Subcutaneous Implantation Assessment of New Calcium-Silicate Based Sealer for Warm Obturation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Study
2.2. Experimental Protocol
2.3. Histological Analysis
2.4. Statistical Analysis
3. Results
3.1. Control Group
3.2. AH Plus
3.3. TotalFill BC Sealer
3.4. TotalFill BC Sealer HiFlow
3.5. Time Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedman, S.; Torneck, C.D.; Komorowski, R.; Ouzounian, Z.; Syrtash, P.; Kaufman, A. In vivo model for assessing the functional efficacy of endodontic filling materials and techniques. J. Endod. 1997, 23, 557–561. [Google Scholar] [CrossRef]
- Ricucci, D.; Langeland, K. Apical limit of root canal instrumentation and obturation, part 2. A histological study. Int. Endod. J. 1998, 31, 394–409. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.L.; Mann, V.; Rahbaran, S.; Lewsey, J.; Gulabivala, K. Outcome of primary root canal treatment: Systematic review of the literature—Part 2. Influence of clinical factors. Int. Endod. J. 2008, 41, 6–31. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Ye, L.; Tan, H.; Zhou, X. Outcome of root canal obturation by warm gutta-percha versus cold lateral condensation: A meta-analysis. J. Endod. 2007, 33, 106–109. [Google Scholar] [CrossRef]
- Chybowski, E.A.; Glickman, G.N.; Patel, Y.; Fleury, A.; Solomon, E.; He, J. Clinical outcome of non-surgical root canal treatment using a single-cone technique with Endosequence Bioceramic Sealer: A retrospective analysis. J. Endod. 2018, 44, 941–945. [Google Scholar] [CrossRef]
- Goldberg, F.; Cantarini, C.; Alfie, D.; Macchi, R.L.; Arias, A. Relationship between unintentional canal overfilling and the long-term outcome of primary root canal treatments and nonsurgical retreatments: A retrospective radiographic assessment. Int. Endod. J. 2020, 53, 19–26. [Google Scholar] [CrossRef]
- Dos Santos Costa, F.M.; Fernandes, M.H.; Batistuzzo de Medeiros, S.R. Genotoxicity of root canal sealers: A literature review. Clin. Oral Investig. 2020, 24, 3347–3362. [Google Scholar] [CrossRef]
- Fristad, I.; Molven, O.; Halse, A. Nonsurgically retreated root filled teeth--radiographic findings after 20–27 years. Int. Endod. J. 2004, 37, 12–18. [Google Scholar] [CrossRef]
- Palma, P.J.; Ramos, J.C.; Martins, J.B.; Diogenes, A.; Figueiredo, M.H.; Ferreira, P.; Viegas, C.; Santos, J.M. Histologic evaluation of regenerative endodontic procedures with the use of chitosan scaffolds in immature dog teeth with apical periodontitis. J. Endod. 2017, 43, 1279–1287. [Google Scholar] [CrossRef]
- Donnermeyer, D.; Burklein, S.; Dammaschke, T.; Schafer, E. Endodontic sealers based on calcium silicates: A systematic review. Odontology 2019, 107, 421–436. [Google Scholar] [CrossRef]
- Sequeira, D.B.; Seabra, C.M.; Palma, P.J.; Cardoso, A.L.; Peca, J.; Santos, J.M. Effects of a new bioceramic material on human apical papilla cells. J. Funct. Biomater. 2018, 9, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.M.; Du, T.F.; Shen, Y.; Wang, Z.J.; Zheng, Y.F.; Haapasalo, M. In vitro cytotoxicity of calcium silicate-containing endodontic sealers. J. Endod. 2015, 41, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Garcia, S.; Myong-Hyun, B.; Lozano, A.; Garcia-Bernal, D.; Forner, L.; Llena, C.; Guerrero-Girones, J.; Murcia, L.; Rodriguez-Lozano, F.J. Cytocompatibility, bioactivity potential, and ion release of three premixed calcium silicate-based sealers. Clin. Oral Investig. 2020, 24, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
- Zordan-Bronzel, C.L.; Tanomaru-Filho, M.; Rodrigues, E.M.; Chavez-Andrade, G.M.; Faria, G.; Guerreiro-Tanomaru, J.M. Cytocompatibility, bioactive potential and antimicrobial activity of an experimental calcium silicate-based endodontic sealer. Int. Endod. J. 2019, 52, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Bai, W.; Liang, Y.H.; Gao, X.J. Influence of warm vertical compaction technique on physical properties of root canal sealers. J. Endod. 2016, 42, 1829–1833. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Haapasalo, M.; Mobuchon, C.; Li, X.; Ma, J.; Shen, Y. Cytotoxicity and the Effect of Temperature on Physical Properties and Chemical Composition of a New Calcium Silicate-based Root Canal Sealer. J. Endod. 2020, 46, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lozano, F.J.; Lopez-Garcia, S.; Garcia-Bernal, D.; Tomas-Catala, C.J.; Santos, J.M.; Llena, C.; Lozano, A.; Murcia, L.; Forner, L. Chemical composition and bioactivity potential of the new Endosequence BC Sealer formulation HiFlow. Int. Endod. J. 2020. [Google Scholar] [CrossRef]
- Santos, J.M.; Pereira, S.; Sequeira, D.B.; Messias, A.L.; Martins, J.B.; Cunha, H.; Palma, P.J.; Santos, A.C. Biocompatibility of a bioceramic silicone-based sealer in subcutaneous tissue. J. Oral Sci. 2019, 61, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Kilkenny, C.; Browne, W.; Cuthill, I.C.; Emerson, M.; Altman, D.G.; Group, N.C.R.R.G.W. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 2010, 160, 1577–1579. [Google Scholar] [CrossRef]
- Taha, N.A.; Safadi, R.A.; Alwedaie, M.S. Biocompatibility evaluation of EndoSequence Root Repair paste in the connective tissue of rats. J. Endod. 2016, 42, 1523–1528. [Google Scholar] [CrossRef]
- Council, N.R. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies: Washington, DC, USA, 2011. [Google Scholar]
- Ferreira, C.M.A.; Sassone, L.M.; Goncalves, A.S.; de Carvalho, J.J.; Tomas-Catala, C.J.; Garcia-Bernal, D.; Onate-Sanchez, R.E.; Rodriguez-Lozano, F.J.; Silva, E. Physicochemical, cytotoxicity and in vivo biocompatibility of a high-plasticity calcium-silicate based material. Sci. Rep. 2019, 9, 3933. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, L.S.; Iglesias, J.E.; Boijink, D.; Mestieri, L.B.; Poli Kopper, P.M.; Figueiredo, J.A.P.; Grecca, F.S. Cell Viability and tissue reaction of NeoMTA Plus: An in vitro and in vivo study. J. Endod. 2018, 44, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Koutroulis, A.; Kuehne, S.A.; Cooper, P.R.; Camilleri, J. The role of calcium ion release on biocompatibility and antimicrobial properties of hydraulic cements. Sci. Rep. 2019, 9, 19019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benetti, F.; Queiroz, I.O.A.; Cosme-Silva, L.; Conti, L.C.; Oliveira, S.H.P.; Cintra, L.T.A. Cytotoxicity, Biocompatibility and biomineralization of a new ready-for-use Bioceramic Repair Material. Braz. Dent. J. 2019, 30, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, D.G.; Lee, D.; Kim, Y.M.; Song, D.; Kim, S.Y. Biocompatibility and mineralization activity of three calcium silicate-based root canal sealers compared to conventional resin-based sealer in human dental pulp stem cells. Materials 2019, 12, 2482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, C.; Costa-Rodrigues, J.; Capelas, J.A.; Fernandes, M.H. Long-term dose- and time-dependent effects of endodontic sealers in human in vitro osteoclastogenesis. J. Endod. 2013, 39, 833–838. [Google Scholar] [CrossRef]
- Candeiro, G.T.; Correia, F.C.; Duarte, M.A.; Ribeiro-Siqueira, D.C.; Gavini, G. Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer. J. Endod. 2012, 38, 842–845. [Google Scholar] [CrossRef] [Green Version]
- Alves Silva, E.C.; Tanomaru-Filho, M.; da Silva, G.F.; Delfino, M.M.; Cerri, P.S.; Guerreiro-Tanomaru, J.M. Biocompatibility and bioactive potential of new calcium silicate-based endodontic sealers: Bio-C Sealer and Sealer Plus BC. J. Endod. 2020, 46, 1470–1477. [Google Scholar] [CrossRef]
- Khalil, W.A.; Abunasef, S.K. Can Mineral Trioxide Aggregate and Nanoparticulate EndoSequence Root Repair Material produce injurious effects to rat subcutaneous tissues? J. Endod. 2015, 41, 1151–1156. [Google Scholar] [CrossRef]
- Torres, F.F.E.; Zordan-Bronzel, C.L.; Guerreiro-Tanomaru, J.M.; Chavez-Andrade, G.M.; Pinto, J.C.; Tanomaru-Filho, M. Effect of immersion in distilled water or phosphate-buffered saline on the solubility, volumetric change and presence of voids within new calcium silicate-based root canal sealers. Int. Endod. J. 2020, 53, 385–391. [Google Scholar] [CrossRef]
- Giacomino, C.M.; Wealleans, J.A.; Kuhn, N.; Diogenes, A. Comparative Biocompatibility and Osteogenic Potential of Two Bioceramic Sealers. J. Endod. 2019, 45, 51–56. [Google Scholar] [CrossRef]
- Silva, E.; Ehrhardt, I.C.; Sampaio, G.C.; Cardoso, M.L.; Oliveira, D.D.S.; Uzeda, M.J.; Calasans-Maia, M.D.; Cavalcante, D.M.; Zuolo, M.L.; De-Deus, G. Determining the setting of root canal sealers using an in vivo animal experimental model. Clin. Oral Investig. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bueno, C.R.E.; Vasques, A.M.V.; Cury, M.T.S.; Sivieri-Araujo, G.; Jacinto, R.C.; Gomes, J.E.; Cintra, L.T.A.; Dezan, E. Biocompatibility and biomineralization assessment of mineral trioxide aggregate flow. Clin. Oral Investig. 2019, 23, 169–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumer, M.; Muglali, M.; Bodrumlu, E.; Guvenc, T. Reactions of connective tissue to amalgam, intermediate restorative material, mineral trioxide aggregate, and mineral trioxide aggregate mixed with chlorhexidine. J. Endod. 2006, 32, 1094–1096. [Google Scholar] [CrossRef] [PubMed]
- Yaltirik, M.; Ozbas, H.; Bilgic, B.; Issever, H. Reactions of connective tissue to mineral trioxide aggregate and amalgam. J. Endod. 2004, 30, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part III: Clinical applications, drawbacks, and mechanism of action. J. Endod. 2010, 36, 400–413. [Google Scholar] [CrossRef] [PubMed]
Sealer | Manufacturer | Composition | Lot/Exp |
---|---|---|---|
AH Plus | Dentsply DeTrey, Konstanz, Germany | Epoxide paste: diepoxide, calcium tungstate, zirconium oxide, aerosil, pigment; Amine paste: 1-adamantane amine, N, N’-dibenzyl-5-oxa-nonandiamin-1,9, TCD-diamine, calcium tungstate, zirconium oxide, aerosil and silicon oil | 1810000177 2020-10-31 |
TotalFill BC Sealer (BC) | FKG, La Chaux-des-Fonds, Switzerland | Zirconium oxide, calcium silicates, calcium phosphate monobasic, calcium hydroxide, filler and thickening agents | (10)18004SP 2020-12-31 |
TotalFill BC Sealer HiFlow (HiFlow) | FKG, La Chaux-des-Fonds, Switzerland | Zirconium oxide, tricalcium silicate, dicalcium silicate, calcium hydroxide and fillers | (10)1803SPWF 2020-11-30 |
Scores | 0 | 1 | 2 | 3 |
---|---|---|---|---|
Inflammatory reaction | Absent with few inflammatory cells | Mild with less than 25 cells | Moderate with 25 to 125 cells | Severe with more than 125 cells |
Macrophage infiltrate | Less than 10 cells | 10 to 30 cells | More than 30 cells | - |
Mineralization | Absent | Less than half the mineralized area | More than half the mineralized area | - |
8-Days * | 30-Days ** | ||||||||
---|---|---|---|---|---|---|---|---|---|
Scores | Control | AH Plus | BC | HiFlow | Control | AH Plus | BC | HiFlow | |
Inflammatory reaction | 0 | 2 (25) | 0 (0) | 1 (12.5) | 0 (0) | 6 (75) | 0 (0) | 7 (87.5) | 4 (50) |
1 | 6 (75) | 1 (12.5) | 7 (87.5) | 5 (62.5) | 2 (25) | 4 (50) | 1 (12.5) | 4 (50) | |
2 | 0 (0) | 6 (75) | 0 (0) | 3 (37.5) | 0 (0) | 4 (50) | 0 (0) | 0 (0) | |
3 | 0 (0) | 1 (12.5) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Macrophage infiltrate | 0 | 8 (100) | 4 (50) | 7 (87.5) | 2 (25) | 8 (100) | 6 (75) | 3 (37.5) | 0 (0) |
1 | 0 (0) | 4 (50) | 1 (12.5) | 2 (25) | 0 (0) | 2 (25) | 5 (62.5) | 6 (75) | |
2 | 0 (0) | 0 (0) | 0 (0) | 4 (50) | 0 (0) | 0 (0) | 0 (0) | 2 (25) | |
Mineralization | 0 | 8 (100) | 8 (100) | 3 (37.5) | 0 (0) | 8 (100) | 8 (100) | 2 (25) | 0 (0) |
1 | 0 (0) | 0 (0) | 4 (50) | 6 (75) | 0 (0) | 0 (0) | 5 (62.5) | 5 (62.5) | |
2 | 0 (0) | 0 (0) | 1 (12.5) | 2 (25) | 0 (0) | 0 (0) | 1 (12.5) | 3 (37.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.M.; Coelho, C.M.; Sequeira, D.B.; Marques, J.A.; Pereira, J.F.; Sousa, V.; Palma, P.J.; Santos, A.C. Subcutaneous Implantation Assessment of New Calcium-Silicate Based Sealer for Warm Obturation. Biomedicines 2021, 9, 24. https://doi.org/10.3390/biomedicines9010024
Santos JM, Coelho CM, Sequeira DB, Marques JA, Pereira JF, Sousa V, Palma PJ, Santos AC. Subcutaneous Implantation Assessment of New Calcium-Silicate Based Sealer for Warm Obturation. Biomedicines. 2021; 9(1):24. https://doi.org/10.3390/biomedicines9010024
Chicago/Turabian StyleSantos, João Miguel, Carolina M. Coelho, Diana B. Sequeira, Joana A. Marques, Joana F. Pereira, Vitor Sousa, Paulo J. Palma, and Ana C. Santos. 2021. "Subcutaneous Implantation Assessment of New Calcium-Silicate Based Sealer for Warm Obturation" Biomedicines 9, no. 1: 24. https://doi.org/10.3390/biomedicines9010024
APA StyleSantos, J. M., Coelho, C. M., Sequeira, D. B., Marques, J. A., Pereira, J. F., Sousa, V., Palma, P. J., & Santos, A. C. (2021). Subcutaneous Implantation Assessment of New Calcium-Silicate Based Sealer for Warm Obturation. Biomedicines, 9(1), 24. https://doi.org/10.3390/biomedicines9010024