Bioactive Flavonoids Icaritin and Icariin Protect against Cerebral Ischemia–Reperfusion-Associated Apoptosis and Extracellular Matrix Accumulation in an Ischemic Stroke Mouse Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cerebral Ischemia–Reperfusion (I/R) Injury Model
2.2. Neurological Score Assessment
2.3. Determination of Infarct Volume and Histopathological Detection
2.4. Terminal Deoxynucleotidyl Transferase (TdT) dUTP Nick end Labeling (TUNEL) Assay
2.5. Western Blotting Analysis
2.6. Measurement of Lipid Peroxide (Thiobarbituric Acid Reactive Substances, TBARS) Levels
2.7. Statistical Analysis
3. Results
3.1. Both ICT and ICA Ameliorated the Neurological Functions and Brain Pathological Changes in Acute Ischemic Stroke Mice
3.2. Both ICA and ICT Protected against Neuronal Cell Apoptosis in the Brains of Acute Ischemic Stroke Mice
3.3. Both ICT and ICA Counteracted Oxidative Stress and Nitrosative Stress in the Brains of Acute Ischemic Stroke Mice
3.4. Both ICT and ICA Alleviated the Endothelial–Mesenchymal Transition in the Ischemic Stroke Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Health Estimates. Available online: http://www.who.int/healthinfo/global_burden_disease/en/ (accessed on 7 January 2021).
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the Global Burden of Disease Study. Lancet Neurol. 2017, 16, 877–897. [Google Scholar] [CrossRef] [Green Version]
- Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study. Lancet Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef] [Green Version]
- Thrift, A.; Dewey, H.M.; MacDonell, R.A.; McNeil, J.; Donnan, G.A. Incidence of the Major Stroke Subtypes. Stroke 2001, 32, 1732–1738. [Google Scholar] [CrossRef] [Green Version]
- AHA American Stroke Association Types of Stroke. Available online: https://www.strokeassociation.org/en/about-stroke/types-of-stroke (accessed on 17 July 2021).
- Agalave, N.M.; Svensson, C.I. Extracellular High-Mobility Group Box 1 Protein (HMGB1) as a Mediator of Persistent Pain. Mol. Med. 2014, 20, 569–578. [Google Scholar] [CrossRef] [Green Version]
- Amruta, N.; Rahman, A.A.; Pinteaux, E.; Bix, G. Neuroinflammation and fibrosis in stroke: The good, the bad and the ugly. J. Neuroimmunol. 2020, 346, 577318. [Google Scholar] [CrossRef]
- Kawakita, F.; Kanamaru, H.; Asada, R.; Suzuki, H. Potential roles of matricellular proteins in stroke. Exp. Neurol. 2019, 322, 113057. [Google Scholar] [CrossRef]
- Nakamura, K.; Shichita, T. Cellular and molecular mechanisms of sterile inflammation in ischaemic stroke. J. Biochem. 2019, 165, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Jian, Z.; Liu, R.; Zhu, X.; Smerin, D.; Zhong, Y.; Gu, L.; Fang, W.; Xiong, X. The Involvement and Therapy Target of Immune Cells After Ischemic Stroke. Front. Immunol. 2019, 10, 2167. [Google Scholar] [CrossRef] [Green Version]
- Mies, G.; Lijima, T.; Hossmann, K.-A. Correlation between periinfarct DC shifts and ischaemic neuronal damage in rat. NeuroReport 1993, 4, 709–711. [Google Scholar] [CrossRef]
- Broughton, B.R.; Reutens, D.C.; Sobey, C.G.; Sims, K.; Politei, J.; Banikazemi, M.; Lee, P. Apoptotic Mechanisms After Cerebral Ischemia. Stroke 2009, 40, 788–794. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Li, L.; Wang, Y.; Xu, R.; Peng, S.; Zhou, L.; Deng, Z. Ischemia-reperfusion injury of brain induces endothelial-mesenchymal transition and vascular fibrosis via activating let-7i/TGF-βR1 double-negative feedback loop. FASEB J. 2020, 34, 7178–7191. [Google Scholar] [CrossRef] [Green Version]
- Hwang, E.; Lin, P.; Ngo, H.T.T.; Gao, W.; Wang, Y.-S.; Yu, H.-S.; Yi, T.-H. Icariin and icaritin recover UVB-induced photoaging by stimulating Nrf2/ARE and reducing AP-1 and NF-κB signaling pathways: A comparative study on UVB-irradiated human keratinocytes. Photochem. Photobiol. Sci. 2018, 17, 1396–1408. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X.; Wang, H.; Qi, L.; Lou, Y. Neuroprotective effects of icaritin against beta amyloid-induced neurotoxicity in primary cultured rat neuronal cells via estrogen-dependent pathway. Neuroscience 2007, 145, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-H.; Pan, L.-H.; Yang, J.; Yao, J.-C.; Li, B.-B.; Tan, Y.-J.; Zhang, G.-M.; Sun, Y. Protective effect of icaritin on focal cerebral ischemic–reperfusion mice. Chin. Herb. Med. 2017, 10, 40–45. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, Y.; Li, S.; Han, R.; Ying, J.; Zhu, H.; Wang, Y.; Yin, L.; Han, Y.; Sun, L.; et al. A novel anti-cancer agent Icaritin suppresses hepatocellular carcinoma initiation and malignant growth through the IL-6/Jak2/Stat3 pathway. Oncotarget 2015, 6, 31927–31943. [Google Scholar] [CrossRef]
- Li, Y.; Dai, S.; Huang, N.; Wu, J.; Yu, C.; Luo, Y. Icaritin and icariin reduce p-Tau levels in a cell model of Alzheimer’s disease by downregulating glycogen synthase kinase 3β. Biotechnol. Appl. Biochem. 2021, in press. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Huang, N.-Q.; Feng, F.; Li, Y.; Luo, X.-M.; Tu, L.; Qu, J.-Q.; Xie, Y.-M.; Luo, Y. Icaritin Improves Memory and Learning Ability by Decreasing BACE-1 Expression and the Bax/Bcl-2 Ratio in Senescence-Accelerated Mouse Prone 8 (SAMP8) Mice. Evid.-Based Complement. Altern. Med. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, Y.; Xu, Y.; Xiang, W.; Xie, C. Analgesic, anti-inflammatory and sedative/hypnotic effects of Icaritin, and its effect on chloride influx in mouse brain cortical cells. Cell. Mol. Biol. 2019, 65, 99–104. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, X.; Zhang, L.; Wang, L.; Zhang, G.; Yao, J.; Sun, C. Icaritin activates Nrf2/Keap1 signaling to protect neuronal cells from oxidative stress. Chem. Biol. Drug Des. 2021, 97, 111–120. [Google Scholar] [CrossRef]
- Zhu, H.-R.; Wang, Z.-Y.; Zhu, X.-L.; Wu, X.-X.; Li, E.-G.; Xu, Y. Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1α Expression in experimental stroke. Neuropharmacology 2010, 59, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Deng, Y.; Huang, B.; Yin, C.; Liu, B.; Shi, J.; Gong, Q. Icariin attenuates cerebral ischemia–reperfusion injury through inhibition of inflammatory response mediated by NF-κB, PPARα and PPARγ in rats. Int. Immunopharmacol. 2016, 30, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ye, Y.; Xu, L.; Yuan, W.; Zhang, Q. Icariin and mesenchymal stem cells synergistically promote angiogenesis and neurogenesis after cerebral ischemia via PI3K and ERK1/2 pathways. Biomed. Pharmacother. 2018, 108, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Chen, Y.; Huang, X.; Yang, Z.; Zhang, J.; Yu, X.; Fang, J.; Tao, J.; You, K.; Cheng, Z.; et al. Icaritin ameliorates hepatic steatosis via promoting fatty acid β-oxidation and insulin sensitivity. Life Sci. 2021, 268, 119000. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Tanaka, M.; Yuki, S.; Hirai, M.; Yamamoto, Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J. Clin. Biochem. Nutr. 2018, 62, 20–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-M.; Wu, C.-T.; Yang, T.-H.; Liu, S.-H.; Yang, F.-Y. Preventive Effect of Low Intensity Pulsed Ultrasound against Experimental Cerebral Ischemia/Reperfusion Injury via Apoptosis Reduction and Brain-derived Neurotrophic Factor Induction. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Chen, C.-M.; Liu, S.-H.; Lin-Shiau, S. Honokiol, a Neuroprotectant against Mouse Cerebral Ischaemia, Mediated by Preserving Na+, K+-ATPase Activity and Mitochondrial Functions. Basic Clin. Pharmacol. Toxicol. 2007, 101, 108–116. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, G.; Lyu, M.; Wang, Y.; He, S.; Du, H.; Wang, X.; Feng, Y.; Zhu, Y. Shuxuening injection facilitates neurofunctional recovery via down-regulation of G-CSF-mediated granulocyte adhesion and diapedesis pathway in a subacute stroke mouse model. Biomed. Pharmacother. 2020, 127, 110213. [Google Scholar] [CrossRef]
- Schmidt-Kastner, R.; Truettner, J.; Zhao, W.; Belayev, L.; Krieger, C.; Busto, R.; Ginsberg, M.D. Differential changes of bax, caspase-3 and p21 mRNA expression after transient focal brain ischemia in the rat. Mol. Brain Res. 2000, 79, 88–101. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Yen, Y.-P.; Tsai, K.-S.; Chen, Y.-W.; Huang, C.-F.; Yang, R.-S.; Liu, S.-H. Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Arch. Toxicol. 2012, 86, 923–933. [Google Scholar] [CrossRef]
- Kone, B.C. Protein-protein interactions controlling nitric oxide synthases. Acta Physiol. Scand. 2000, 168, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, X.; Li, W.-T.; Shen, J.-G. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: Potential application for drug discovery. Acta Pharmacol. Sin. 2018, 39, 669–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basile, D. The endothelial cell in ischemic acute kidney injury: Implications for acute and chronic function. Kidney Int. 2007, 72, 151–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khosravi, A.; Bahonar, A.; Saadatnia, M.; Khorvash, F.; Maracy, M.R. Carotenoids as potential antioxidant agents in stroke prevention: A systematic review. Int. J. Prev. Med. 2017, 8, 70. [Google Scholar] [CrossRef]
- Kikuchi, K.; Uchikado, H.; Morioka, M.; Murai, Y.; Tanaka, E. Clinical Neuroprotective Drugs for Treatment and Prevention of Stroke. Int. J. Mol. Sci. 2012, 13, 7739–7761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Fann, D.Y.-W.; Seet, R.C.S.; Jo, D.-G.; Mattson, M.P.; Arumugam, T.V. Phytochemicals in Ischemic Stroke. Neuromol. Med. 2016, 18, 283–305. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, K.; Yan, M.; Zhang, Y.; Wang, Y.; Ren, L. Effects and mechanisms of icariin on atherosclerosis. Int. J. Clin. Exp. Med. 2015, 8, 3585–3589. [Google Scholar]
- Zhang, Z.-K.; Li, J.; Yan, D.-X.; Leung, W.-N.; Zhang, B.-T. Icaritin Inhibits Collagen Degradation-Related Factors and Facilitates Collagen Accumulation in Atherosclerotic Lesions: A Potential Action for Plaque Stabilization. Int. J. Mol. Sci. 2016, 17, 169. [Google Scholar] [CrossRef] [Green Version]
- Baeten, K.M.; Akassoglou, K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev. Neurobiol. 2011, 71, 1018–1039. [Google Scholar] [CrossRef] [Green Version]
- Nalamolu, K.R.; Chelluboina, B.; Magruder, I.B.; Fru, D.N.; Mohandass, A.; Venkatesh, I.; Klopfenstein, J.D.; Pinson, D.M.; Boini, K.M.; Veeravalli, K.K. Post-stroke mRNA expression profile of MMPs: Effect of genetic deletion of MMP-12. Stroke Vasc. Neurol. 2018, 3, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.; Yao, Y. Basement Membrane Changes in Ischemic Stroke. Stroke 2020, 51, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.N.; Bix, G.J. The Inflammatory Response After Ischemic Stroke: Targeting β2 and β1 Integrins. Front. Neurosci. 2019, 13, 540. [Google Scholar] [CrossRef] [PubMed]
- Radak, D.; Katsiki, N.; Resanovic, I.; Jovanović, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Mousa, S.; Isenovic, E.R. Apoptosis and Acute Brain Ischemia in Ischemic Stroke. Curr. Vasc. Pharmacol. 2017, 15, 115–122. [Google Scholar] [CrossRef]
- Uzdensky, A.B. Regulation of apoptosis in the ischemic penumbra in the first day post-stroke. Neural Regen. Res. 2020, 15, 253–254. [Google Scholar] [CrossRef]
- Ma, J.; Sanchez-Duffhues, G.; Goumans, M.-J.; Dijke, P.T. TGF-β-Induced Endothelial to Mesenchymal Transition in Disease and Tissue Engineering. Front. Cell Dev. Biol. 2020, 8, 260. [Google Scholar] [CrossRef]
- Piera-Velazquez, S.; Jimenez, S. Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. Physiol. Rev. 2019, 99, 1281–1324. [Google Scholar] [CrossRef]
- Curci, C.; Castellano, G.; Stasi, A.; Divella, C.; Loverre, A.; Gigante, M.; Simone, S.; Cariello, M.; Montinaro, V.; Lucarelli, G.; et al. Endothelial-to-mesenchymal transition and renal fibrosis in ischaemia/reperfusion injury are mediated by complement anaphylatoxins and Akt pathway. Nephrol. Dial. Transplant. 2014, 29, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.X.; Slinn, J.; Aylsworth, A.; Hou, S.T. Vimentin participates in microglia activation and neurotoxicity in cerebral ischemia. J. Neurochem. 2012, 122, 764–774. [Google Scholar] [CrossRef]
- Fasipe, T.A.; Hong, S.-H.; Da, Q.; Valladolid, C.; Lahey, M.T.; Richards, L.M.; Dunn, A.K.; Cruz, M.A.; Marrelli, S.P. Extracellular Vimentin/VWF (von Willebrand Factor) Interaction Contributes to VWF String Formation and Stroke Pathology. Stroke 2018, 49, 2536–2540. [Google Scholar] [CrossRef]
- Wang, L.; Deng, L.; Yuan, R.; Liu, J.; Li, Y.; Liu, M. Association of Matrix Metalloproteinase 9 and Cellular Fibronectin and Outcome in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2020, 11, 523506. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.; Gandhi, C.; Chauhan, N.; Stevens, J.W.; Motto, D.G.; Lentz, S.R.; Chauhan, A.K. Alternatively-Spliced Extra Domain A of Fibronectin Promotes Acute Inflammation and Brain Injury After Cerebral Ischemia in Mice. Stroke 2012, 43, 1376–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-T.; Chen, M.-C.; Liu, S.-H.; Yang, T.-H.; Long, L.-H.; Guan, S.-S.; Chen, C.-M. Bioactive Flavonoids Icaritin and Icariin Protect against Cerebral Ischemia–Reperfusion-Associated Apoptosis and Extracellular Matrix Accumulation in an Ischemic Stroke Mouse Model. Biomedicines 2021, 9, 1719. https://doi.org/10.3390/biomedicines9111719
Wu C-T, Chen M-C, Liu S-H, Yang T-H, Long L-H, Guan S-S, Chen C-M. Bioactive Flavonoids Icaritin and Icariin Protect against Cerebral Ischemia–Reperfusion-Associated Apoptosis and Extracellular Matrix Accumulation in an Ischemic Stroke Mouse Model. Biomedicines. 2021; 9(11):1719. https://doi.org/10.3390/biomedicines9111719
Chicago/Turabian StyleWu, Cheng-Tien, Man-Chih Chen, Shing-Hwa Liu, Ting-Hua Yang, Lin-Hwa Long, Siao-Syun Guan, and Chang-Mu Chen. 2021. "Bioactive Flavonoids Icaritin and Icariin Protect against Cerebral Ischemia–Reperfusion-Associated Apoptosis and Extracellular Matrix Accumulation in an Ischemic Stroke Mouse Model" Biomedicines 9, no. 11: 1719. https://doi.org/10.3390/biomedicines9111719
APA StyleWu, C. -T., Chen, M. -C., Liu, S. -H., Yang, T. -H., Long, L. -H., Guan, S. -S., & Chen, C. -M. (2021). Bioactive Flavonoids Icaritin and Icariin Protect against Cerebral Ischemia–Reperfusion-Associated Apoptosis and Extracellular Matrix Accumulation in an Ischemic Stroke Mouse Model. Biomedicines, 9(11), 1719. https://doi.org/10.3390/biomedicines9111719