Plant-Derived Substances with Antibacterial, Antioxidant, and Flavoring Potential to Formulate Oral Health Care Products
Abstract
:1. Introduction
2. Eubiosis vs. Dysbiosis of Oral Microbiota: Health Impact
3. Oral Cancer and Its Relationship with Reactive Oxygen Species
4. Conventional and Alternative Ingredients with Antibacterial, Antioxidants, and Flavoring Properties Used in Dental Health Care Products
4.1. Antibacterial Properties
4.2. Antioxidant Properties
4.3. Flavoring Properties
5. Conclusions and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sridharan, G.; Sukumaran, A.; al Ostwani, A.E.O. Oral Diseases; IntechOpen: London, UK, 2020. [Google Scholar]
- Ghasemianpour, M.; Bakhshandeh, S.; Shirvani, A.; Emadi, N.; Samadzadeh, H.; Fatemi, N.M.; Ghasemian, A. Dental caries experience and socio-economic status among Iranian children: A multilevel analysis. BMC Public Health 2019, 19, 1569. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T.; Warnakulasuriya, S. Screening for oral cancer: Future prospects, research and policy development for Asia. Oral Oncol. 2020, 105, 104632. [Google Scholar] [CrossRef]
- Yang, G.; Yin, X.; Ma, D.; Su, Z. Anticancer activity of Phloretin against the human oral cancer cells is due to G0/G1 cell cycle arrest and ROS mediated cell death. J. BUON 2020, 25, 344–349. [Google Scholar]
- Wieser, S.; Riguzzi, M.; Pletscher, M.; Huber, C.A.; Telser, H.; Schwenkglenks, M. How much does the treatment of each major disease cost? A decomposition of Swiss National Health Accounts. Eur. J. Health Econ. 2018, 19, 1149–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peres, M.A.; Macpherson, L.M.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C. Oral diseases: A global public health challenge. Lancet 2020, 395, 186. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto-Nakano, M. Role of Streptococcus mutans surface proteins for biofilm formation. Jpn. Dent. Sci. Rev. 2017, 54, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Rajesh, S.; Princy, S.A. Plausible Drug Targets in the Streptococcus mutans Quorum Sensing Pathways to Combat Dental Biofilms and Associated Risks. Indian J. Microbiol. 2015, 55, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shi, Y.; Jing, S.; Dong, H.; Wang, D.; Wang, T. Astilbin Inhibits the Activity of Sortase A from Streptococcus mutans. Molecules 2019, 24, 465. [Google Scholar] [CrossRef] [Green Version]
- Ojeda-Garcés, J.C.; Oviedo-García, E.; Salas, L.A. Streptococcus mutans and dental caries. Ces Odontología 2013, 26, 44–56. [Google Scholar]
- Elkerbout, T.; Slot, D.; Van Loveren, C.; Van Der Weijden, G. Will a chlorhexidine-fluoride mouthwash reduce plaque and gingivitis? Int. J. Dent. Hyg. 2018, 17, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Pretty, I.A. High Fluoride Concentration Toothpastes for Children and Adolescents. Caries Res. 2016, 50, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Su, C.-Y.; Chen, C.-C.; Chen, H.-Y.; Lin, C.-P.; Lin, F.-H.; Fang, H.-W. Characteristics of an alternative antibacterial biomaterial for mouthwash in the absence of alcohol. J. Dent. Sci. 2019, 14, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Ramirez, L.A.; Rodriguez-Garcia, I.; Leyva, J.M.; Valenzuela, M.R.C.; Silva-Espinoza, B.A.; Gonzalez-Aguilar, G.A.; Siddiqui, M.W.; Ayala-Zavala, J.F. Potential of Medicinal Plants as Antimicrobial and Antioxidant Agents in Food Industry: A Hypothesis. J. Food Sci. 2014, 79, R129–R137. [Google Scholar] [CrossRef] [PubMed]
- Lazarević, M.; Milošević, M.; Petrović, N.; Petrović, S.; Damante, G.; Milašin, J.; Milovanović, B. Cytotoxic Effects of Different Aromatic Plants Essential Oils on Oral Squamous Cell Carcinoma- an in vitro Study. Balk. J. Dent. Med. 2019, 23, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Bhat, N.; Mitra, R.; Oza, S.; Mantu, V.K.; Bishnoi, S.; Gohil, M.; Gupta, R. The antiplaque effect of herbal mouthwash in comparison to chlorhexidine in human gingival disease: A randomized placebo controlled clinical trial. J. Complement. Integr. Med. 2014, 11, 129–137. [Google Scholar] [CrossRef]
- Cardoso-Ugarte, G.A.; López-Malo, A.; Sosa-Morales, M.E. Cinnamon (Cinnamomum zeylanicum) Essential Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 339–347. [Google Scholar] [CrossRef]
- Lamont, R.J.; Koo, H.; Hajishengallis, G. The oral microbiota: Dynamic communities and host interactions. Nat. Rev. Genet. 2018, 16, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Sarduy Bermúdez, L.; González Díaz, M.E. La biopelícula: Una nueva concepción de la placa dentobacteriana. Medicentro 2016, 20, 167–175. [Google Scholar]
- Marsh, P.D.; Head, D.A.; Devine, D.A. Dental plaque as a biofilm and a microbial community—Implications for treatment. J. Oral Biosci. 2015, 57, 185–191. [Google Scholar] [CrossRef]
- Aas, J.A.; Griffen, A.L.; Dardis, S.R.; Lee, A.M.; Olsen, I.; Dewhirst, F.E.; Leys, E.J.; Paster, B.J. Bacteria of Dental Caries in Primary and Permanent Teeth in Children and Young Adults. J. Clin. Microbiol. 2008, 46, 1407–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graves, D.; Corrêa, J.; Silva, T. The Oral Microbiota Is Modified by Systemic Diseases. J. Dent. Res. 2019, 98, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Jakubovics, N.S.; Yassin, S.A.; Rickard, A.H. Community Interactions of Oral Streptococci. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 87, pp. 43–110. [Google Scholar] [CrossRef]
- Scharnow, A.M.; Solinski, A.E.; Wuest, W.M. Targeting S. mutans biofilms: A perspective on preventing dental caries. MedChemComm 2019, 10, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Tofiño-Rivera, A.; Ortega-Cuadros, M.; Galvis-Pareja, D.; Ríos, H.J.; Merini, L.; Martínez-Pabón, M. Effect of Lippia alba and Cymbopogon citratus essential oils on biofilms of Streptococcus mutans and cytotoxicity in CHO cells. J. Ethnopharmacol. 2016, 194, 749–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemos, J.; Palmer, S.; Zeng, L.; Wen, Z.; Kajfasz, J.; Freires, I.; Abranches, J.; Brady, L. The Biology of Streptococcus mutans. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Aarabi, G.; Thomalla, G.; Heydecke, G.; Seedorf, U. Chronic oral infection: An emerging risk factor of cerebral small vessel disease. Oral Dis. 2019, 25, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Leira, Y.; Seoane, J.; Blanco, M.; Rodríguez-Yáñez, M.; Takkouche, B.; Blanco, J.; Castillo, J. Association between periodontitis and ischemic stroke: A systematic review and meta-analysis. Eur. J. Epidemiol. 2017, 32, 43–53. [Google Scholar] [CrossRef]
- Ghizoni, J.S.; Nichele, R.; De Oliveira, M.T.; Pamato, S.; Pereira, J.R. The utilization of saliva as an early diagnostic tool for oral cancer: microRNA as a biomarker. Clin. Transl. Oncol. 2019, 22, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, E.; Alikhani, M.; Yazdanian, A.; Yazdanian, M.; Tebyanian, H.; Seifalian, A. The current markers of cancer stem cell in oral cancers. Life Sci. 2020, 249, 117483. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, Z.; Rajthala, S.; Sapkota, D.; Dongre, H.; Parajuli, H.; Suliman, S.; Das, R.; Li, L.; Bindoff, L.A.; et al. Metabolic reprogramming of normal oral fibroblasts correlated with increased glycolytic metabolism of oral squamous cell carcinoma and precedes their activation into carcinoma associated fibroblasts. Experientia 2019, 77, 1115–1133. [Google Scholar] [CrossRef]
- Li, Y.; Tan, X.; Zhao, X.; Xu, Z.; Dai, W.; Duan, W.; Huang, S.; Zhang, E.; Liu, J.; Zhang, S.; et al. Composition and function of oral microbiota between gingival squamous cell carcinoma and periodontitis. Oral Oncol. 2020, 107, 104710. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, T.M. Role of Oral Microbiota in Cancer Development. Microorganisms 2019, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- La Rosa, G.R.M.; Gattuso, G.; Pedullà, E.; Rapisarda, E.; Nicolosi, D.; Salmeri, M. Association of oral dysbiosis with oral cancer development (Review). Oncol. Lett. 2020, 19, 3045–3058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambe, K.; Watanabe, H.; Takahashi, S.; Nakagawa, T.; Sasaki, J. Production and physiological role of NO in the oral cavity. Jpn. Dent. Sci. Rev. 2016, 52, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Sardaro, N.; della Vella, F.; Incalza, M.A.; Di Stasio, D.; Lucchese, A.; Contaldo, M.; Laudadio, C.; Petruzzi, M. Oxidative Stress and Oral Mucosal Diseases: An Overview. In Vivo 2019, 33, 289–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosales, J.C.; Cardoso, D.D.; Chaires, I.C.; Mejía, M.A. Dentífricos fluorurados: Composición. Vertientes Rev. Espec. En Cienc. De La Salud 2014, 17, 114–119. [Google Scholar]
- Tartaglia, G.M.; Kumar, S.; Fornari, C.D.; Corti, E.; Connelly, S.T. Mouthwashes in the 21st century: A narrative review about active molecules and effectiveness on the periodontal outcomes. Expert Opin. Drug Deliv. 2017, 14, 973–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AlShehri, F.A. The use of mouthwash containing essential oils (LISTERINE®) to improve oral health: A systematic review. Saudi Dent. J. 2018, 30, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Khanchemehr, Y.; Hoseynrezaei, H.; Sepehri, G.; Torabi, M.; Jahani, Y.; Khanchemehr, A. A comparison of the effects of mouthwash obtained from green tea and chlorhexidine mouthwash on the oral health of patients admitted in the intensive care unit. J. Oral Health Oral Epidemiol. 2019, 8, 9–16. [Google Scholar] [CrossRef]
- Cuadros, M.O.; Rivera, A.P.T.; Merini, L.J.; Pabon, M.C.M. Antimicrobial activity of Cymbopogon citratus (Poaceae) essential oil on Streptococcus mutans biofilm and cytotoxic effect on keratinocytes and fibroblasts. Rev. Biol. Trop 2018, 66, 1519–1529. [Google Scholar] [CrossRef] [Green Version]
- Sajadi, F.S.; Moradi, M.; Pardakhty, A.; Yazdizadeh, R.; Madani, F. Effect of Fluoride, Chlorhexidine and Fluoride-chlorhexidine Mouthwashes on Salivary Streptococcus mutans Count and the Prevalence of Oral Side Effects. J. Dent. Res. Dent. Clin. Dent. Prospect. 2015, 9, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Reilly, C.; Goettl, M.; Steinmetz, M.; Nikrad, J.; Jones, R.S. Short-term effects of povidone iodine and sodium fluoride therapy on plaque levels and microbiome diversity. Oral Dis. 2016, 22, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Nobahar, M.; Razavi, M.R.; Malek, F.; Ghorbani, R. Effects of hydrogen peroxide mouthwash on preventing ventilator-associated pneumonia in patients admitted to the intensive care unit. Braz. J. Infect. Dis. 2016, 20, 444–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [Green Version]
- Van De Vel, E.; Sampers, I.; Raes, K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci. Nutr. 2019, 59, 357–378. [Google Scholar] [CrossRef]
- Rao, J.; Chen, B.; McClements, D.J. Improving the Efficacy of Essential Oils as Antimicrobials in Foods: Mechanisms of Action. Annu. Rev. Food Sci. Technol. 2019, 10, 365–387. [Google Scholar] [CrossRef]
- Vlachojannis, C.; Chrubasik-Hausmann, S.; Hellwig, E.; Al-Ahmad, A. A Preliminary Investigation on the Antimicrobial Activity of Listerine®, Its Components, and of Mixtures Thereof. Phytother. Res. 2015, 29, 1590–1594. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.M.; Michalczuk, M.; Huyghebaert, G.; Juin, H.; Kwakernaak, C.; Gracia, M.I. Effects of a blend of essential oil compounds and benzoic acid on performance of broiler chickens as revealed by a meta-analysis of 4 growth trials in various locations. Poult. Sci. 2012, 91, 2820–2828. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Luo, Y.; Ren, W.; Schyns, G.; Guggenbuhl, P. The effects of benzoic acid and essential oils on growth performance, nutrient digestibility, and colonic microbiota in nursery pigs. Anim. Feed. Sci. Technol. 2020, 262, 114426. [Google Scholar] [CrossRef]
- Ortega-Ramirez, A.L.; Silva-Espinoza, A.B.; Vargas-Arispuro, I.; Gonzalez-Aguilar, A.G.; Cruz-Valenzuela, M.R.; Nazzaro, F.; Ayala-Zavala, J.F. Combination of Cymbopogon citratus and Allium cepa essential oils increased antibacterial activity in leafy vegetables. J. Sci. Food Agric. 2016, 97, 2166–2173. [Google Scholar] [CrossRef]
- Bernal-Mercado, A.T.; Vazquez-Armenta, F.J.; Tapia-Rodriguez, M.R.; Islas-Osuna, M.A.; Mata-Haro, V.; Gonzalez-Aguilar, G.A.; Lopez-Zavala, A.A.; Ayala-Zavala, J.F. Comparison of single and combined use of catechin, protocatechuic, and vanillic acids as antioxidant and antibacterial agents against uropathogenic Escherichia coli at planktonic and biofilm levels. Molecules 2018, 23, 2813. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.; Choo, J.; Lee, M.; Hwang, J. Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans. Phytomedicine 2006, 13, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Freires, I.A.; Denny, C.; Benso, B.; De Alencar, S.M.; Rosalen, P.L. Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review. Molecules 2015, 20, 7329–7358. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.L.S.; Bezerra, L.M.D.; Ribeiro, I.L.A.; Júnior, R.C.D.M.; Castro, R.D. Susceptibility of cariogenic microorganisms to phytoconstituents. Braz. J. Biol. 2018, 78, 691–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazemipoor, M.; Tehrani, P.F.; Zandi, H.; Yazdi, R.G. Chemical composition and antibacterial activity of Berberis vulgaris (barberry) against bacteria associated with caries. Clin. Exp. Dent. Res. 2020, 7, 601–608. [Google Scholar] [CrossRef]
- Lemes, R.S.; Alves, C.C.; Estevam, E.B.; Santiago, M.B.; Martins, C.H.; Dos Santos, T.C.; Crotti, A.E.; Miranda, M.L. Chemical composition and antibacterial activity of essential oils from Citrus aurantifolia leaves and fruit peel against oral pathogenic bacteria. Anais da Academia Brasileira de Ciências 2018, 90, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Muddathir, A.M.; Mohieldin, E.A.M.; Mitsunaga, T. In vitro activities of Acacia nilotica (L.) Delile bark fractions against Oral Bacteria, Glucosyltransferase and as antioxidant. BMC Complement. Med. Ther. 2020, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Golmohammadi, A. A comparative study on antimicrobial effect of iranian green tea and hibiscus tea on growth of oral cariogenic bacteria Streptococcus mutans ptcc 1683. J. Res. Med Dent. Sci. 2018, 6, 361–364. [Google Scholar]
- Filoche, S.; Soma, K.; Sissons, C.H. Antimicrobial effects of essential oils in combination with chlorhexidine digluconate. Oral Microbiol. Immunol. 2005, 20, 221–225. [Google Scholar] [CrossRef]
- Hartner, L. Chemotherapy for Oral Cancer. Dent. Clin. N. Am. 2018, 62, 87–97. [Google Scholar] [CrossRef]
- Chen, C.; Lu, C.; Chiang, J.; Chiu, H.; Yang, J.; Lee, C.; Way, T.; Huang, H. Synergistic inhibitory effects of cetuximab and curcumin on human cisplatin-resistant oral cancer CAR cells through intrinsic apoptotic process. Oncol. Lett. 2018, 16, 6323–6330. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-R.; Lin, C.; Lu, C.-C.; Kuo, S.-C.; Tsao, J.-W.; Juan, Y.-N.; Chiu, H.-Y.; Lee, F.-Y.; Yang, J.-S.; Tsai, F.-J. YC-1 induces G0/G1phase arrest and mitochondria-dependent apoptosis in cisplatin-resistant human oral cancer CAR cells. BioMedicine 2017, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Aslam, M.S.; Naveed, S.; Ahmed, A.; Abbas, Z.; Gull, I.; Athar, M.A. Side Effects of Chemotherapy in Cancer Patients and Evaluation of Patients Opinion about Starvation Based Differential Chemotherapy. J. Cancer Ther. 2014, 5, 817–822. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.; Kumar, N.; Sharma, S.; Parveen, S.; Rasheed, A. Turmeric in the management of oral submucous fibrosis: A systematic review and meta-analysis. J. Cancer Res. Ther. 2021, 17, 327–335. [Google Scholar] [CrossRef] [PubMed]
- SSoni, T.P.; Gupta, A.K.; Sharma, L.M.; Singhal, H.; Sharma, S.; Gothwal, R.S. A Randomized, Placebo-Controlled Study to Evaluate the Effect of Bio-Enhanced Turmeric Formulation on Radiation-Induced Oral Mucositis. Orl-J. Oto-Rhino-Laryngol. Head Neck Surg. 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, Y.; Zhang, W.; Wu, W. Association of tea consumption and the risk of oral cancer: A meta-analysis. Oral Oncol. 2014, 50, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Jung, I.L.; Lee, J.H.; Kang, S.C. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells. Oncol. Lett. 2015, 10, 1597–1604. [Google Scholar] [CrossRef]
- Hitomi, S.; Ono, K.; Terawaki, K.; Matsumoto, C.; Mizuno, K.; Yamaguchi, K.; Imai, R.; Omiya, Y.; Hattori, T.; Kase, Y.; et al. [6]-gingerol and [6]-shogaol, active ingredients of the traditional Japanese medicine hangeshashinto, relief oral ulcerative mucositis-induced pain via action on Na+ channels. Pharmacol. Res. 2017, 117, 288–302. [Google Scholar] [CrossRef]
- De La Chapa, J.J.; Singha, P.K.; Lee, D.R.; Gonzales, C.B. Thymol inhibits oral squamous cell carcinoma growth via mitochondria-mediated apoptosis. J. Oral Pathol. Med. 2018, 47, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Gezici, S. Current Perspectives in the Application of Medicinal Plants Against Cancer: Novel Therapeutic Agents. Anti-Cancer Agents Med. Chem. 2019, 19, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.-Y.; Gao, J.; Zhang, Z.-Y.; Zheng, J.-W.; Luo, J.-F.; Zhong, L.-P.; Xiang, Y.-B. Tea consumption and the risk of oral cancer incidence: A case-control study from China. Oral Oncol. 2013, 49, 918–922. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Paliwal, R.; Janmeda, P.; Sharma, S. Chemopreventive Efficacy of Moringa oleifera Pods Against 7, 12-Dimethylbenz[a]anthracene Induced Hepatic Carcinogenesis in Mice. Asian Pac. J. Cancer Prev. 2012, 13, 2563–2569. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, T.J.; Uhrig, L.K.; Pearl, D.K.; Casto, B.C.; Warner, B.M.; Clinton, S.K.; Sardo-Molmenti, C.L.; Ferguson, J.M.; Daly, B.T.; Riedl, K.; et al. Suppression of Proinflammatory and Prosurvival Biomarkers in Oral Cancer Patients Consuming a Black Raspberry Phytochemical-Rich Troche. Cancer Prev. Res. 2016, 9, 159–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallery, S.R.; Budendorf, D.E.; Larsen, M.P.; Pei, P.; Tong, M.; Holpuch, A.S.; Larsen, P.E.; Stoner, G.D.; Fields, H.W.; Chan, K.K.; et al. Effects of Human Oral Mucosal Tissue, Saliva, and Oral Microflora on Intraoral Metabolism and Bioactivation of Black Raspberry Anthocyanins. Cancer Prev. Res. 2011, 4, 1209–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Wei, Q.; Yang, Q.; Cao, X.; Li, Q.; Shi, F.; Tong, S.S.; Feng, C.; Yu, Q.; Yu, J.; et al. A novel formulation of [6]-gingerol: Proliposomes with enhanced oral bioavailability and antitumor effect. Int. J. Pharm. 2018, 535, 308–315. [Google Scholar] [CrossRef]
- Kubatka, P.; Kello, M.; Kajo, K.; Samec, M.; Jasek, K.; Vybohova, D.; Uramova, S.; Liskova, A.; Sadlonova, V.; Koklesova, L.; et al. Chemopreventive and Therapeutic Efficacy of Cinnamomum zeylanicum L. Bark in Experimental Breast Carcinoma: Mechanistic In Vivo and In Vitro Analyses. Molecules 2020, 25, 1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dongmo, P.M.J.; Tatsadjieu, L.N.; Tchoumbougnang, F.; Sameza, M.L.; Dongmo, B.N.; Zollo, P.H.A.; Menut, C. Chemical Composition, Antiradical and Antifungal Activities of Essential Oil of the Leaves of Cinnamomum zeylanicum Blume from Cameroon. Nat. Prod. Commun. 2007, 2. [Google Scholar] [CrossRef] [Green Version]
- Raitanen, J.-E.; Järvenpää, E.; Korpinen, R.; Mäkinen, S.; Hellström, J.; Kilpeläinen, P.; Liimatainen, J.; Ora, A.; Tupasela, T.; Jyske, T. Tannins of Conifer Bark as Nordic Piquancy—Sustainable Preservative and Aroma? Molecules 2020, 25, 567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avalos-Martínez, E.; Pino, J.A.; Sáyago-Ayerdi, S.; Sosa-Moguel, O.; Cuevas-Glory, L. Assessment of volatile compounds and sensory characteristics of Mexican hibiscus (Hibiscus sabdariffa L.) calyces hot beverages. J. Food Sci. Technol. 2019, 56, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Lotfabadi, S.V.; Mortazavi, S.A.; Yeganehzad, S. Study on the release and sensory perception of encapsulated d-limonene flavor in crystal rock candy using the time–intensity analysis and HS-GC/MS spectrometry. Food Sci. Nutr. 2020, 8, 933–941. [Google Scholar] [CrossRef]
- Iwasa, M.; Nakaya, S.; Maki, Y.; Marumoto, S.; Usami, A.; Miyazawa, M. Identification of Aroma-active Compounds in Essential Oil from Uncaria Hook by Gas Chromatography- Mass Spectrometry and Gas Chromatography-Olfactometry. J. Oleo Sci. 2015, 64, 825–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariod, A.A. Effect of essential oils on organoleptic (smell, taste, and texture) properties of food. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 131–137. [Google Scholar]
- Kosakowska, O.; Węglarz, Z.; Bączek, K. Yield and quality of ‘Greek oregano’ (Origanum vulgare L. subsp. hirtum) herb from organic production system in temperate climate. Ind. Crop. Prod. 2019, 141, 111782. [Google Scholar] [CrossRef]
- Cruz-Valenzuela, M.R.; Tapia-Rodriguez, M.R.; Silva-Espinoza, B.A.; Testa-Nava, A.; Gutierrez-Pacheco, M.M.; Gonzalez-Aguilar, G.; Fernando, J. Antiradical, antibacterial and oxidative stability of cinnamon leaf oil encapsulated in beta-cyclodextrin. J. Med. Plants By-Prod.-JMPB 2019, 8, 115–123. [Google Scholar]
- Guneser, B.A.; Yilmaz, E. Bioactives, Aromatics and Sensory Properties of Cold-Pressed and Hexane-Extracted Lemon (Citrus limon L.) Seed Oils. J. Am. Oil Chem. Soc. 2017, 94, 723–731. [Google Scholar] [CrossRef]
- Napoli, E.; Mazzaglia, A.; Restuccia, C.; Ragni, P.; Lanza, C.M.; Ruberto, G. The effect of γ-irradiation on chemical composition, microbial load and sensory properties of Sicilian oregano. LWT-Food Sci. Technol. 2016, 72, 566–572. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; González-Aguilar, G.A.; Del-Toro-Sánchez, L. Enhancing Safety and Aroma Appealing of Fresh-Cut Fruits and Vegetables Using the Antimicrobial and Aromatic Power of Essential Oils. J. Food Sci. 2009, 74, R84–R91. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, P. Aroma Characteristics of Lavender Extract and Essential Oil from Lavandula angustifolia Mill. Molecules 2020, 25, 5541. [Google Scholar] [CrossRef]
- Mustafa, M.W.; Ungphaiboon, S.; Phadoongsombut, N.; Pangsomboon, K.; Chelae, S.; Mahattanadul, S. Effectiveness of an Alcohol-Free Chitosan–Curcuminoid Mouthwash Compared with Chlorhexidine Mouthwash in Denture Stomatitis Treatment: A Randomized Trial. J. Altern. Complement. Med. 2019, 25, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Herrera, D.; Santos, S.; Ferrus, J.; Barbieri, G.; Trombelli, L.; Sanz, M. Efficacy of a 0.15% benzydamine hydrochloride and 0.05% cetylpyridinium chloride mouth rinse on 4-day de novo plaque formation. J. Clin. Periodontol. 2005, 32, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Lafaurie, G.; Zaror, C.; Díaz-Báez, D.; Castillo, D.; De Avila, J.; Trujillo, T.; Calderón-Mendoza, J. Evaluation of substantivity of hypochlorous acid as an antiplaque agent: A randomized controlled trial. Int. J. Dent. Hyg. 2018, 16, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Tredwin, C.J.; Naik, S.; Lewis, N.J.; Scully, C. Hydrogen peroxide tooth-whitening (bleaching) products: Review of adverse effects and safety issues. Br. Dent. J. 2006, 200, 371–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sujanamulk, B.; Chintamaneni, R.; Chennupati, A.; Nahar, P.; Chaluvadi, R.S.; Vemugunta, R.; Prabhat, M.V.P. Evaluation of Antifungal Efficacy of Ethanolic Crude Lawsone and Listerine Mouthwash in Uncontrolled Diabetics and Denture Wearers-A Randomized Clinical Trial. J. Clin. Diagn. Res. JCDR 2016, 10, ZC90–ZC95. [Google Scholar] [CrossRef]
Antibacterial Agent | Advantages | Disadvantages | References |
---|---|---|---|
Chlorhexidine | Wide antimicrobial spectrum | Alterations in the sense of taste, mucous peeling | [40,41] |
Sodium fluoride | Remineralizing properties | Toxic if it is ingested | [12,13] |
Cetyl pyridinium chloride | Inhibit bacterial adhesion on surfaces | Staining of teeth | [38] |
Hypochlorous acid | It does not cause damage to the environment | Easily degraded | [13] |
Hydrogen peroxide | Tooth whitener and antiplaque agent | Produce temporary tooth sensitivity | [44] |
Essential oils | They have antimicrobial activity, do not present local side effects, have a variety of aromas and flavors with potential appealing for the formulation of dental care products | Intense taste | [38] |
Component | MIC (mg/mL) | MBC (mg/mL) | Reference |
---|---|---|---|
Menthol | 0.5 | 1.0 | [53] |
Eugenol | 0.1 | 0.2 | [54] |
Thymol | 0.312 | 0.312 | [55] |
Eucalyptol | 0.250 | 0.5 | [53] |
Methyl salicylate | 1.0 | 1.0 | [53] |
Cymbopogon citratus | 0.125–0.250 | 0.250–0.5 | [54] |
Cinnamon zeylanicum | 0.250–0.5 | 0.5–1 | [54] |
Fruit extract of Berberis vulgaris | 0.064 | 0.128 | [56] |
Peel extract of Citrus aurantifolia | 0.02 | - | [57] |
Bark extract of Acacia nilotica | 0.3 | 4 | [58] |
Tea of Camellia sinensis | 6.25 | 12.5 | [59] |
Tea of Hibiscus sabdariffa | 25 | 50 | [59] |
Listerine® | 1.25 | - | [60] |
Chlorhexidine digluconate | 0.0094 | 0.0094 | [60] |
Chlorhexidine dihydrochloride | 0.00092 | - | [57] |
Component | Proposed Mechanisms | Reference |
---|---|---|
Turmeric acid from Curcuma longa | Inhibits the transcription of NF-kB, Cox-2, TNF-α, cyclin D1, ICAM-1, c-myc, Bcl-2, MMP-9, iNOS, IL-6, IL-8, causes cell cycle arrest, promotes apoptosis, and acts as ROS scavenger. | [65,66] |
Epicatechin, epigallocatechin, epicatechin-3-gallate, and epigallocatechin-3-gallate from Camelia sinensis | ROS scavengers, inhibit tumor proliferation, induce apoptosis, arrest cells in G0 and G1 phase, downregulate cyclin D1, increase p14 and p16 proteins levels, blocks angiogenesis. | [67,72] |
Apigening from Moringa oleifera | Induces apoptosis | [68,73] |
Cyanidin from fruits and vegetables | Inhibits tumor cell growth, COX-2 gen, MMP, and EFGR expression. | [74,75] |
Gingerol from Zingiber officinale | Decreases INOs and TNF-α expression and induces apoptosis. | [69,76] |
Eugenol and trans-cinnamaldehyde from Cinnamomum zeylanicum | ROS scavenger, inhibits the growth of cancerous cells, decreases Bcl-2, Ki67, VEGF, and CD24 expressions and MDA levels. | [77,78] |
Thymol from Thymus vulgaris | Induces apoptosis and mitochondrial dysfunction in cancerous cells and inhibits the activity of COX-2 and 5LOX. | [70] |
Essential Oil | Compound | Odor/Flavor | References |
---|---|---|---|
Melaleuca styphelioides | Tannins | Woody, bitter | [79] |
Uncaria hook | Furfural | Caramel, astringent | [80] |
Cymbopogon citratus | Linalool, limonene, β-myrcene | Floral, sweet, herbaceous, citrus, | [14,81] |
Uncaria hook | Benzaldehyde | Sweet, astringent | [80,82] |
Satureja Hortensis | Catechin | Odorless, biter | [14,83] |
Thymus vulgaricus | Carvacrol | Odorless, spicy | [83,84] |
Syzygium aromaticum | Eugenol, eugenyl acetate, caryophyllene | Sweet, spice, wood | |
Cinnamomum zeylanicum | Cinnamaldehyde, eugenol, copaene, β-caryophyllene. | Sweet, wood | [85] |
Citrus limon | d-limonene, γ-terpinene, β-pinene, β-cymene, α-pinene, α-terpineol and α-thujene | Citrus, herbal, terpenic, woody, and floral aroma descriptors | [86] |
Origanum vulgare | Thymol, γ-terpinene, carvacrol | Spicy, bitter, pungent, astringent and hay flavor | [87,88] |
Lavandula angustifolia | Linalool, linalool oxides I and II, linalyl acetate, lavandulyl acetate | Floral, herbal and clove-like odors | [89] |
Compound | Observations | References |
---|---|---|
Fluoride | Bad taste | [42] |
Cetyl pyridinium chloride | Dryness and burning sensation | [91] |
Hypochlorous acid | Unpleasant taste, dryness, and irritation sensations | [92] |
Peroxide oxygen | Bitter taste | [93] |
Chlorhexidine | Intense burning sensation and dryness | [16] |
Essential oils | Satisfying taste and a pleasant strong odor | [94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lugo-Flores, M.A.; Quintero-Cabello, K.P.; Palafox-Rivera, P.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; Ortega-Ramirez, L.A.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F. Plant-Derived Substances with Antibacterial, Antioxidant, and Flavoring Potential to Formulate Oral Health Care Products. Biomedicines 2021, 9, 1669. https://doi.org/10.3390/biomedicines9111669
Lugo-Flores MA, Quintero-Cabello KP, Palafox-Rivera P, Silva-Espinoza BA, Cruz-Valenzuela MR, Ortega-Ramirez LA, Gonzalez-Aguilar GA, Ayala-Zavala JF. Plant-Derived Substances with Antibacterial, Antioxidant, and Flavoring Potential to Formulate Oral Health Care Products. Biomedicines. 2021; 9(11):1669. https://doi.org/10.3390/biomedicines9111669
Chicago/Turabian StyleLugo-Flores, Marco A., Karen P. Quintero-Cabello, Patricia Palafox-Rivera, Brenda A. Silva-Espinoza, Manuel Reynaldo Cruz-Valenzuela, Luis Alberto Ortega-Ramirez, Gustavo Adolfo Gonzalez-Aguilar, and Jesus Fernando Ayala-Zavala. 2021. "Plant-Derived Substances with Antibacterial, Antioxidant, and Flavoring Potential to Formulate Oral Health Care Products" Biomedicines 9, no. 11: 1669. https://doi.org/10.3390/biomedicines9111669
APA StyleLugo-Flores, M. A., Quintero-Cabello, K. P., Palafox-Rivera, P., Silva-Espinoza, B. A., Cruz-Valenzuela, M. R., Ortega-Ramirez, L. A., Gonzalez-Aguilar, G. A., & Ayala-Zavala, J. F. (2021). Plant-Derived Substances with Antibacterial, Antioxidant, and Flavoring Potential to Formulate Oral Health Care Products. Biomedicines, 9(11), 1669. https://doi.org/10.3390/biomedicines9111669