Type 2 Diabetes Mellitus and Cancer: Epidemiology, Physiopathology and Prevention
Abstract
:1. Introduction
2. Diabetes and Cancer: Burden of Disease
Study | Country | Time Period | Gender | Age | Annual Percent Change | |
---|---|---|---|---|---|---|
CVD | Cancer | |||||
National Health Interview Survey [22] | USA | 1985–2015 | All | ≥20 | –3.32 | –1.57 |
National Diabetes Service [23] | Australia | 2000–2011 | Female | 0–40 | −6.65 | −7.15 |
40–60 | −5.10 | −1.55 | ||||
60–85 | −6.35 | −4.21 | ||||
Male | 0–40 | −1.24 | −2.39 | |||
40–60 | −3.94 | −1.40 | ||||
60–85 | −5.43 | −4.42 | ||||
Hong Kong Diabetes Surveillance [19] | Hong-Kong | 2001–2016 | Female | 45–59 | −6.20 | −5.60 |
60–74 | −12.50 | −7.70 | ||||
≥75 | −9.00 | −5.30 | ||||
Male | 45–59 | −6.40 | −7.40 | |||
60–74 | −9.90 | −6.90 | ||||
≥75 | −9.20 | −6.00 |
3. Pathophysiological Mechanisms That Explains the Link between Cancer and Diabetes
3.1. Hyperglycemia
3.2. Insulin
3.3. Inflammation
4. Obesity: A Common Risk Factor for Cancer and Diabetes
5. Insulin Sensitizers and Cancer
5.1. Metformin
5.2. Thiazolidinediones
6. Association between Cancer Risk and Other Drugs Used in Type 2 Diabetes Mellitus
6.1. Sulfonylureas
6.2. Statins
7. Prevention with Healthy Lifestyles
8. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Home-Eurostat. Available online: https://ec.europa.eu/eurostat/ (accessed on 16 August 2021).
- Hui, L. Assessment of the role of ageing and non-ageing factors in death from non-communicable diseases based on a cumulative frequency model. Sci. Rep. 2017, 7, 8159. [Google Scholar] [CrossRef]
- Vaupel, J.W. Biodemography of human ageing. Nature 2010, 464, 536–542. [Google Scholar] [CrossRef] [Green Version]
- UN. Report of the Second World Assembly on Ageing. Madrid, 8–12 April 2002. Available online: https://www.bmfsfj.de/blob/122586/3d7ad05f599ea9984107fe40057f50a7/second-world-assambly-on-ageing-data.pdf/ (accessed on 13 April 2021).
- Diaconeasa, Z.; Știrbu, I.; Xiao, J.; Leopold, N.; Ayvaz, Z.; Danciu, C.; Ayvaz, H.; Stǎnilǎ, A.; Nistor, M.; Socaciu, C. Anthocyanins, vibrant color pigments, and their role in skin cancer prevention. Biomedicines 2020, 8, 336. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. MicroRNA, diabetes mellitus and colorectal cancer. Biomedicines 2020, 8, 530. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.L.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; Pollak, M.; Regensteiner, J.G.; Yee, D. Diabetes and cancer: A consensus report. Diabetes Care 2010, 33, 1674–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, E.J.; LeRoith, D. Obesity and diabetes: The increased risk of cancer and cancer-related mortality. Physiol. Rev. 2015, 95, 727–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Fact Sheet on Noncommunicable Diseases. Available online: http://www.who.int/en/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 13 April 2021).
- Li, Y.; Pan, A.; Wang, D.D.; Liu, X.; Dhana, K.; Franco, O.H.; Kaptoge, S.; Di Angelantonio, E.; Stampfer, M.; Willett, W.C.; et al. Impact of healthy lifestyle factors on life expectancies in the US population. Circulation 2018, 138, 345–355. [Google Scholar] [CrossRef]
- Dahlgren, G.; Whitehead, M. European Strategies for Tackling Social Inequities in Health: Levelling up Part 2. Available online: http://www.euro.who.int/__data/assets/pdf_file/0018/103824/E89384.pdf (accessed on 13 April 2021).
- Grant, P.J.; Cosentino, F. The 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: New features and the ‘ten commandments’ of the 2019 guidelines are discussed by Professor Peter J. Grant and Professor Francesco Cosentino, the task force chairmen. Eur. Heart J. 2019, 40, 3215–3217. [Google Scholar]
- Beaglehole, R.; Bonita, R.; Horton, R.; Adams, C.; Alleyne, G.; Asaria, P.; Baugh, V.; Bekedam, H.; Billo, N.; Casswell, S.; et al. Priority actions for the non-communicable disease crisis. Lancet 2011, 377, 1438–1447. [Google Scholar] [CrossRef]
- Belza, B.; Altpeter, M.; Smith, M.L.; Ory, M.G. The healthy aging research network: Modeling collaboration for community impact. Am. J. Prev. Med. 2017, 52, S228–S232. [Google Scholar] [CrossRef] [Green Version]
- IDF Diabetes Atlas, 9th ed. 2019. Available online: https://www.diabetesatlas.org/en/ (accessed on 9 September 2021).
- Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020; Centers for Disease Control and Prevention, US Department of Health and Human Services: Atlanta, GA, USA, 2020. Available online: https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf (accessed on 9 September 2021).
- Seshasai, S.R.; Kaptoge, S.; Thompson, A.; Di Angelantonio, E.; Gao, P.; Sarwar, N.; Whincup, P.H.; Mukamal, K.J.; Gillum, R.F.; Holme, I.; et al. Emerging risk factors collaboration. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 2011, 364, 829–841. [Google Scholar]
- Baena-Díez, J.M.; Peñafiel, J.; Subirana, I.; Ramos, R.; Elosua, R.; Marín-Ibañez, A.; Guembe, M.J.; Rigo, F.; Tormo-Díaz, M.J.; Moreno-Iribas, C.; et al. Fresco Investigators. Risk of cause-specific death in individuals with diabetes: A competing risks analysis. Diabetes Care 2016, 39, 1987–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Lau, E.S.H.; Ma, R.C.W.; Kong, A.P.S.; Wild, S.H.; Goggins, W.; Chow, E.; So, W.-Y.; Chan, J.; Luk, A.O.Y. Secular trends in all-cause and cause-specific mortality rates in people with diabetes in Hong Kong, 2001–2016: A retrospective cohort study. Diabetologia 2020, 63, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, F.; Saito, E.; Lin, Y.; Song, M.; Luu, H.N.; Gupta, P.C.; Sawada, N.; Tamakoshi, A.; Shu, X.-O.; et al. Association between type 2 diabetes and risk of cancer mortality: A pooled analysis of over 771,000 individuals in the Asia cohort consortium. Diabetologia 2017, 60, 1022–1032. [Google Scholar] [CrossRef]
- Lo, S.-F.; Chang, S.-N.; Muo, C.-H.; Chen, S.-Y.; Liao, F.-Y.; Dee, S.-W.; Chen, P.-C.; Sung, F.-C. Modest increase in risk of specific types of cancer types in type 2 diabetes mellitus patients. Int. J. Cancer 2013, 132, 182–188. [Google Scholar] [CrossRef]
- Gregg, E.W.; Cheng, Y.J.; Srinivasan, M.; Lin, J.; Geiss, L.S.; Albright, A.L.; Imperatore, G. Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: An epidemiological analysis of linked national survey and vital statistics data. Lancet 2018, 391, 2430–2440. [Google Scholar] [CrossRef]
- Harding, J.L.; Shaw, J.E.; Peeters, A.; Davidson, S.; Magliano, D. Age-specific trends from 2000–2011 in all-cause and cause-specific mortality in type 1 and type 2 diabetes: A cohort study of more than one million people. Diabetes Care 2016, 39, 1018–1026. [Google Scholar] [CrossRef] [Green Version]
- Cignarelli, A.; Genchi, V.A.; Caruso, I.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Diabetes and cancer: Pathophysiological fundamentals of a ‘dangerous affair’. Diabetes Res. Clin. Pract. 2018, 143, 378–388. [Google Scholar] [CrossRef]
- Calle, E.E.; Kaaks, R. Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 2004, 4, 579–591. [Google Scholar] [CrossRef]
- Ricart, W.; Fernández-Real, J.M. No decrease in free IGF-I with increasing insulin in obesity-related insulin resistance. Obes. Res. 2001, 9, 631–636. [Google Scholar] [CrossRef]
- Masur, K.; Vetter, C.; Hinz, A.; Tomas, N.; Henrich, H.; Niggemann, B.; Zänker, K.S. Diabetogenic glucose and insulin concentrations modulate transcriptom and protein levels involved in tumour cell migration, adhesion and proliferation. Br. J. Cancer 2010, 104, 345–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, A.; Anazco, C.; González, I.; Araya, P. Extracellular matrix glycation and receptor for advanced glycation end-products activation: A missing piece in the puzzle of the association between diabetes and cancer. Carcinogenesis 2018, 39, 515–521. [Google Scholar] [CrossRef] [PubMed]
- El-Far, A.H.; Sroga, G.; Al Jaouni, S.K.; Mousa, S.A. Role and mechanisms of RAGE-ligand complexes and RAGE-inhibitors in cancer progression. Int. J. Mol. Sci. 2020, 21, 3613. [Google Scholar] [CrossRef] [PubMed]
- Liberti, M.V.; Locasale, J.W. The warburg effect: How does it benefit cancer cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Devic, S. Warburg effect—A consequence or the cause of carcinogenesis? J. Cancer 2016, 7, 817–822. [Google Scholar] [CrossRef] [Green Version]
- Blyth, A.J.; Kirk, N.S.; Forbes, B.E. Understanding IGF-II action through insights into receptor binding and activation. Cells 2020, 9, 2276. [Google Scholar] [CrossRef]
- Candido, J.; Hagemann, T. Cancer-related inflammation. J. Clin. Immunol. 2013, 33, 79–84. [Google Scholar] [CrossRef]
- Bala, C.; Rusu, A.; Ciobanu, D.; Bucsa, C.; Roman, G. Amino acid signature of oxidative stress in patients with type 2 diabetes: Targeted exploratory metabolomic research. Antioxidants 2021, 10, 610. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Garg, S.K.; Maurer, H.; Reed, K.; Selagamsetty, R. Diabetes and cancer: Two diseases with obesity as a common risk factor. Diabetes Obes. Metab. 2014, 16, 97–110. [Google Scholar] [CrossRef]
- GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- WHO. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 11 August 2021).
- NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: A systematic review and meta-analysis. JAMA 2013, 309, 71–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parr, C.L.; Batty, G.; Lam, T.H.; Barzi, F.; Fang, X.; Ho, S.C.; Jee, S.H.; Ansari-Moghaddam, A.; Jamrozik, K.; Ueshima, H.; et al. Body-mass index and cancer mortality in the Asia-Pacific cohort studies collaboration: Pooled analyses of 424,519 participants. Lancet Oncol. 2010, 11, 741–752. [Google Scholar] [CrossRef] [Green Version]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef]
- Verma, S.; Hussain, M.E. Obesity and diabetes: An update. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, 73–79. [Google Scholar] [CrossRef]
- Atchison, E.; Gridley, G.; Carreon, J.D.; Leitzmann, M.F.; McGlynn, K.A. Risk of cancer in a large cohort of U.S. veterans with diabetes. Int. J. Cancer 2010, 128, 635–643. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Gong, G.; Ben, Q.; Qiu, W.; Chen, Y.; Li, G.; Wang, L. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: A systematic review and meta-analysis of cohort studies. Int. J. Cancer 2012, 130, 1639–1648. [Google Scholar] [CrossRef]
- Jiang, Y.; Ben, Q.; Shen, H.; Lu, W.; Zhang, Y.; Zhu, J. Diabetes mellitus and incidence and mortality of colorectal cancer: A systematic review and meta-analysis of cohort studies. Eur. J. Epidemiol. 2011, 26, 863–876. [Google Scholar] [CrossRef]
- Johnson, J.A.; Carstensen, B.; Witte, D.; Bowker, S.L.; Lipscombe, L.; Renehan, A.G. Diabetes and cancer (1): Evaluating the temporal relationship between type 2 diabetes and cancer incidence. Diabetologia 2012, 55, 1607–1618. [Google Scholar] [CrossRef] [Green Version]
- Perks, C.M.; Vernon, E.; Rosendahl, A.H.; Tonge, D.; Holly, J.M.P. IGF-II and IGFBP-2 differentially regulate PTEN in human breast cancer cells. Oncogene 2007, 26, 5966–5972. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Bai, P.; Dai, H.; Deng, Z. Metformin and risk of cancer among patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Prim. Care Diabetes 2021, 15, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 2008, 8, 915–928. [Google Scholar] [CrossRef]
- Lega, I.C.; Austin, P.C.; Fischer, H.D.; Fung, K.; Krzyzanowska, M.K.; Amir, E.; Lipscombe, L.L. The impact of diabetes on breast cancer treatments and outcomes: A population-based study. Diabetes Care 2018, 41, 755–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barroso, M.; Goday, A.; Ramos, R.; Marín-Ibañez, A.; Guembe, M.J.; Rigo, F.; Tormo-Díaz, M.J.; Moreno-Iribas, C.; Cabré, J.J.; Segura, A.; et al. Fresco Investigators interaction between cardiovascular risk factors and body mass index and 10-year incidence of cardiovascular disease, cancer death, and overall mortality. Prev Med. 2018, 107, 81–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Færch, K.; Witte, D.; Tabak, A.; Perreault, L.; Herder, C.; Brunner, E.J.; Kivimäki, M.; Vistisen, D. Trajectories of cardiometabolic risk factors before diagnosis of three subtypes of type 2 diabetes: A post-hoc analysis of the longitudinal Whitehall II cohort study. Lancet Diabetes Endocrinol. 2013, 1, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Onitilo, A.A.; Stankowski, R.V.; Berg, R.L.; Engel, J.M.; Glurich, I.; Williams, G.M.; Doi, S.A. Breast cancer incidence before and after diagnosis of type 2 diabetes mellitus in women: Increased risk in the prediabetes phase. Eur. J. Cancer Prev. 2014, 23, 76–83. [Google Scholar] [CrossRef]
- Onitilo, A.A.; Berg, R.L.; Engel, J.M.; Glurich, I.; Stankowski, R.V.; Williams, G.; Doi, S.A. Increased risk of colon cancer in men in the pre-diabetes phase. PLoS ONE 2013, 8, e70426. [Google Scholar] [CrossRef] [Green Version]
- Lega, I.C.; Wilton, A.S.; Austin, P.C.; Fischer, H.D.; Johnson, J.A.; Lipscombe, L.L. The temporal relationship between diabetes and cancer: A population-based study. Cancer 2016, 122, 2731–2738. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.A.; Bowker, S.L.; Richardson, K.; Marra, C.A. Time-varying incidence of cancer after the onset of type 2 diabetes: Evidence of potential detection bias. Diabetologia 2011, 54, 2263–2271. [Google Scholar] [CrossRef] [Green Version]
- Carstensen, B.; Witte, D.; Friis, S. Cancer occurrence in Danish diabetic patients: Duration and insulin effects. Diabetologia 2012, 55, 948–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillies, R.J.; Pilot, C.; Marunaka, Y.; Fais, S. Targeting acidity in cancer and diabetes. Biochim. Biophys. Acta Bioenerg. 2019, 1871, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Wellington, K. Rosiglitazone/metformin. Drugs 2005, 65, 1581–1594. [Google Scholar] [CrossRef] [PubMed]
- Zangeneh, F.; Kudva, Y.C.; Basu, A. Insulin sensitizers. Mayo Clin. Proc. 2003, 78, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Choi, E.-A.; Kim, Y.-S.; Kim, Y.; You, H.-S.; Han, Y.-E.; Kim, H.-S.; Bae, Y.-J.; Kim, J.; Kang, H.-T. Metformin usage and the risk of colorectal cancer: A national cohort study. Int. J. Color. Dis. 2021, 36, 303–310. [Google Scholar] [CrossRef]
- Landman, G.W.D.; Kleefstra, N.; Van Hateren, K.J.J.; Groenier, K.H.; Gans, R.O.B.; Bilo, H.J.G. Metformin associated with lower cancer mortality in type 2 diabetes: Zodiac-16. Diabetes Care 2009, 33, 322–326. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-S.; Choi, E.-A.; Lee, J.-W.; Kim, Y.; You, H.-S.; Han, Y.-E.; Kim, H.-S.; Bae, Y.-J.; Kang, H.-T.; Kim, J. Metformin use reduced the overall risk of cancer in diabetic patients: A study based on the Korean NHIS-HEALS cohort. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1714–1722. [Google Scholar] [CrossRef]
- Morales, D.R.; Morris, A.D. Metformin in cancer treatment and prevention. Annu. Rev. Med. 2015, 66, 17–29. [Google Scholar] [CrossRef]
- Shackelford, D.B.; Abt, E.; Gerken, L.; Vasquez, D.S.; Seki, A.; Leblanc, M.; Wei, L.; Fishbein, M.C.; Czernin, J.; Mischel, P.S.; et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 2013, 23, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 2001, 108, 1167–1174. [Google Scholar] [CrossRef]
- Liu, X.; Chhipa, R.R.; Pooya, S.; Wortman, M.; Yachyshin, S.; Chow, L.M.L.; Kumar, A.; Zhou, X.; Sun, Y.; Quinn, B.; et al. Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc. Natl. Acad. Sci. USA 2014, 111, E435–E444. [Google Scholar] [CrossRef] [Green Version]
- Bijland, S.; Mancini, S.J.; Salt, I.P. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin. Sci. 2013, 124, 491–507. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, H.A.; Iliopoulos, D.; Struhl, K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc. Natl. Acad. Sci. USA 2013, 110, 972–977. [Google Scholar] [CrossRef] [Green Version]
- Ersoy, C.; Kiyici, S.; Budak, F.; Oral, B.; Guclu, M.; Duran, C.; Selimoglu, H.; Erturk, E.; Tuncel, E.; Imamoglu, S. The effect of metformin treatment on VEGF and PAI-1 levels in obese type 2 diabetic patients. Diabetes Res. Clin. Pract. 2008, 81, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-T.; Yang, H.-J.; Zhou, J.-G.; Liu, J.-L. Relationship between metformin therapy and risk of colorectal cancer in patients with diabetes mellitus: A meta-analysis. Int. J. Color. Dis. 2020, 35, 2117–2131. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.S.; Park, C.H.; Eun, C.S.; Park, D.I.; Han, D.S. Metformin use and the risk of colorectal adenoma: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2017, 32, 957–965. [Google Scholar] [CrossRef]
- Liu, F.; Yan, L.; Wang, Z.; Lu, Y.; Chu, Y.; Li, X.; Liu, Y.; Rui, D.; Nie, S.; Xiang, H. Metformin therapy and risk of colorectal adenomas and colorectal cancer in type 2 diabetes mellitus patients: A systematic review and meta-analysis. Oncotarget 2017, 8, 16017–16026. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.-C.; Hu, Q.; Huang, J.; Fang, J.-Y.; Xiong, H. Metformin therapy and the risk of colorectal adenoma in patients with type 2 diabetes: A meta-analysis. Oncotarget 2016, 8, 8843–8853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Zheng, Y.; Xiao, Y.; Zhou, P.; Tan, H. Meta-analysis of studies using metformin as a reducer for liver cancer risk in diabetic patients. Medicine 2017, 96, e6888. [Google Scholar] [CrossRef]
- Zhou, Y.-Y.; Zhu, G.-Q.; Liu, T.; Zheng, J.-N.; Cheng, Z.; Zou, T.-T.; Braddock, M.; Fu, S.-W.; Zheng, M.-H. Systematic review with network meta-analysis: Antidiabetic medication and risk of hepatocellular carcinoma. Sci. Rep. 2016, 6, 33743. [Google Scholar] [CrossRef]
- Saka Herrán, C.; Jané-Salas, E.; Estrugo Devesa, A.; López-López, J. Protective effects of metformin, statins and anti-inflammatory drugs on head and neck cancer: A systematic review. Oral Oncol. 2018, 85, 68–81. [Google Scholar] [CrossRef]
- Xiao, K.; Liu, F.; Liu, J.; Xu, J.; Wu, Q.; Li, X. The effect of metformin on lung cancer risk and survival in patients with type 2 diabetes mellitus: A meta-analysis. J. Clin. Pharm. Ther. 2020, 45, 783–792. [Google Scholar] [CrossRef]
- Yao, L.; Liu, M.; Huang, Y.; Wu, K.; Huang, X.; Zhao, Y.; He, W.; Zhang, R. Metformin use and lung cancer risk in diabetic patients: A systematic review and meta-analysis. Dis. Markers 2019, 2019, 6230162. [Google Scholar] [CrossRef] [Green Version]
- Della Corte, C.M.; Ciaramella, V.; Di Mauro, C.; Castellone, M.; Papaccio, F.; Fasano, M.; Sasso, F.C.; Martinelli, E.; Troiani, T.; De Vita, F.; et al. Metformin increases antitumor activity of MEK inhibitors through GLI1 downregulation in LKB1 positive human NSCLC cancer cells. Oncotarget 2016, 7, 4265–4278. [Google Scholar] [CrossRef] [Green Version]
- Morgillo, F.; Sasso, F.C.; Della Corte, C.M.; Festino, L.; Manzo, A.; Martinelli, E.; Troiani, T.; Capuano, A.; Ciardiello, F. Metformin in lung cancer: Rationale for a combination therapy. Expert Opin. Investig. Drugs 2013, 22, 1401–1409. [Google Scholar] [CrossRef]
- Morgillo, F.; Fasano, M.; Della Corte, C.M.; Sasso, F.C.; Papaccio, F.; Viscardi, G.; Esposito, G.; DI Liello, R.; Normanno, N.; Capuano, A.; et al. Results of the safety run-in part of the METAL (METformin in Advanced Lung cancer) study: A multicentre, open-label phase I–II study of metformin with erlotinib in second-line therapy of patients with stage IV non-small-cell lung cancer. ESMO Open 2017, 2, e000132. [Google Scholar] [CrossRef] [Green Version]
- Wen, Q.; Zhao, Z.; Wen, J.; Zhou, J.; Wu, J.; Lei, S.; Miao, Y. The association between metformin therapy and risk of gynecological cancer in patients: Two meta-analyses. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 237, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.; Wu, J.; Wang, K.; Zhao, M.; Wang, C.; Li, L.; Guo, R. Effect of metformin use on the risk and prognosis of endometrial cancer: A systematic review and meta-analysis. BMC Cancer 2018, 18, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Liu, X.; Yan, P.; Tang, J.; Chen, T.; Sun, Y.; Zhou, W.; Bi, Y.; Zhang, Z.-J. Effect of metformin on the risk of prostate cancer in patients with type 2 diabetes by considering different confounding factors: A meta-analysis of observational studies. Eur. J. Cancer Prev. 2020, 29, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Zhou, X.; Liu, N.; Wang, J.; Chen, X.; Xu, X. Metformin use and prostate cancer risk: A meta-analysis of cohort studies. Medicine 2019, 98, e14955. [Google Scholar] [CrossRef]
- Chen, C.B.; Eskin, M.; Eurich, D.T.; Majumdar, S.R.; Johnson, J.A. Metformin, Asian ethnicity and risk of prostate cancer in type 2 diabetes: A systematic review and meta-analysis. BMC Cancer 2018, 18, 65. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Chen, J.B.; Cui, Y.; Zhu, Y.W.; Ren, W.B.; Zhou, X.; Liu, L.F.; Chen, H.Q.; Zu, X.B. Association of metformin intake with bladder cancer risk and oncologic outcomes in type 2 diabetes mellitus patients: A systematic review and meta-analysis. Medicine 2018, 97, e11596. [Google Scholar] [CrossRef]
- Salvatore, T.; Pafundi, P.C.; Galiero, R.; Rinaldi, L.; Caturano, A.; Vetrano, E.; Aprea, C.; Albanese, G.; Di Martino, A.; Ricozzi, C.; et al. Can metformin exert as an active drug on endothelial dysfunction in diabetic subjects? Biomedicines 2020, 9, 3. [Google Scholar] [CrossRef]
- Salvatore, T.; Pafundi, P.C.; Morgillo, F.; Di Liello, R.; Galiero, R.; Nevola, R.; Marfella, R.; Monaco, L.; Rinaldi, L.; Adinolfi, L.E.; et al. Metformin: An old drug against old age and associated morbidities. Diabetes Res. Clin. Pract. 2020, 160, 108025. [Google Scholar] [CrossRef]
- Shafiei-Irannejad, V.; Samadi, N.; Salehi, R.; Yousefi, B.; Zarghami, N. New insights into antidiabetic drugs: Possible applications in cancer treatment. Chem. Biol. Drug Des. 2017, 90, 1056–1066. [Google Scholar] [CrossRef]
- Rangwala, S.M.; Lazar, M.A. Peroxisome proliferator-activated receptor $gamma; in diabetes and metabolism. Trends Pharmacol. Sci. 2004, 25, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Shi, W.; Fu, S.; Wang, T.; Zhai, S.; Song, Y.; Han, J. Pioglitazone and bladder cancer risk: A systematic review and meta-analysis. Cancer Med. 2018, 7, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Xie, H.; Ying, Y.; Li, J.; Wang, X.; Xu, X.; Zheng, X. Pioglitazone use in patients with diabetes and risk of bladder cancer: A systematic review and meta-analysis. Cancer Manag. Res. 2018, 10, 1627–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, M.B.; Pan, D. An updated meta-analysis of pioglitazone exposure and bladder cancer and comparison to the drug’s effect on cardiovascular disease and non-alcoholic steatohepatitis. Diabetes Res. Clin. Pract. 2018, 135, 102–110. [Google Scholar] [CrossRef]
- Li, Z.; Shi, J.; Sun, M.; Wang, F.; Wang, K. Association between pioglitazone use and the risk of bladder cancer among subjects with diabetes mellitus: A dose-response meta-analysis. Int. J. Clin. Pharmacol. Ther. 2017, 55, 210–219. [Google Scholar] [CrossRef]
- Hu, T.-T.; Liu, Y.; Jin, P.; Sun, X.-C. Thiazolidinediones and risk of colorectal cancer in patients with diabetes mellitus: A meta-analysis. Saudi J. Gastroenterol. 2018, 24, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Lin, L.; Cheng, D.; Xu, Y.; Xu, M.; Chen, Y.; Wang, W.; Bi, Y.; Li, N.; Lu, J. Thiazolidinedione therapy and breast cancer risk in diabetic women: A systematic review and meta-analysis. Diabetes Metab. Res. Rev. 2017, 34, e2961. [Google Scholar] [CrossRef] [PubMed]
- Ciaramella, V.; Sasso, F.C.; Di Liello, R.; Della Corte, C.M.; Barra, G.; Viscardi, G.; Esposito, G.; Sparano, F.; Troiani, T.; Martinelli, E.; et al. Activity and molecular targets of pioglitazone via blockade of proliferation, invasiveness and bioenergetics in human NSCLC. J. Exp. Clin. Cancer Res. 2019, 38, 178. [Google Scholar] [CrossRef] [PubMed]
- Seino, S. Cell signalling in insulin secretion: The molecular targets of ATP, cAMP and sulfonylurea. Diabetologia 2012, 55, 2096–2108. [Google Scholar] [CrossRef] [PubMed]
- Tuccori, M.; Wu, J.W.; Yin, H.; Majdan, A.; Azoulay, L. The use of glyburide compared with other sulfonylureas and the risk of cancer in patients with type 2 diabetes. Diabetes Care 2015, 38, 2083–2089. [Google Scholar] [CrossRef] [Green Version]
- Bowker, S.L.; Majumdar, S.R.; Veugelers, P.; Johnson, J.A. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 2006, 29, 254–258. [Google Scholar] [CrossRef] [Green Version]
- Kowall, B.; Rathmann, W.; Kostev, K. Are sulfonylurea and insulin therapies associated with a larger risk of cancer than metformin therapy? A retrospective database analysis. Diabetes Care 2014, 38, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.-H.; Qian, M.-H.; Shi, L.-Z.; Ye, L. Association between metformin and sulfonylurea monotherapies and cancer incidence: A real-world cohort study in Shanghai, China. Diabetes Ther. 2019, 10, 245–258. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Li, X.; Gasevic, D.; Brunt, E.; McLachlan, F.; Millenson, M.; Timofeeva, M.; Ioannidis, J.; Campbell, H.; Theodoratou, E. Statins and multiple noncardiovascular outcomes: Umbrella review of meta-analyses of observational studies and randomized controlled trials. Ann. Intern. Med. 2018, 169, 543–553. [Google Scholar] [CrossRef]
- Okada, S.; Morimoto, T.; Ogawa, H.; Soejima, H.; Matsumoto, C.; Sakuma, M.; Nakayama, M.; Doi, N.; Jinnouchi, H.; Waki, M.; et al. Association between statins and cancer incidence in diabetes: A cohort study of Japanese patients with type 2 diabetes. J. Gen. Intern. Med. 2020, 36, 632–639. [Google Scholar] [CrossRef]
- Rose, G. Sick individuals and sick populations. Int. J. Epidemiol. 1985, 14, 32–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katzke, V.A.; Kaaks, R.; Kühn, T. Lifestyle and cancer risk. Cancer J. 2015, 21, 104–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, F.D.; Chen, Y.; Di Santo, P.; Simard, T.; Motazedian, P.; Hibbert, B. Association between self-reported potentially modifiable cardiac risk factors and perceived need to improve physical health: A population-based study. J. Am. Heart Assoc. 2017, 6, 005491. [Google Scholar] [CrossRef] [PubMed]
- Frederix, I.; Caiani, E.G.; Dendale, P.; Anker, S.; Bax, J.; Böhm, A.; Cowie, M.; Crawford, J.; de Groot, N.; Dilaveris, P.; et al. ESC e-cardiology working group position paper: Overcoming challenges in digital health implementation in cardiovascular medicine. Eur. J. Prev. Cardiol. 2019, 26, 1166–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barroso, M.; Zomeño, M.D.; Díaz, J.L.; Pérez-Fernández, S.; Martí-Lluch, R.; Cordón, F.; Ramos, R.; Cabezas, C.; Salvador, G.; Castell, C.; et al. Control of cardiovascular risk factors with tailored recommendations: A randomized controlled trial. Prev. Med. 2020, 141, 106302. [Google Scholar] [CrossRef]
- Barroso, M.; Zomeño, M.D.; Díaz, J.L.; Pérez, S.; Martí-Lluch, R.; Cordón, F.; Ramos, R.; Cabezas, C.; Salvador, G.; Castell, C.; et al. Efficacy of tailored recommendations to promote healthy lifestyles: A post hoc analysis of a randomized controlled trial. Transl. Behav. Med. 2021, 11, 1548–1557. [Google Scholar] [CrossRef]
First Author and Publication Date | Cancer Location | Results | Conclusion |
---|---|---|---|
Yang, 2020 [72] | Colorectal | Metformin treatment significantly reduce the incidence of colorectal cancer in diabetic patients (adjusted RR = 0.884, 95% CI = 0.829–0.943). | Metformin therapy was associated with a significantly reduced risk of colorectal disease in patients with diabetes. |
Jung, 2017 [73] | Colorectal | Metformin use reduced the risk of colorectal adenoma (pooled OR = 0.76, 95% CI = 0.63–0.92). | Metformin use seemed to be associated with a reduced risk of colorectal adenoma. |
Liu, 2017 [74] | Colorectal | Metformin therapy was found to be associated with a decreased incidence of colorectal adenomas (adjusted OR = 0.75, 95% CI: 0.59–0.97). | Metformin therapy may be associated with a decreased risk of colorectal adenomas and colorectal cancer in type 2 diabetes mellitus patients. |
Hou, 2017 [75] | Colorectal | Metformin therapy decreased the risk of colorectal adenoma (OR = 0.73; 95% CI = 0.58–0.90). | Metformin therapy was correlated with a significant decrease in the risk of colorectal adenoma in type 2 diabetes mellitus patients. |
Ma, 2017 [76] | Liver | Metformin use reduced the risk of liver cancer (OR = 0.52; 95% CI = 0.40–0.68) compared with nonusers. | A protective effect for liver cancer was found in diabetic metformin users. |
Zhou, 2016 [77] | Liver | The use of metformin was associated with a significant reduction of hepatocellular cancer risk (Risk Ratio = 0.49, 95% CI = 0.25–0.97). | Metformin was an effective strategy to reduce hepatocellular cancer risk. |
Xiao, 2020 [79] | Lung | Metformin treatment was associated with decreased lung cancer incidence (HR = 0.78; 95% CI = 0.70–0.86). | Metformin was significantly associated with a decreased risk of lung cancer. |
Yao, 2019 [80] | Lung | Compared to non-metformin users, metformin decreased lung cancer incidence in diabetic patients (RR = 0.89; 95% CI = 0.83–0.96). | Metformin use was related to a lower lung cancer risk in diabetic patients compared to nonusers. |
Saka Herran, 2018 [78] | Head and neck | Metformin exerts significant beneficial effects on head and neck cancer risk (RR = 0.71, 95% CI = 0.61–0.84). | Metformin appeared to have beneficial effects on the risk of head and neck cancer |
Wen, 2019 [84] | Gynecological cancers | Metformin may reduce the risk of gynecological cancers (RR = 0.49, 95% CI = 0.29–0.82). | Metformin can be used as a potential anticarcinogenic drug to prevent gynecological cancer. |
Chu, 2018 [85] | Endometrial | Metformin was not significantly associated with a lower risk of endometrial cancer (OR = 1.05, 95% CI = 0.82–1.35). | Metformin was not beneficial for preventing endometrial cancer. |
Wang, 2020 [86] | Prostate | No significant association between metformin and the risk of prostate cancer was found:
| Metformin therapy was not associated with the risk of prostate cancer in patients with type 2 diabetes mellitus. |
Feng, 2019 [87] | Prostate | Metformin use was not significantly associated with the risk of prostate cancer (RR = 0.97, 95% CI = 0.80–1.16). | No association was found between metformin use and prostate cancer risk. |
Chen, 2018 [88] | Prostate | There was no association between metformin and prostate cancer (RR = 1.01, 95% CI = 0.86–1.18). | No association between metformin and risk of prostate cancer was identified. |
Hu, 2018 [89] | Bladder | Metformin intake was not associated with a decreased incidence of bladder cancer (HR = 0.82, 95% CI = 0.61–1.09). | Metformin did not decrease the risk of bladder cancer. |
First Author and Publication Date | Cancer Location | Results | Conclusion |
---|---|---|---|
Liu, 2018 [98] | Colorectal | Decreased risk of colorectal cancer in patients treated with thiazolidinediones: (RR = 0.91; 95% CI = 0.84–0.99). | Protective association between thiazolidinediones use and the risk of colorectal cancer in patients with diabetes mellitus. |
Du, 2018 [99] | Breast | No significant associations of thiazolidinediones use and risk of breast cancer:
| No significant association was found between thiazolidinediones use and risk of breast cancer among diabetic women. |
Tang, 2018 [94] | Bladder | Increased risk of bladder cancer in patients treated with pioglitazone:
| Pioglitazone may increase the risk of bladder cancer, possibly in a dose- and time-dependent manner. |
Yan, 2018 [95] | Bladder | Divergent results in the association between pioglitazone and bladder cancer according to the study design:
| Pioglitazone is associated with an increased risk of bladder cancer. |
Davidson, 2018 [96] | Bladder | No significant association between ever vs. never use of pioglitazone (HR = 1.09; 95% CI = 0.98–1.21). | The potentially very small number of patients at risk for bladder cancer after longer exposure to pioglitazone is far out-weighed by the much larger number of patients with cardiovascular disease and non-alcoholic steatohepatitis who would benefit from the drug. |
Li, 2017 [97] | Bladder | Increased risk of bladder cancer in patients treated with pioglitazone (HR = 1.16, 95% CI = 1.06–1.25). | Pioglitazone use among subjects with diabetes mellitus increases mildly the risk of bladder cancer. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rey-Reñones, C.; Baena-Díez, J.M.; Aguilar-Palacio, I.; Miquel, C.; Grau, M. Type 2 Diabetes Mellitus and Cancer: Epidemiology, Physiopathology and Prevention. Biomedicines 2021, 9, 1429. https://doi.org/10.3390/biomedicines9101429
Rey-Reñones C, Baena-Díez JM, Aguilar-Palacio I, Miquel C, Grau M. Type 2 Diabetes Mellitus and Cancer: Epidemiology, Physiopathology and Prevention. Biomedicines. 2021; 9(10):1429. https://doi.org/10.3390/biomedicines9101429
Chicago/Turabian StyleRey-Reñones, Cristina, Jose Miguel Baena-Díez, Isabel Aguilar-Palacio, Cristina Miquel, and María Grau. 2021. "Type 2 Diabetes Mellitus and Cancer: Epidemiology, Physiopathology and Prevention" Biomedicines 9, no. 10: 1429. https://doi.org/10.3390/biomedicines9101429
APA StyleRey-Reñones, C., Baena-Díez, J. M., Aguilar-Palacio, I., Miquel, C., & Grau, M. (2021). Type 2 Diabetes Mellitus and Cancer: Epidemiology, Physiopathology and Prevention. Biomedicines, 9(10), 1429. https://doi.org/10.3390/biomedicines9101429