PubMed]
- Glick, Z.; Teague, R.J.; Bray, G.A. Brown adipose tissue: Thermic response increased by a single low protein, high carbohydrate meal. Science 1981, 213, 1125–1127. [Google Scholar] [CrossRef] [PubMed]
- Glick, Z.; Teague, R.J.; Bray, G.A.; Lee, M. Compositional and metabolic changes in brown adipose tissue following a single test meal. Metabolism 1983, 32, 1146–1150. [Google Scholar] [CrossRef]
- Vosselman, M.J.; Brans, B.; van der Lans, A.A.J.J.; Wierts, R.; van Baak, M.A.; Mottaghy, F.M.; Schrauwen, P.; van Marken Lichtenbelt, W.D. Brown adipose tissue activity after a high-calorie meal in humans. Am. J. Clin. Nutr. 2013, 98, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Han, S.-F.; Zhang, W.; Xu, J.-Y.; Tong, X.; Yin, X.-B.; Yuan, L.-X.; Qin, L.-Q. Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet. Food Nutr. Res. 2016, 60, 31304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binder, E.; Bermúdez-Silva, F.J.; Elie, M.; Leste-Lasserre, T.; Belluomo, I.; Clark, S.; Duchampt, A.; Mithieux, G.; Cota, D. Leucine supplementation modulates fuel substrates utilization and glucose metabolism in previously obese mice. Obes. (Silver Spring, Md) 2014, 22, 713–720. [Google Scholar] [CrossRef]
- Noatsch, A.; Petzke, K.J.; Millrose, M.K.; Klaus, S. Body weight and energy homeostasis was not affected in C57BL/6 mice fed high whey protein or leucine-supplemented low-fat diets. Eur. J. Nutr. 2011, 50, 479–488. [Google Scholar] [CrossRef]
- Kuhara, T.; Ikeda, S.; Ohneda, A.; Sasaki, Y. Effects of intravenous infusion of 17 amino acids on the secretion of GH, glucagon, and insulin in sheep. Am. J. Physiol. 1991, 260, E21–E26. [Google Scholar] [CrossRef]
- Garlick, P.J.; Grant, I. Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids. Biochem. J. 1988, 254, 579–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishitani, S.; Matsumura, T.; Fujitani, S.; Sonaka, I.; Miura, Y.; Yagasaki, K. Leucine promotes glucose uptake in skeletal muscles of rats. Biochem. Biophys. Res. Commun. 2002, 299, 693–696. [Google Scholar] [CrossRef]
- Van Baak, M.A. Meal-induced activation of the sympathetic nervous system and its cardiovascular and thermogenic effects in man. Physiol. Behav. 2008, 94, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Issad, T.; Combettes, M.; Ferre, P. Isoproterenol inhibits insulin-stimulated tyrosine phosphorylation of the insulin receptor without increasing its serine/threonine phosphorylation. Eur. J. Biochem. 1995, 234, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Obermaier, B.; Ermel, B.; Kirsch, D.; Mushack, J.; Rattenhuber, E.; Biemer, E.; Machicao, F.; Häring, H.U. Catecholamines and tumour promoting phorbolesters inhibit insulin receptor kinase and induce insulin resistance in isolated human adipocytes. Diabetologia 1987, 30, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Häring, H.; Kirsch, D.; Obermaier, B.; Ermel, B.; Machicao, F. Decreased tyrosine kinase activity of insulin receptor isolated from rat adipocytes rendered insulin-resistant by catecholamine treatment in vitro. Biochem. J. 1986, 234, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Klein, J.; Fasshauer, M.; Ito, M.; Lowell, B.B.; Benito, M.; Kahn, C.R. Beta(3)-adrenergic stimulation differentially inhibits insulin signaling and decreases insulin-induced glucose uptake in brown adipocytes. J. Biol. Chem. 1999, 274, 34795–34802. [Google Scholar] [CrossRef] [Green Version]
- Hankir, M.K.; Kranz, M.; Keipert, S.; Weiner, J.; Andreasen, S.G.; Kern, M.; Patt, M.; Klöting, N.; Heiker, J.T.; Brust, P.; et al. Dissociation Between Brown Adipose Tissue 18F-FDG Uptake and Thermogenesis in Uncoupling Protein 1-Deficient Mice. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2017, 58, 1100–1103. [Google Scholar] [CrossRef] [Green Version]
- Cannon, B.; Nedergaard, J. Brown adipose tissue: Function and physiological significance. Physiol. Rev. 2004, 84, 277–359. [Google Scholar] [CrossRef]
- Lowell, B.B.; Flier, J.S. Brown adipose tissue, β3-adrenergic receptors, and obesity. Annu. Rev. Med. 1997, 48, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Stipanuk, M.H. Leucine and protein synthesis: mTOR and beyond. Nutr. Rev. 2007, 65, 122–129. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, K.; LeBlanc, R.E.; Loh, D.; Schwartz, G.J.; Yu, Y.-H. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 2007, 56, 1647–1654. [Google Scholar] [CrossRef] [Green Version]
- Gojda, J.; Straková, R.; Plíhalová, A.; Tůma, P.; Potočková, J.; Polák, J.; Anděl, M. Increased Incretin But Not Insulin Response after Oral versus Intravenous Branched Chain Amino Acids. Ann. Nutr. Metab. 2017, 70, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Poncet, N.; Mitchell, F.E.; Ibrahim, A.F.M.; McGuire, V.A.; English, G.; Arthur, J.S.C.; Shi, Y.-B.; Taylor, P.M. The catalytic subunit of the system L1 amino acid transporter (slc7a5) facilitates nutrient signalling in mouse skeletal muscle. PLoS ONE 2014, 9, e89547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steenen, S.A.; van Wijk, A.J.; van der Heijden, G.J.M.G.; van Westrhenen, R.; de Lange, J.; de Jongh, A. Propranolol for the treatment of anxiety disorders: Systematic review and meta-analysis. J. Psychopharmacol. (Oxf.) 2016, 30, 128–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Propranolol. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Bylund, D.B.; Gruetter, C.A. Propranolol. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: New York, NY, USA, 2007; pp. 1–9. ISBN 978-0-08-055232-3. [Google Scholar]
- Söderlund, V.; Larsson, S.A.; Jacobsson, H. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1018–1022. [Google Scholar] [CrossRef]
- Parysow, O.; Mollerach, A.M.; Jager, V.; Racioppi, S.; San Roman, J.; Gerbaudo, V.H. Low-dose oral propranolol could reduce brown adipose tissue F-18 FDG uptake in patients undergoing PET scans. Clin. Nucl. Med. 2007, 32, 351–357. [Google Scholar] [CrossRef]
- Collins, S.; Daniel, K.W.; Rohlfs, E.M.; Ramkumar, V.; Taylor, I.L.; Gettys, T.W. Impaired expression and functional activity of the beta 3- and beta 1-adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice. Mol. Endocrinol. Balt. Md 1994, 8, 518–527. [Google Scholar] [CrossRef] [Green Version]
- Ueta, C.B.; Fernandes, G.W.; Capelo, L.P.; Fonseca, T.L.; Maculan, F.D.; Gouveia, C.H.A.; Brum, P.C.; Christoffolete, M.A.; Aoki, M.S.; Lancellotti, C.L.; et al. β(1) Adrenergic receptor is key to cold- and diet-induced thermogenesis in mice. J. Endocrinol. 2012, 214, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Castillo, M.; Hall, J.A.; Correa-Medina, M.; Ueta, C.; Kang, H.W.; Cohen, D.E.; Bianco, A.C. Disruption of thyroid hormone activation in type 2 deiodinase knockout mice causes obesity with glucose intolerance and liver steatosis only at thermoneutrality. Diabetes 2011, 60, 1082–1089. [Google Scholar] [CrossRef] [Green Version]
- Brodie, B.B.; Costa, E.; Dlabac, A.; Neff, N.H.; Smookler, H.H. Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines. J. Pharm. Exp. Ther. 1966, 154, 493–498. [Google Scholar]
- Levin, B.E. Reduced norepinephrine turnover in organs and brains of obesity-prone rats. Am. J. Physiol. 1995, 268, R389–R394. [Google Scholar] [CrossRef]
- Cheng, Y.; Meng, Q.; Wang, C.; Li, H.; Huang, Z.; Chen, S.; Xiao, F.; Guo, F. Leucine deprivation decreases fat mass by stimulation of lipolysis in white adipose tissue and upregulation of uncoupling protein 1 (UCP1) in brown adipose tissue. Diabetes 2010, 59, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Zhang, Q.; Meng, Q.; Xia, T.; Huang, Z.; Wang, C.; Liu, B.; Chen, S.; Xiao, F.; Du, Y.; et al. Leucine deprivation stimulates fat loss via increasing CRH expression in the hypothalamus and activating the sympathetic nervous system. Mol. Endocrinol. 2011, 25, 1624–1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dibble, C.C.; Manning, B.D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 2013, 15, 555–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, X.; Liu, M.; Luo, H.; Dong, L.Q.; Liu, F. Ursolic acid inhibits leucine-stimulated mTORC1 signaling by suppressing mTOR localization to lysosome. PLoS ONE 2014, 9, e95393. [Google Scholar] [CrossRef]
- Harlan, S.M.; Guo, D.-F.; Morgan, D.A.; Fernandes-Santos, C.; Rahmouni, K. Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab. 2013, 17, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Muta, K.; Morgan, D.A.; Rahmouni, K. The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight, and sympathetic nerve activity in male mice. Endocrinology 2015, 156, 1398–1407. [Google Scholar] [CrossRef] [Green Version]
- Steiner, J.L.; Bardgett, M.E.; Wolfgang, L.; Lang, C.H.; Stocker, S.D. Glucocorticoids attenuate the central sympathoexcitatory actions of insulin. J. Neurophysiol. 2014, 112, 2597–2604. [Google Scholar] [CrossRef] [Green Version]
- Kooijman, S.; Wang, Y.; Parlevliet, E.T.; Boon, M.R.; Edelschaap, D.; Snaterse, G.; Pijl, H.; Romijn, J.A.; Rensen, P.C.N. Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice. Diabetologia 2015, 58, 2637–2646. [Google Scholar] [CrossRef] [Green Version]
- Okla, M.; Kim, J.; Koehler, K.; Chung, S. Dietary Factors Promoting Brown and Beige Fat Development and Thermogenesis. Adv. Nutr. 2017, 8, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Olsen, J.M.; Csikasz, R.I.; Dehvari, N.; Lu, L.; Sandström, A.; Öberg, A.I.; Nedergaard, J.; Stone-Elander, S.; Bengtsson, T. β3-Adrenergically induced glucose uptake in brown adipose tissue is independent of UCP1 presence or activity: Mediation through the mTOR pathway. Mol. Metab. 2017, 6, 611–619. [Google Scholar] [CrossRef]
- Batts, T.W.; Lees, S.J.; Williams, J.H. Combined effects of exercise and fasting on skeletal muscle glycogen and sarcoplasmic reticulum function. Basic Appl. Myol. 2009, 247–252. [Google Scholar]
- Philipson, L.H. beta-Agonists and metabolism. J. Allergy Clin. Immunol. 2002, 110, S313–S317. [Google Scholar] [CrossRef] [PubMed]
- Bahler, L.; Holleman, F.; Booij, J.; Hoekstra, J.B.; Verberne, H.J. Interobserver and intraobserver variability for the assessment of brown adipose tissue activity on 18F-FDG PET-CT. Nucl. Med. Commun. 2016, 37, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Kinahan, P.E.; Fletcher, J.W. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. In Seminars in Ultrasound, CT and MRI; WB Saunders: Philadelphia, PA, USA, 2010; Volume 31, pp. 496–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tissue | Treatment | SUVMAX | ± | SEM |
---|---|---|---|---|
Heart | Control | 1.80 | ± | 0.23 |
G | 1.59 | ± | 0.04 | |
Leu | 1.46 | ± | 0.14 | |
G + Leu | 1.69 | ± | 0.05 | |
Paraspinal skeletal muscle | Control | 4.69 | ± | 0.42 |
G | 4.25 | ± | 0.45 | |
Leu | 4.68 | ± | 0.68 | |
G + Leu | 4.19 | ± | 0.43 |
Tissue | Treatment | SUVMAX | ± | SEM |
---|---|---|---|---|
Interscapular brown adipose tissue | Control | 12.07 | ± | 1.30 |
Glu+G | 11.61 | ± | 1.20 | |
Heart | Control | 2.33 | ± | 0.50 |
Glu+G | 1.99 | ± | 0.18 | |
Paraspinal skeletal muscle | Control | 6.06 | ± | 0.96 |
Glu+G | 5.13 | ± | 0.77 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huska, B.; Niccoli, S.; Phenix, C.P.; Lees, S.J. Leucine Potentiates Glucose-mediated 18F-FDG Uptake in Brown Adipose Tissue via β-Adrenergic Activation. Biomedicines 2020, 8, 159. https://doi.org/10.3390/biomedicines8060159
Huska B, Niccoli S, Phenix CP, Lees SJ. Leucine Potentiates Glucose-mediated 18F-FDG Uptake in Brown Adipose Tissue via β-Adrenergic Activation. Biomedicines. 2020; 8(6):159. https://doi.org/10.3390/biomedicines8060159
Chicago/Turabian StyleHuska, Brenda, Sarah Niccoli, Christopher P. Phenix, and Simon J. Lees. 2020. "Leucine Potentiates Glucose-mediated 18F-FDG Uptake in Brown Adipose Tissue via β-Adrenergic Activation" Biomedicines 8, no. 6: 159. https://doi.org/10.3390/biomedicines8060159
APA StyleHuska, B., Niccoli, S., Phenix, C. P., & Lees, S. J. (2020). Leucine Potentiates Glucose-mediated 18F-FDG Uptake in Brown Adipose Tissue via β-Adrenergic Activation. Biomedicines, 8(6), 159. https://doi.org/10.3390/biomedicines8060159