Pharmacoinformatics and Preclinical Studies of NSC765690 and NSC765599, Potential STAT3/CDK2/4/6 Inhibitors with Antitumor Activities against NCI60 Human Tumor Cell Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Anticancer Screening against 60 Full NCI Cell Panels of Human Tumor Cell Lines
2.2. Identifying the Molecular Targets and Therapeutic Classes of NSC765599 and NSC765690
2.3. In Silico Molecular Docking Analyses
2.4. Pharmacokinetics, Drug-Likeness, Toxicity and Medicinal Chemical Analyses
2.5. Data Analysis
3. Results
3.1. NSC765690 and NSC765599 Exhibited Anti-Proliferative Effects on NCI60 Human Cancer Cell Lines
3.2. NSC765690 and NSC765599 Exhibited Dose-Dependent Cytotoxic Effects against NCI 60 Human Cancer Cell Lines
3.3. NSC765599 and NSC765690 Shared Similar NCI Anti-Cancer Fingerprints and Molecular Targets of Cell Cycle Transition Proteins
3.4. CDK2/4/6 and STAT3 Are Potential Druggable Candidates for NSC765690 and NSC765599
3.5. Molecular Docking Reavealed Favoured Ligandability of NSC765690 and NSC765599 for CDK2/4/6 and STAT3
3.6. NSC765599 and NSC765690 Met the Required Criteria of Drug-Likeness and Safety
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, I.; He, Y.-Y. Targeting the AMP-Activated Protein Kinase for Cancer Prevention and Therapy. Front. Oncol. 2013, 3, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA A Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Lee, J.-C.; Wu, A.T.H.; Chen, J.-H.; Huang, W.-Y.; Lawal, B.; Mokgautsi, N.; Huang, H.-S.; Ho, C.-L. HNC0014, a Multi-Targeted Small-Molecule, Inhibits Head and Neck Squamous Cell Carcinoma by Suppressing c-Met/STAT3/CD44/PD-L1 Oncoimmune Signature and Eliciting Antitumor Immune Responses. Cancers 2020, 12, 3759. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, R.; Gupta, S. Epigenetic modifications in cancer. Clin. Genet. 2012, 81, 303–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Zheng, P.; Zhu, W. Research Progress of Small Molecule VEGFR/c-Met Inhibitors as Anticancer Agents (2016–Present). Molecules 2020, 25, 2666. [Google Scholar] [CrossRef]
- Zhuo, L.-S.; Xu, H.-C.; Wang, M.-S.; Zhao, X.-E.; Ming, Z.-H.; Zhu, X.-L.; Huang, W.; Yang, G.-F. 2, 7-naphthyridinone-based MET kinase inhibitors: A promising novel scaffold for antitumor drug development. Eur. J. Med. Chem. 2019, 178, 705–714. [Google Scholar] [CrossRef]
- Robinson, D.R.; Wu, Y.-M.; Lin, S.-F. The protein tyrosine kinase family of the human genome. Oncogene 2000, 19, 5548–5557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeulen, K.; Van Bockstaele, D.R.; Berneman, Z.N. The cell cycle: A review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003, 36, 131–149. [Google Scholar] [CrossRef] [PubMed]
- Squires, M.S.; Feltell, R.E.; Wallis, N.G.; Lewis, E.J.; Smith, D.-M.; Cross, D.M.; Lyons, J.F.; Thompson, N.T. Biological characterization of AT7519, a small-molecule inhibitor of cyclin-dependent kinases, in human tumor cell lines. Mol. Cancer Ther. 2009, 8, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Brown, V.D.; Phillips, R.A.; Gallie, B.L. Cumulative effect of phosphorylation of pRB on regulation of E2F activity. Mol. Cell. Biol. 1999, 19, 3246–3256. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Dynlacht, B.; Imai, T.; Hori, T.-A.; Harlow, E. Expression of NPAT, a novel substrate of cyclin E–CDK2, promotes S-phase entry. Genes. Dev. 1998, 12, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Goel, B.; Tripathi, N.; Bhardwaj, N.; Jain, S.K. Small Molecule CDK Inhibitors for the Therapeutic Management of Cancer. Curr. Top. Med. Chem. 2020, 20, 1535–1563. [Google Scholar] [CrossRef]
- Kim, S.; Loo, A.; Chopra, R.; Caponigro, G.; Huang, A.; Vora, S.; Parasuraman, S.; Howard, S.; Keen, N.; Sellers, W.; et al. Abstract PR02: LEE011: An orally bioavailable, selective small molecule inhibitor of CDK4/6– Reactivating Rb in cancer. Mol. Cancer Ther. 2013, 12, PR02. [Google Scholar] [CrossRef]
- Okada, Y.; Kato, S.; Sakamoto, Y.; Oishi, T.; Ishioka, C. Synthetic lethal interaction of CDK inhibition and autophagy inhibition in human solid cancer cell lines. Oncol. Rep. 2017, 38, 31–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayaraghavan, S.; Moulder, S.; Keyomarsi, K.; Layman, R.M. Inhibiting CDK in Cancer Therapy: Current Evidence and Future Directions. Target. Oncol. 2018, 13, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Kodym, E.; Kodym, R.; Reis, A.E.; Habib, A.A.; Story, M.D.; Saha, D. The small-molecule CDK inhibitor, SNS-032, enhances cellular radiosensitivity in quiescent and hypoxic non-small cell lung cancer cells. Lung Cancer 2009, 66, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 2015, 14, 130–146. [Google Scholar] [CrossRef] [Green Version]
- Ramaswamy, B.; Phelps, M.A.; Baiocchi, R.; Bekaii-Saab, T.; Ni, W.; Lai, J.-P.; Wolfson, A.; Lustberg, M.E.; Wei, L.; Wilkins, D. A dose-finding, pharmacokinetic and pharmacodynamic study of a novel schedule of flavopiridol in patients with advanced solid tumors. Investig. New Drugs 2012, 30, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Tan, A.R.; Yang, X.; Berman, A.; Zhai, S.; Sparreboom, A.; Parr, A.L.; Chow, C.; Brahim, J.S.; Steinberg, S.M.; Figg, W.D. Phase I trial of the cyclin-dependent kinase inhibitor flavopiridol in combination with docetaxel in patients with metastatic breast cancer. Clin. Cancer Res. 2004, 10, 5038–5047. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.; Park, N.; Park, K.-S.; Hur, J.; Cho, Y.B.; Kang, M.; An, H.-J.; Kim, S.; Hwang, S.; Moon, Y.W. Combined CDK2 and CDK4/6 Inhibition Overcomes Palbociclib Resistance in Breast Cancer by Enhancing Senescence. Cancers 2020, 12, 3566. [Google Scholar] [CrossRef]
- O’Brien, N.A.; McDermott, M.S.J.; Conklin, D.; Luo, T.; Ayala, R.; Salgar, S.; Chau, K.; Di Tomaso, E.; Babbar, N.; Su, F.; et al. Targeting activated PI3K/mTOR signaling overcomes acquired resistance to CDK4/6-based therapies in preclinical models of hormone receptor-positive breast cancer. Breast Cancer Res. 2020, 22, 89. [Google Scholar] [CrossRef]
- Pandey, K.; An, H.-J.; Kim, S.K.; Lee, S.A.; Kim, S.; Lim, S.M.; Kim, G.M.; Sohn, J.; Moon, Y.W. Molecular mechanisms of resistance to CDK4/6 inhibitors in breast cancer: A review. Int. J. Cancer 2019, 145, 1179–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawlings, J.S.; Rosler, K.M.; Harrison, D.A. The JAK/STAT signaling pathway. J. Cell Sci. 2004, 117, 1281–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018, 15, 234. [Google Scholar] [CrossRef]
- Ishibashi, K.; Koguchi, T.; Matsuoka, K.; Onagi, A.; Tanji, R.; Takinami-Honda, R.; Hoshi, S.; Onoda, M.; Kurimura, Y.; Hata, J. Interleukin-6 induces drug resistance in renal cell carcinoma. Fukushima J. Med. Sci. 2018, 64, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Priego, N.; Zhu, L.; Monteiro, C.; Mulders, M.; Wasilewski, D.; Bindeman, W.; Doglio, L.; Martínez, L.; Martínez-Saez, E.; y Cajal, S.R. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat. Med. 2018, 24, 1024–1035. [Google Scholar] [CrossRef] [PubMed]
- Kortylewski, M.; Kujawski, M.; Wang, T.; Wei, S.; Zhang, S.; Pilon-Thomas, S.; Niu, G.; Kay, H.; Mulé, J.; Kerr, W.G. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med. 2005, 11, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Villarino, A.V.; Kanno, Y.; O’Shea, J.J. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat. Immunol. 2017, 18, 374. [Google Scholar] [CrossRef]
- Kettner, N.M.; Vijayaraghavan, S.; Durak, M.G.; Bui, T.; Kohansal, M.; Ha, M.J.; Liu, B.; Rao, X.; Wang, J.; Yi, M.; et al. Combined Inhibition of STAT3 and DNA Repair in Palbociclib-Resistant ER-Positive Breast Cancer. Clin. Cancer Res. 2019, 25, 3996–4013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, S.; Tong, Q.; Liu, B.; Huang, W.; Tian, Y.; Fu, X. Targeting STAT3 in Cancer Immunotherapy. Mol. Cancer 2020, 19, 145. [Google Scholar] [CrossRef] [PubMed]
- Phosrithong, N.; Ungwitayatorn, J. Molecular docking study on anticancer activity of plant-derived natural products. Med. Chem. Res. 2010, 19, 817–835. [Google Scholar] [CrossRef]
- Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. Br. J. Pharm. 2007, 152, 9–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, S.S.; Cara, L.C.L.; Salvador, M.K. In silico pharmacology for a multidisciplinary drug discovery process. Drug Met. Pers. Ther. 2012, 27, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Kening, L.; Yuxin, D.; Lu, L.; Dong-Qing, W. Bioinformatics Approaches for Anti-cancer Drug Discovery. Curr. Drug Target. 2020, 21, 3–17. [Google Scholar] [CrossRef]
- Coussens, N.P.; Braisted, J.C.; Peryea, T.; Sittampalam, G.S.; Simeonov, A.; Hall, M.D. Small-Molecule Screens: A Gateway to Cancer Therapeutic Agents with Case Studies of Food and Drug Administration—Approved Drugs. Pharm. Rev. 2017, 69, 479–496. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.-P.; Huang, H.-S.; Hsu, Y.-C.; Sheu, M.-J.; Chang, D.-M. A Benzamide-linked Small Molecule NDMC101 Inhibits NFATc1 and NF-κB Activity: A Potential Osteoclastogenesis Inhibitor for Experimental Arthritis. J. Clin. Immunol. 2012, 32, 762–777. [Google Scholar] [CrossRef]
- Lee, C.-C.; Liu, F.-L.; Chen, C.-L.; Chen, T.-C.; Chang, D.-M.; Huang, H.-S. Discovery of 5-(2′,4′-difluorophenyl)-salicylanilides as new inhibitors of receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. Eur. J. Med. Chem. 2015, 98, 115–126. [Google Scholar] [CrossRef]
- Lee, C.-C.; Liu, F.-L.; Chen, C.-L.; Chen, T.-C.; Liu, F.-C.; Ahmed Ali, A.A.; Chang, D.-M.; Huang, H.-S. Novel inhibitors of RANKL-induced osteoclastogenesis: Design, synthesis, and biological evaluation of 6-(2,4-difluorophenyl)-3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-diones. Bioorg. Med. Chem. 2015, 23, 4522–4532. [Google Scholar] [CrossRef]
- Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 2006, 6, 813–823. [Google Scholar] [CrossRef]
- Holbeck, S.L.; Collins, J.M.; Doroshow, J.H. Analysis of Food and Drug Administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol. Cancer Ther. 2010, 9, 1451–1460. [Google Scholar] [CrossRef] [Green Version]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev. Res. 1995, 34, 91–109. [Google Scholar] [CrossRef]
- Gfeller, D.; Michielin, O.; Zoete, V. Shaping the interaction landscape of bioactive molecules. Bioinformatics 2013, 29, 3073–3079. [Google Scholar] [CrossRef] [PubMed]
- Poroikov, V.V.; Filimonov, D.A.; Gloriozova, T.A.; Lagunin, A.A.; Druzhilovskiy, D.S.; Rudik, A.V.; Stolbov, L.A.; Dmitriev, A.V.; Tarasova, O.A.; Ivanov, S.M.; et al. Computer-aided prediction of biological activity spectra for organic compounds: The possibilities and limitations. Russ. Chem. Bull. 2019, 68, 2143–2154. [Google Scholar] [CrossRef]
- Paull, K.; Shoemaker, R.; Hodes, L.; Monks, A.; Scudiero, D.; Rubinstein, L.; Plowman, J.; Boyd, M. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: Development of mean graph and COMPARE algorithm. JNCI J. Natl. Cancer Inst. 1989, 81, 1088–1092. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Chem. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Visualizer, D.S. BIOVIA, Dassault Systèmes, BIOVIA Workbook, Release 2020; BIOVIA Pipeline Pilot, Release 2020; Dassault Systèmes: San Diego, CA, USA, 2020. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, C.A. Lead-and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Martin, Y.C. A bioavailability score. J. Med. Chem. 2005, 48, 3164–3170. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Lagunin, A.A.; Zakharov, A.V.; Filimonov, D.A.; Poroikov, V.V. A new approach to QSAR modelling of acute toxicity. SAR QSAR Environ. Res. 2007, 18, 285–298. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [Green Version]
- Rathnagiriswaran, S.; Wan, Y.-W.; Abraham, J.; Castranova, V.; Qian, Y.; Guo, N.L. A population-based gene signature is predictive of breast cancer survival and chemoresponse. Int. J. Oncol. 2010, 36, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Bates, S.E.; Fojo, A.T.; Weinstein, J.N.; Myers, T.G.; Alvarez, M.; Pauli, K.D.; Chabner, B.A. Molecular targets in the National Cancer Institute drug screen. J. Cancer Res. Clin. Oncol. 1995, 121, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Hamze, A.; Rasolofonjatovo, E.; Provot, O.; Mousset, C.; Veau, D.; Rodrigo, J.; Bignon, J.; Liu, J.-M.; Wdzieczak-Bakala, J.; Thoret, S. B-ring-modified isocombretastatin A-4 analogues endowed with interesting anticancer activities. ChemMedChem 2011, 6, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Arthur, D.E.; Uzairu, A. Molecular docking studies on the interaction of NCI anticancer analogues with human Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit. J. King Saud Univ. Sci. 2019, 31, 1151–1166. [Google Scholar] [CrossRef]
- Keller, T.H.; Pichota, A.; Yin, Z. A practical view of ‘druggability’. Curr. Opin. Chem. Biol. 2006, 10, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Lawal, B.; Shittu, O.K.; Oibiokpa, F.I.; Mohammed, H.; Umar, S.I.; Haruna, G.M. Antimicrobial evaluation, acute and sub-acute toxicity studies of Allium sativum. J. Acute Dis. 2016, 5, 296–301. [Google Scholar] [CrossRef]
- Shittu, O.K.; Lawal, B.; Alozieuwa, B.U.; Haruna, G.M.; Abubakar, A.N.; Berinyuy, E.B. Alteration in biochemical indices following chronic administration of methanolic extract of Nigeria bee propolis in Wistar rats. Asian Pac. J. Trop. Dis. 2015, 5, 654–657. [Google Scholar] [CrossRef]
- Lagunin, A.; Zakharov, A.; Filimonov, D.; Poroikov, V. QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction. Mol. Inf. 2011, 30, 241–250. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | Panel/Cell Line | GI50 (μM) | TGI (μM) | LC50 (μM) | |||
---|---|---|---|---|---|---|---|
NSC765690 | NSC765599 | NSC765690 | NSC765599 | NSC765690 | NSC765599 | ||
Leukemia | CCRF-CEM | 0.53 | 0.703 | 9.73 | 5.6 | >100 | >100 |
HL-60(TB) | 0.51 | 0.586 | 2.09 | 2.68 | >100 | >100 | |
K-562 | 0.37 | 0.628 | 10.2 | 19.1 | >100 | >100 | |
MOLT-4 | 0.46 | 0.928 | 2.05 | 3.39 | >100 | >100 | |
RPMI-8226 | 0.23 | 0.248 | 0.74 | 0.951 | >100 | >100 | |
SR | 1.91 | 1.95 | >100 | 8.27 | >100 | >100 | |
NSCLC | A549/ATCC | 0.44 | 1.05 | 7.96 | 10.6 | >100 | 99.4 |
HOP-62 | 1.61 | 2.51 | 6.78 | 7.48 | >100 | 37 | |
HOP-92 | 0.14 | 0.219 | 0.48 | 0.655 | >100 | 53.7 | |
NCI-H226 | 1.07 | 1.73 | 11.2 | 12 | >100 | >100 | |
NCI-H23 | 0.29 | 0.395 | 0.88 | 2.54 | >100 | 94.2 | |
NCI-H322M | 0.68 | 1.3 | 6.7 | 6.13 | >100 | >100 | |
NCI-H460 | 0.45 | 0.569 | 8.78 | 10.7 | >100 | >100 | |
NCI-H522 | 0.28 | 0.77 | 19.4 | ||||
Colon Cancer | COLO 205 | 3.23 | 4.48 | 11.2 | 15.6 | 35.8 | 44.4 |
HCC-2998 | 2.16 | 2.42 | 6.31 | 5.83 | 30.6 | 21.2 | |
HCT-116 | 0.55 | 1.05 | 3.1 | 2.84 | 93.1 | 7.7 | |
HCT-15 | 0.48 | 1.22 | 4.05 | 11.4 | 45.9 | >100 | |
HT29 | 3.63 | 3.43 | 10.6 | 9.93 | 36.5 | 36.6 | |
KM12 | 0.7 | 1.99 | 10.5 | 10.1 | >100 | 75.5 | |
SW-620 | 1.28 | 2.1 | 16.5 | 13.7 | >100 | >100 | |
CNS Cancer | SF-268 | 0.71 | 2.17 | >100 | 24.6 | >100 | >100 |
SF-539 | 0.53 | 1.78 | 10.8 | 13.7 | 67.8 | 63.8 | |
SNB-19 | 0.41 | 0.529 | >100 | 15.2 | >100 | >100 | |
SNB-75 | 1.39 | 9.75 | >100 | ||||
U251 | 0.42 | 0.633 | 7.23 | 4.97 | 82.9 | 29.7 | |
Melanoma | LOX IMVI | 0.5 | 0.64 | 3.28 | 3.36 | 26.3 | 21 |
MALME-3M | 0.4 | 1.02 | 2.26 | 3.48 | >100 | >100 | |
M14 | 0.68 | 1.38 | 7.16 | 5.37 | >100 | 93.7 | |
MDA-MB-435 | 0.63 | 1.31 | 6.04 | 4.5 | >100 | 42.7 | |
SK-MEL-2 | 0.28 | 0.443 | 0.73 | 1.69 | 5.51 | 8.39 | |
SK-MEL-28 | 0.68 | 0.865 | 7.05 | 9.28 | >100 | >100 | |
SK-MEL-5 | 0.26 | 0.345 | 0.88 | 1.26 | 4.61 | 4.39 | |
UACC-257 | 0.29 | 0.815 | 1.59 | 4.84 | >100 | >100 | |
UACC-62 | 0.28 | 0.319 | 1.14 | 1.22 | 5.59 | 7.21 | |
Ovarian Cancer | IGROV1 | 0.55 | 0.909 | 24.3 | 10.7 | >100 | >100 |
OVCAR-3 | 0.44 | 0.674 | 33 | 15.3 | >100 | >100 | |
OVCAR-4 | 0.86 | 0.841 | >100 | 18.5 | >100 | >100 | |
OVCAR-5 | 4.04 | 5.55 | >100 | >100 | >100 | >100 | |
OVCAR-8 | 0.51 | 1.64 | 6.01 | 10.1 | >100 | >100 | |
NCI/ADR-RES | 0.42 | 0.741 | 10.4 | 9.96 | >100 | >100 | |
SK-OV-3 | 1.29 | 2.68 | 7.3 | 11.8 | >100 | >100 | |
Renal cancer | 786-0 | 2.72 | 2.58 | 9.07 | 7.45 | >100 | 39.7 |
A498 | 0.24 | 0.263 | 1.52 | 1.93 | >100 | >100 | |
ACHN | 0.82 | 1.73 | 15.5 | 14.4 | >100 | >100 | |
CAKI-1 | 0.65 | 0.637 | >100 | 4.07 | >100 | >100 | |
RXF 393 | 1.47 | 2.48 | 5.93 | 6.72 | >100 | 35.2 | |
SN12C | 0.37 | 0.384 | 12.7 | 4.73 | >100 | >100 | |
TK-10 | 0.45 | 1.46 | 4.01 | 6.87 | >100 | 82.7 | |
UO-31 | 0.41 | 1.14 | 7.18 | 6.95 | 37.4 | 32.4 | |
Prostate Cancer | PC-3 | 0.38 | 1.3 | 3.04 | 5.43 | >100 | 42.8 |
DU-145 | 1.28 | 2.16 | >100 | 23.4 | >100 | >100 | |
Breast Cancer | MCF7 | 0.42 | 0.471 | 9.11 | 13.4 | >100 | >100 |
MDA-MB231/ATCC | 1.06 | 4.76 | 4.08 | 50.5 | >100 | 0 | |
HS 578T | 0.65 | 1.31 | 28.7 | 8.65 | >100 | >100 | |
BT-549 | 0.45 | 1.11 | 2.59 | 5.5 | 43.6 | 48.8 | |
T-47D | 0.29 | 0.449 | 2.74 | 7.49 | >100 | >100 | |
MDA-MB-468 | 0.3 | 0.425 | 3.17 | 4.42 | >100 | >100 |
NCI-Synthetic Compounds | NCI-Standard Agents | ||||||||
---|---|---|---|---|---|---|---|---|---|
Drugs | Rank | P | CCLC | Target Descriptor | MW (g/mol) | P | CCLC | Target Descriptor | Mechanism of Action |
NSC765690 Fingerprints | 1 | 0.61 | 42 | Antineoplastic-643812 | 419.3 | 0.74 | 55 | Actinomycin D | Transcription inhibitor |
2 | 0.58 | 49 | Combretastatin A-4 | 316.3 | 0.61 | 58 | Mitramycin | Transcription inhibitor | |
3 | 0.55 | 49 | N-(3-chloro-2-methylphenyl)-2-hydroxy-3-nitrobenzamide | 306.7 | 0.6 | 59 | Thioguanine | Inhibit cell cycle transition | |
4 | 0.51 | 46 | 2-Methyl-4-(phenylimino)naphth(2,3-d)oxazol-9-one | 288.3 | 0.58 | 58 | Cisplatin | Inhibit DNA replication | |
5 | 0.51 | 46 | Resibufogenin, Methacrylate De | 452.6 | 0.58 | 49 | Morpholino-ADR | Tubulin inhibitor | |
6 | 0.5 | 43 | 3-Nitro-2′,4′-Salicyloxylidide | 286.2 | 0.56 | 59 | 5-Azacytidine | Tubulin inhibior | |
7 | 0.48 | 49 | 5,7-Dichloro-3-hydroxy-3-[2-(4-nitrophenyl)-2-oxoethyl]-1,3-dihydro-2H-indol-2-one | 381.2 | 0.53 | 58 | Topotecan | DNA damage inducer | |
8 | 0.46 | 58 | 4-ipomeanol | 168.1 | 0.48 | 59 | Doxorubicin (Adriamycin) | DNA damage inducer | |
9 | 0.46 | 48 | 3,3′-Diethyl-9-methylthiacarbocyanine iodide | 506.5 | 0.39 | 59 | 5-Fluorouracil | Inhibitor of DNA replication. | |
10 | 0.44 | 44 | 2,2-Dibutyl-3-(p-tolylsulfonyl)-1,3,2-thiazastannolidine | 462.3 | 0.33 | 59 | Abemaciclib | Inhibit cell cycle transition | |
NSC765599 Fingerprints | 1 | 0.62 | 47 | N-(3-chloro-2-methylphenyl)-2-hydroxy-3-nitrobenzamide | 306.7 | 0.36 | 57 | Trametinib | MEK Inhibitor |
2 | 0.57 | 44 | Uvaretin | 378.4 | 0.3 | 57 | Erlotinib HCL | Growth factor receptor inhibitor | |
3 | 0.54 | 44 | Eunicin | 334.4 | 0.29 | 55 | Vandetanib | Growth factor receptor inhibitor | |
4 | 0.54 | 44 | Resibufogenin derivative | 452.6 | 0.28 | 56 | Topotecan | DNA damage inducer | |
5 | 0.54 | 45 | 1H,3H-Thiazolo(3,4-a)benzimidazole, 1-(2-chloro-6-fluorophenyl)- | 304.8 | 0.27 | 55 | Ixabepilone | microtubule inhibitor | |
6 | 0.53 | 44 | Combretastatin A-4 | 316.3 | 0.23 | 57 | Abemaciclib | Inhibitor of cell cycle transition | |
7 | 0.52 | 44 | Nagilactone C | 362.4 | 0.25 | 56 | Idelalisib | phosphoinositide 3-kinase | |
8 | 0.51 | 56 | dichloroallyl lawsone | 283.1 | 0.23 | 57 | Pazopanib Hydrochloride | Growth factor receptor inhibitor | |
9 | 0.51 | 56 | Merbarone | 263.2 | 0.21 | 57 | Doxorubicin (Adriamycin) | DNA damage inducer | |
10 | 0.48 | 55 | 5-Bromo-1-[[4-methylidene-5-oxo-2-(4-phenylphenyl)oxolan-2-yl]methyl]pyrimidine-2,4-dione | 453.3 | 0.15 | 57 | Palbociclib | Inhibitor of cell cycle transition |
P | CCLC | P | CCLC | Target ID | Gene Card Code | Target Description |
---|---|---|---|---|---|---|
NSC765599 | NSC765690 | |||||
0.30 | 53 | 0.29 | 55 | CG2399 | CCNB1 | Cyclin B1 |
0.30 | 56 | 0.32 | 58 | CG2465 | CCND1 | Cyclin D1 |
0.29 | 51 | 0.31 | 52 | CG2440 | RARB | Retinoic Acid Receptor Beta |
0.28 | 54 | 0.13 | 55 | CG2585 | CDH1 | Cadherin-1 |
0.28 | 48 | 0.17 | 50 | CG2558 | FGFR1 | Fibroblast growth factor receptor 1 |
0.28 | 55 | 0.28 | 57 | CG2369 | RAF1 | Raf-1 Proto-Oncogene |
0.23 | 50 | - | - | CG2405 | E2F4 | E2F Transcription Factor 4 |
0.22 | 52 | - | - | CG2555 | CDKN2A | cyclin-dependent kinase inhibitor 2A |
0.21 | 56 | 0.15 | 58 | CG2357 | MYCN | N-myc proto-oncogene protein |
0.22 | 50 | CG2499 | CDC25A | Activator of cyclin dependent kinase 2/4 | ||
0.21 | 56 | 0.11 | 58 | CG2531 | CDK4 | Cyclin dependent kinase 4 |
0.21 | 56 | - | - | CG2448 | TCL1A | T-cell leukemia/lymphoma protein 1A |
0.20 | 49 | - | - | CG2269 | BTK | Bruton Tyrosine Kinase |
0.15 | 56 | 0.16 | 58 | CG2311 | PIK3CB | Phosphatidylinositol-4,5-bisphosphate 3-kinase |
0.14 | 55 | - | - | CG2466 | CCND2 | Cyclin D2 |
0.12 | 56 | 0.1 | 58 | CG2327 | CDK6 | Cyclin dependent kinase 6 |
- | - | 0.13 | 57 | CG2467 | CDC25B | Activator of cyclin dependent kinase CDC2 |
- | - | 0.18 | 58 | CG2468 | CDKN1A | Cyclin Dependent Kinase Inhibitor 1A |
Gene Name | Common Name | Uniprot ID | ChEMBL ID | Target Class |
---|---|---|---|---|
NSC765690 Targets | ||||
CDK9/cyclin T1 | CDK9, CCNT1 | P50750 O60563 | CHEMBL2111389 | Other cytosolic protein |
Cyclin-dependent kinase 1 | CDK1 | P06493 | CHEMBL308 | Kinase |
Cyclin-dependent kinase 1/cyclin B | CCNB3 CDK1 CCNB1 CCNB2 | Q8WWL7 P06493 P14635 O95067 | CHEMBL2094127 | Other cytosolic protein |
Cyclin-dependent kinase 2 | CDK2 | P24941 | CHEMBL301 | Kinase |
Cyclin-dependent kinase 4/cyclin D1 | CCND1 CDK4 | P24385 P11802 | CHEMBL1907601 | Kinase |
Epidermal growth factor receptor erbB1 | EGFR | P00533 | CHEMBL203 | Kinase |
Signal transducer and activator of transcription 3 | STAT3 | P40763 | CHEMBL4026 | Transcription factor |
Fibroblast growth factor receptor 1 | FGFR1 | P11362 | CHEMBL3650 | Kinase |
Insulin receptor | INSR | P06213 | CHEMBL1981 | Kinase |
MAP kinase ERK2 | MAPK1 | P28482 | CHEMBL4040 | Kinase |
PI3-kinase p110-gamma subunit | PIK3CG | P48736 | CHEMBL3267 | Enzyme |
Platelet-derived growth factor receptor | PDGFRA PDGFRB | P16234 P09619 | CHEMBL2095189 | Kinase |
Rho-associated protein kinase 1 | ROCK1 | Q13464 | CHEMBL3231 | Kinase |
Serine/threonine-protein kinase 11/16/Chk1/MST2 | STK11/3/16/CHEK1 | Q15831 | CHEMBL5606 | Kinase |
Tyrosine-protein kinase ABL/ITK/JAK1/JAK2 | ABL1 | P00519 | CHEMBL1862 | Kinase |
NSC765599 Targets | ||||
Cyclin-dependent kinase 5/CDK5 activator 1 | CDK5R1 CDK5 | Q15078 Q00535 | CHEMBL1907600 | Kinase |
Epidermal growth factor receptor erbB1 | EGFR | P00533 | CHEMBL203 | Kinase |
Cyclin-dependent kinase 2 | CDK2 | P24941 | CHEMBL301 | Kinase |
Cyclin-dependent kinase 4/cyclin D1 | CCND1, CDK4 | P24385, P11802 | CHEMBL1907601 | Kinase |
Hepatocyte growth factor receptor | MET | P08581 | CHEMBL3717 | Kinase |
Inhibitor of NF-kappa-B kinase (IKK) | CHUK | O15111 | CHEMBL3476 | Kinase |
Insulin-like growth factor I receptor | IGF1R | P08069 | CHEMBL1957 | Kinase |
MAP kinase p38 alpha | MAPK14 | Q16539 | CHEMBL260 | Kinase |
CDK6/cyclin D1 | CCND1, CDK6 | P24385, Q00534 | CHEMBL2111455 | Kinase |
PI3-kinase p110-alpha/p85-alpha | PIK3CA, PIK3R1 | P42336, P27986 | CHEMBL2111367 | Enzyme |
Receptor protein-tyrosine kinase erbB-2 | ERBB2 | P04626 | CHEMBL1824 | Kinase |
Receptor protein-tyrosine kinase erbB-4 | ERBB4 | Q15303 | CHEMBL3009 | Kinase |
Rho-associated protein kinase 1 | ROCK1/2 | Q13464 | CHEMBL3231 | Kinase |
Signal transducer and activator of transcription 3 | STAT3 | P40763 | CHEMBL4026 | Transcription factor |
Serine/threonine-protein kinase RIPK2 | RIPK2 | O43353 | CHEMBL5014 | Kinase |
Tankyrase−1/2 | TNKS, TNKS2 | O95271, Q9H2K2 | CHEMBL6164, 6154 | Enzyme |
Tyrosine-protein kinase JAK1 | JAK1 | P23458 | CHEMBL2835 | Kinase |
Tyrosine-protein kinase SRC | SRC | P12931 | CHEMBL267 | Kinase |
Vascular endothelial growth factor receptor 1/2 | FLT1, KDR | P17948, P35968 | CHEMBL1868, 279 | Kinase |
NSC765690 PASS Predicted Targets | NSC765699 PASS Predicted Targets | ||||
---|---|---|---|---|---|
Pa | Pi | Activity | Pa | Pi | Activity |
0.446 | 0.034 | CDK6/cyclin D1 inhibitor | 0.505 | 0.012 | Transcription factor inhibitor |
0.430 | 0.037 | Transcription factor STAT inhibitor | 0.430 | 0.037 | Transcription factor STAT inhibitor |
0.266 | 0.085 | Transcription factor STAT3 inhibitor | 0.391 | 0.020 | CDK6 inhibitor |
0.167 | 0.038 | CDK9/cyclin T1 inhibitor | 0.255 | 0.072 | Transcription factor STAT3 inhibitor |
0.151 | 0.046 | CDK2/cyclin A inhibitor | 0.162 | 0.029 | CDK2/cyclin A inhibitor |
0.114 | 0.021 | Transcription factor STAT6 inhibitor | 0.114 | 0.021 | Transcription factor STAT6 inhibitor |
0.101 | 0.094 | CDK1/cyclin B inhibitor | 0.020 | 0.011 | CDK4/cyclin D3 inhibitor |
0.019 | 0.012 | CDK4/cyclin D3 inhibitor | 0.046 | 0.007 | CDK5 inhibitor |
Cyclin Dependent Kinase 2 | ||||||
Docking Parameters | NSC765599_CDK2 Complex | NSC765690_CDK2 Complex | Palbociclib_CDK2 Complex | |||
ΔG = (Kcal/mol) | −11 | −11.6 | −9.1 | |||
Type of Interactions | n-Bond | Interacting AA (Distance (Ă)) | n-Bond | Interacting AA (Distance (Ă)) | n-Bond | Interacting AA (Distance (Ă)) |
Conventional H-bond | 4 | LYS129 (2.67), LYS33 (2.73), GLN131 (2.72) ASP86 (3.36), | 3 | LYS129 (2.75), LYS89 (2.15) LYS33 (2.14) | 2 | ARG214(2.16), ARG217 (2.65) |
C-H bond | 2 | VAL251(3.70) LYS250 (3.70) | ||||
Halogen bond | 2 | HIS84 (3.69),GLN85 (3.36) | ||||
Pi-cation | 1 | LYS89 (3.11) | ||||
Pi-anion | ||||||
Pi-alkyl | 2 | LEU134, ILE10 | 2 | PRO204, ARG200 | ||
Pi-pi stack | ||||||
Amide-pi stack | 1 | GLY13 (3.34) | ||||
Van der waal forces | 10 | LEU83, PHE82, ALA144, VAL18, GLU12, VAL164, THR158, ALA31, THR14, ASN132, | 14 | PHE82, LEU83, ASP145, ALA144, ASN132, GLN131, THR14, THR158, GLU12, GLY13, GLY11, ASP86, GLN85, HIS84 | 5 | GLN246, THR218, LEU202, THR198, LYS250 |
Cyclin Dependent Kinase 4 | ||||||
NSC765599_CDK4 Complex | NSC765690_CDK4 Complex | Palbociclib_CDK4 Complex | ||||
ΔG = (Kcal/mol) | −7.5 | −8.5 | −8.3 | |||
Type of Interactions | n-Bond | Interacting AA (Distance (Ă)) | n-Bond | Interacting AA (Distance (Ă)) | n-Bond | Interacting AA (Distance (Ă)) |
Conventional H-bond | 2 | ARG172 (2.07) GLU66 (2.06) | 4 | ARG67(1.84), ALA162 (2.62) LYS179 (2.90) HIS158(2.87) | 4 | ARG168(3.23), SER57(2.49) |
Halogen bond | 2 | ASP159 (2.90), HIS158(3.62) | ||||
C-H bond | 1 | GLY51 (3.46) | ||||
Pi-cation | 1 | ARG67(3.89) | ||||
Pi-anion | 1 | ASP173 (4.48) | 1 | ASP159 (3.78) | ||
Pi-alkyl | 1 | MET59 | 1 | ALA153, ALA162 | 4 | TYR172, PRO55, PRO45, ILE56 |
Van der waal forces | 3 | LEU60, LEU99, TRP63 | 10 | LEU64, ARG60, LEU113, ALA63, LEU31, PHE163, PHE160, LEU161, GLU76, ARG114 | 11 | SER171, GLY48, GLY53, GLY52, GLY50, THR120, ILE121, LYS112, LEU108, LEU54, THR58 |
Cyclin Dependent Kinase 6 | ||||||
NSC765599_CDK6 Complex | NSC765690_CDK6 Complex | Palbociclib_CDK6 Complex | ||||
ΔG = (Kcal/mol) | −9.0 | −9.6 | −8.1 | |||
Type of Interactions | n-Bond | Interacting AA (Distance (Ă)) | n-Bond | Interacting AA (Distance (Ă)) | n-Bond | Interacting AA (Distance (Ă)) |
Conventional H-bond | 1 | GLU69 (2.22) | 2 | HIS139 (2.29) SER138 (2.31) | 2 | ARG66 (2.50) GLU69 (3.17) |
C-H bond | 1 | PHE135(3.69) | 1 | PRO35(3.71) | ||
Halogen bond | 2 | HIS73 (2.88) VAL76 (2.99) | 1 | ASN26 (3.32) | ||
Pi-cation | 1 | ARG66 (3.40) | ||||
Pi-anion | 1 | GLU69 (4.90) | 1 | ASP134(3.99) | 1 | ASP146(3.59) |
Pi-sigma | 1 | LEU34 | ||||
Pi-alkyl | 1 | ARG131 | 4 | ALA149, LEU33, ARG82, CYS85 | ||
Pi-pi stack | 1 | GLU72, ARG78 | 1 | TYR292 | 1 | PHE37292 |
Pi-pi T-shape | 1 | PHE135 | ||||
Van der waal forces | 7 | Lys160, Val77, Leu79, Phe80, Asp81, Val82, Lys144 | 5 | Phe71, Ser296, Leu295, Phe127, His73 | 5 | Lys36, Thr38, Thr70, Glu148, His67 |
Signal Transducer and Activator of Transcription 3 | ||||||
NSC765599_STAT3 Complex | NSC765690_STAT3 Complex | SH-4-54_STAT3 Complex | ||||
ΔG = (Kcal/mol) | −8.0 | −8.3 | −7.3 | |||
Type of Interaction | n-Bond | Interacting AA (Distance (Ă)) | n-Bond | Interacting AA (Distance (Ă)) | n-Bond | Interacting AA (Distance (Ă)) |
Conventional H-bond | 2 | ARG107(2.73) TRP110 (3.79) | 1 | SER113 (2.57) | ||
C-H bond | 1 | ARG107 (3.23) | 2 | TRP110 (3.69) ALA106 (3.47) | ||
Halogen | 1 | GLN3 (3.52) | 1 | ALA106 (3.67) | 3 | ARG107(3.65), ARG103 (3.05), ALA44 (3.26) |
Pi-pi stacked | 1 | TRP110 | ||||
Pi-sigma | 1 | ALA44 | ||||
Pi-sulfur | 1 | TRP110 (4.49) | ||||
Pi-alkyl | 3 | LEU109, ALA106, ALA44 | 3 | LEU109, ARG103, ALA44 | 1 | ALA106 |
Pi-pi T-shaped | 1 | TRP110 | ||||
Van der waal forces | 5 | GLU39, GLN41, ASP42, TYR45, TRP43 | 4 | TRP43, GLU39, GLN3, SER113 | 4 | GLU39, GLN3, GLN117, ALA47 |
Properties | NSC765690 | NSC765599 | Reference Value |
---|---|---|---|
Formula | C21H10F2N2O3 | C20H12F2N2O2 | - |
Molecular weight | 376.31 g/mol | 350.32 g/mol | 150–500 g/mol |
Num. rotatable bonds | 2 | 4 | 0–9 |
Num. H-bond acceptors | 6 | 5 | 0–10 |
Num. H-bond donors | 0 | 2 | 0–5 |
Molar Refractivity | 98.15 | 92.75 | |
TPSA | 76.00 Ų | 73.12 Ų | 20–130 Ų |
Fraction Csp3 | 0.00 | 0.00 | 0.25~<1 |
Log Po/w (XLOGP3) | 4.31 | 5.47 | −0.7~5 |
Consensus Log Po/w | 4.11 | 4.29 | |
Log S (ESOL) | 0.34 | −5.71 | 0–6 |
Lipinski, Ghose, Veber and Egan’s rule | Yes; 0 violation | Yes; 0 violation | |
Bioavailability Score | 0.56 | 0.55 | >0.1 (10%) |
Synthetic accessibility | 3.33 | 2.37 | 1 (very easy) to 10 (very difficult). |
Acute toxicity | |||
LD50 for Intraperitoneal (mg/kg) | 446.100 (OECD:4) | 593.200 (OECD:5) | |
LD50 for Intravenous (mg/kg) | 127.200 (OECD:4) | 251.200 (OECD:4) | |
LD50 for Oral (mg/kg) | 494.000 (OECD:4) | 836.900 (OECD:4) | |
LD50 for Subcutaneous (mg/kg) | 398.300 (OECD:4) | 740.900 (OECD:4) | |
Environmental toxicity | |||
Bioaccumulation factor Log10 (BCF) | 1.204 | 1.210 | |
Daphnia magna LC50Log10 (mol/L) | 7.294 | 6.713 | |
Fathead Minnow LC50Log10 (mmol/L) | −3.088 | −3.099 | |
Tetrahymena pyriformis IGC50Log10 (mol/L) | 2.016 | 2.033 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawal, B.; Liu, Y.-L.; Mokgautsi, N.; Khedkar, H.; Sumitra, M.R.; Wu, A.T.H.; Huang, H.-S. Pharmacoinformatics and Preclinical Studies of NSC765690 and NSC765599, Potential STAT3/CDK2/4/6 Inhibitors with Antitumor Activities against NCI60 Human Tumor Cell Lines. Biomedicines 2021, 9, 92. https://doi.org/10.3390/biomedicines9010092
Lawal B, Liu Y-L, Mokgautsi N, Khedkar H, Sumitra MR, Wu ATH, Huang H-S. Pharmacoinformatics and Preclinical Studies of NSC765690 and NSC765599, Potential STAT3/CDK2/4/6 Inhibitors with Antitumor Activities against NCI60 Human Tumor Cell Lines. Biomedicines. 2021; 9(1):92. https://doi.org/10.3390/biomedicines9010092
Chicago/Turabian StyleLawal, Bashir, Yen-Lin Liu, Ntlotlang Mokgautsi, Harshita Khedkar, Maryam Rachmawati Sumitra, Alexander T. H. Wu, and Hsu-Shan Huang. 2021. "Pharmacoinformatics and Preclinical Studies of NSC765690 and NSC765599, Potential STAT3/CDK2/4/6 Inhibitors with Antitumor Activities against NCI60 Human Tumor Cell Lines" Biomedicines 9, no. 1: 92. https://doi.org/10.3390/biomedicines9010092
APA StyleLawal, B., Liu, Y. -L., Mokgautsi, N., Khedkar, H., Sumitra, M. R., Wu, A. T. H., & Huang, H. -S. (2021). Pharmacoinformatics and Preclinical Studies of NSC765690 and NSC765599, Potential STAT3/CDK2/4/6 Inhibitors with Antitumor Activities against NCI60 Human Tumor Cell Lines. Biomedicines, 9(1), 92. https://doi.org/10.3390/biomedicines9010092