Human Mitochondrial DNA: Particularities and Diseases
Abstract
:1. Introduction
2. Particularities: In Eukaryotic Cells, Mitochondria Have Various Characteristics
2.1. The Mitochondrial Genome
2.2. Maternal Origin
2.3. Polyplasmy Heteroplasmy and Homoplasmy
2.4. Segregation
2.5. High Mutation Rate
2.6. Different Types of Mutation
Pathologies | Mutations | Gene | References |
---|---|---|---|
LHON | m.3460G > A | ND1 | [22] |
m.11778 G > A | ND4 | [22] | |
m.14484T > C | ND6 | [22] | |
m.14459G > A | ND6 | [22] | |
NARP | m.8993T > G/C | ATP6 | [22] |
Leigh | m.8993T > G/C | ATP6 | [22] |
m.9176T > G/C | ATP6 | [22] | |
m.14487T > C | ND6 | [22] | |
ins5537T | tRNATrp | [23] | |
Leigh/LHON | m.13513G > A | ND5 | [22] |
MELAS | m.3243A > G | tRNALeu(UUR) | [22] |
MELAS/DM | m.3271T > C | tRNALeu(UUR) | [22] |
Hot spot | tRNALeu(UUR) | [22] | |
MERRF | m.8344AG | tRNALys | [22] |
Hot spot | tRNALys | [22] | |
Aminoglycoside-induces non-syndromic deafness | m.1555A > G | 12SrRNA | [22] |
DEAF | m.1546A > T | 12SrRNA | - |
Leigh Disease/Ataxia syndromes/NARP-like disease | m.9185T > C | ATP6 | [24] |
Mitochondrial Encephalo-cardiomyopathy | m.4320C > T | tRNAIle | [23] |
Mitochondrial Cardiomyopathy | m.10015T > C | tRNAGly | - |
Mitochondrial Cardiomyopathy | m.12530A > G | ND5 | - |
Mitochondrial Cardiomyopathy | m.1617C > T | - | |
Mitochondrial Encephalomyopathy | m.6413T > C | CO1 | - |
Mitochondrial Myopathy | m.7608G > A | - | |
CPEO | Unique deletion | Various gene | [22] |
Multiple deletion | [22] | ||
Kearns Sayre | Unique deletion | [22] | |
Pearson | Unique deletion | [22] |
3. Diseases
3.1. Metabolic Diagnosis
3.2. Tissue Exploration
3.3. Enzymatic Diagnosis
3.4. Genetic Exploration
4. Mitochondrial Pathologies
4.1. Pearson
4.2. Kearns-Sayre
4.3. CPEO
4.4. MELAS
4.5. LHON
4.6. MEERF
5. Therapeutic Approaches
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Pittis, A.A.; Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 2016, 531, 101–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archibald, J.M. Endosymbiosis and Eukaryotic Cell Evolution. Curr. Biol. 2015, 25, R911–R921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, W.F.; Garg, S.; Zimorski, V. Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimorski, V.; Ku, C.; Martin, W.F.; Gould, S.B. Endosymbiotic theory for organelle origins. Curr. Opin. Microbiol. 2014, 22, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Spelbrink, J.N. Functional organization of mammalian mitochondrial DNA in nucleoids: History, recent developments, and future challenges. IUBMB Life 2010, 62, 19–32. [Google Scholar] [CrossRef]
- Nishigaki, Y.; Ueno, H.; Coku, J.; Koga, Y.; Fujii, T.; Sahashi, K.; Nakano, K.; Yoneda, M.; Nonaka, M.; Tang, L.; et al. Extensive screening system using suspension array technology to detect mitochondrial DNA point mutations. Mitochondrion 2010, 10, 300–308. [Google Scholar] [CrossRef]
- Saneto, R.P.; Singh, K.K. Illness-induced exacerbation of Leigh syndrome in a patient with the MTATP6 mutation, m. 9185 T>C. Mitochondrion 2010, 10, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Mai, N.; Chrzanowska-Lightowlers, Z.M.A.; Lightowlers, R.N. The process of mammalian mitochondrial protein synthesis. Cell Tissue Res. 2017, 367, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Dreyfus, J.C. Une mutation de l’ADN mitochondrial altère la régulation de sa transcription. Médecine/Sciences 1991, 7, 744. [Google Scholar] [CrossRef]
- Montoya, J.; López-Gallardo, E.; Herrero-Martín, M.D.; Martínez-Romero, Í.; Gómez-Durán, A.; Pacheu, D.; Carreras, M.; Díez-Sánchez, C.; López-Pérez, M.J.; Ruiz-Pesini, E. Diseases of the Human Mitochondrial Oxidative Phosphorylation System. In Inherited Neuromuscular Diseases; Espinós, C., Felipo, V., Palau, F., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 47–67. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.; Ye, K.; Picard, M.; Gu, Z. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genom. 2017, 18, 890. [Google Scholar] [CrossRef] [Green Version]
- Montoya, J.; López-Gallardo, E.; Díez-Sánchez, C.; López-Pérez, M.J.; Ruiz-Pesini, E. 20 years of human mtDNA pathologic point mutations: Carefully reading the pathogenicity criteria. Biochim. Biophys. Acta BBA Bioenerg. 2009, 1787, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Rensch, T.; Villar, D.; Horvath, J.; Odom, D.T.; Flicek, P. Mitochondrial heteroplasmy in vertebrates using ChIP-sequencing data. Genome Biol. 2016, 17, 139. [Google Scholar] [CrossRef] [Green Version]
- Wallace, D.C.; Chalkia, D. Mitochondrial DNA Genetics and the Heteroplasmy Conundrum in Evolution and Disease. Cold Spring Harb. Perspect. Biol. 2013, 5, a021220. [Google Scholar] [CrossRef]
- Giles, R.E.; Blanc, H.; Cann, H.M.; Wallace, D.C. Maternal inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1980, 77, 6715–6719. [Google Scholar] [CrossRef] [Green Version]
- DiMauro, S.; Schon, E.A. Mitochondrial respiratory-chain diseases. N. Engl. J. Med. 2003, 348, 2656–2668. [Google Scholar] [CrossRef] [PubMed]
- Michikawa, Y.; Mazzucchelli, F.; Bresolin, N.; Scarlato, G.; Attardi, G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 1999, 286, 774–779. [Google Scholar] [CrossRef]
- Ruiz-Pesini, E.; Lott, M.T.; Procaccio, V.; Poole, J.C.; Brandon, M.C.; Mishmar, D.; Yi, C.; Kreuziger, J.; Baldi, P.; Wallace, D.C. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res. 2007, 35, D823–D828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blake, J.C.; Taanman, J.-W.; Morris, A.M.; Gray, R.G.F.; Cooper, J.M.; McKiernan, P.J.; Leonard, J.V.; Schapira, A.H. Mitochondrial DNA depletion syndrome is expressed in amniotic fluid cell cultures. Am. J. Pathol. 1999, 155, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Grady, J.P.; Murphy, J.L.; Blakely, E.L.; Haller, R.G.; Taylor, R.W.; Turnbull, D.M.; Tuppen, H.A.L. Accurate Measurement of Mitochondrial DNA Deletion Level and Copy Number Differences in Human Skeletal Muscle. PLoS ONE 2014, 9, e114462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rötig, A.; Poulton, J. Genetic causes of mitochondrial DNA depletion in humans. Biochim. Biophys. Acta. 2009, 1792, 1103–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Saman, A.; Tomoum, H.; Invernizzi, F.; Zeviani, M. Hepatocerebral Form of Mitochondrial DNA Depletion Syndrome Due to Mutation in MPV17 Gene. Saudi J. Gastroenterol. Off. J. Saudi Gastroenterol. Assoc. 2012, 18, 285–289. [Google Scholar] [CrossRef]
- Ng, Y.S.; Turnbull, D.M. Mitochondrial disease: Genetics and management. J. Neurol. 2016, 263, 179–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishna, M.R. Kearns Sayre Syndrome: Looking beyond A-V conduction. Indian Pacing Electrophysiol. J. 2017, 17, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Naviaux, R.K. Developing a systematic approach to the diagnosis and classification of mitochondrial disease. Mitochondrion 2004, 4, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Moggio, M.; Colombo, I.; Peverelli, L.; Villa, L.; Xhani, R.; Testolin, S.; Di Mauro, S.; Sciacco, M. Mitochondrial disease heterogeneity: A prognostic challenge. Acta Myol. 2014, 33, 86. [Google Scholar]
- Bishara, A.J.; Li, J.; Nash, T. Asymptotic confidence intervals for the Pearson correlation via skewness and kurtosis. Br. J. Math. Stat. Psychol. 2017, 71, 167–185. [Google Scholar] [CrossRef]
- Gagne, K.E.; Ghazvinian, R.; Yuan, D.; Zon, R.L.; Storm, K.; Mazur-Popinska, M.; Andolina, L.; Bubala, H.; Golebiowska, S.; Higman, M.A.; et al. Pearson marrow pancreas syndrome in patients suspected to have Diamond-Blackfan anemia. Blood 2014, 124, 437–440. [Google Scholar] [CrossRef] [Green Version]
- Gaboune, L.; Baha Ali, T.; Benfdil, N.; Khoumiri, R.; Ouaggag, B.; Sayouti, A.; Moutaouakil, A. Le syndrome de Kearns-Sayre: À propos d’un cas. J. Fr. Ophtalmol. 2012, 35, 718.e1–718.e4. [Google Scholar] [CrossRef]
- Chen, T.; Pu, C.; Shi, Q.; Wang, Q.; Cong, L.; Liu, J.; Luo, H.; Fei, L.; Tang, W.; Yu, S. Chronic progressive external ophthalmoplegia with inflammatory myopathy. Int. J. Clin. Exp. Pathol. 2014, 7, 8887–8892. [Google Scholar]
- Henry, C.; Patel, N.; Shaffer, W.; Murphy, L.; Park, J.; Spieler, B. Mitochondrial Encephalomyopathy With Lactic Acidosis and Stroke-Like Episodes—MELAS Syndrome. Ochsner J. 2017, 17, 296–301. [Google Scholar]
- Chun, B.Y.; Rizzo, J.F. Dominant Optic Atrophy and Leber’s Hereditary Optic Neuropathy: Update on Clinical Features and Current Therapeutic Approaches. Semin. Pediatr. Neurol. 2017, 24, 129–134. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, S.H.; Lee, Y.-M. Molecular Diagnosis of Myoclonus Epilepsy Associated with Ragged-Red Fibers Syndrome in the Absence of Ragged Red Fibers. Front. Neurol. 2017, 8, 520. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A.; Govindaraj, P.; Meena, A.K.; Thangaraj, K. Mitochondrial Disorders: Challenges in Diagnosis & Treatment. Indian J. Med Res. 2015, 141, 13–26. [Google Scholar] [PubMed]
- Bottani, E.; Lamperti, C.; Prigione, A.; Tiranti, V.; Persico, N.; Brunetti, D. Therapeutic Approaches to Treat Mitochondrial Diseases: “One-Size-Fits-All” and “Precision Medicine” Strategies. Pharmaceutics 2020, 12, 1083. [Google Scholar] [CrossRef] [PubMed]
- Andreux, P.A.; Houtkooper, R.H.; Auwerx, J. Pharmacological Approaches to Restore Mitochondrial Function. Nat. Rev. Drug Discov. 2013, 12, 465–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emperador, S.; López-Gallardo, E.; Hernández-Ainsa, C.; Habbane, M.; Montoya, J.; Bayona-Bafaluy, M.P.; Ruiz-Pesini, E. Ketogenic Treatment Reduces the Percentage of a LHON Heteroplasmic Mutation and Increases MtDNA Amount of a LHON Homoplasmic Mutation. Orphanet J. Rare Dis. 2019, 14, 150. [Google Scholar] [CrossRef] [PubMed]
- Garone, C.; Taylor, R.W.; Nascimento, A.; Poulton, J.; Fratter, C.; Domínguez-González, C.; Evans, J.C.; Loos, M.; Isohanni, P.; Suomalainen-Wartiovaara, A.; et al. Retrospective Natural History of Thymidine Kinase 2 Deficiency. J. Med. Genet. 2018, 55, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Pei, H.; Zhao, M.-J.; Yang, S.; Hu, W.-K.; He, H.; Ma, S.-Q.; Zhang, G.; Dong, X.-Y.; Chen, C.; et al. Efficacy and Safety of RAAV2-ND4 Treatment for Leber’s Hereditary Optic Neuropathy. Sci. Rep. 2016, 6, 21587. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habbane, M.; Montoya, J.; Rhouda, T.; Sbaoui, Y.; Radallah, D.; Emperador, S. Human Mitochondrial DNA: Particularities and Diseases. Biomedicines 2021, 9, 1364. https://doi.org/10.3390/biomedicines9101364
Habbane M, Montoya J, Rhouda T, Sbaoui Y, Radallah D, Emperador S. Human Mitochondrial DNA: Particularities and Diseases. Biomedicines. 2021; 9(10):1364. https://doi.org/10.3390/biomedicines9101364
Chicago/Turabian StyleHabbane, Mouna, Julio Montoya, Taha Rhouda, Yousra Sbaoui, Driss Radallah, and Sonia Emperador. 2021. "Human Mitochondrial DNA: Particularities and Diseases" Biomedicines 9, no. 10: 1364. https://doi.org/10.3390/biomedicines9101364
APA StyleHabbane, M., Montoya, J., Rhouda, T., Sbaoui, Y., Radallah, D., & Emperador, S. (2021). Human Mitochondrial DNA: Particularities and Diseases. Biomedicines, 9(10), 1364. https://doi.org/10.3390/biomedicines9101364