Enpp2 Expression by Dendritic Cells Is a Key Regulator in Migration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Mice
2.3. Generation of DCs
2.4. RNA Interference
2.5. Flow Cytometry Analysis
2.6. Cytokine Measurement
2.7. Western Blotting
2.8. Quantitative qRT-PCR
2.9. Enpp2 Activity Assay
2.10. Migration Assay and In Vivo Tracking
2.11. Statistical Analysis
3. Results
3.1. mDCs Secrete More Enpp2 Protein Than imDCs
3.2. Enpp2 Does Not Affect DC Maturation, But Does Affect Immunogenicity
3.3. Enpp2 Increases the Immunogenicity of mDCs by Stimulating Maturation and Migration
3.4. Human mDCs Secrete More Enpp2 Protein Than imDCs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gunzer, M. Migration, cell-cell interaction and adhesion in the immune system. Ernst. Scher. Found Symp. Proc. 2007, 3, 97–137. [Google Scholar]
- Platt, A.M.; Randolph, G.J. Dendritic cell migration through the lymphatic vasculature to lymph nodes. Adv. Immunol. 2013, 120, 51–68. [Google Scholar] [PubMed]
- Takemura, S.; Braun, A.; Crowson, C.; Kurtin, P.J.; Cofield, R.H.; O’Fallon, W.M.; Goronzy, J.J.; Weyand, C.M. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 2001, 2, 1072–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjelmstrom, P. Lymphoid neogenesis: De novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines. J. Leukoc. Biol. 2001, 3, 331–339. [Google Scholar]
- Biro, M.; Munoz, M.A.; Weninger, W. Targeting Rho-GTPases in immune cell migration and inflammation. Br. J. Pharmacol. 2014, 24, 5491–5506. [Google Scholar] [CrossRef] [PubMed]
- Fenteany, G.; Zhu, S. Small-molecule inhibitors of actin dynamics and cell motility. Curr. Top. Med. Chem. 2003, 6, 593–616. [Google Scholar] [CrossRef] [PubMed]
- Luster, A.D.; Alon, R.; von Andrian, U.H. Immune cell migration in inflammation: Present and future therapeutic targets. Nat. Immunol. 2005, 12, 1182–1190. [Google Scholar] [CrossRef]
- Mackay, C.R. Moving targets: Cell migration inhibitors as new anti-inflammatory therapies. Nat. Immunol. 2008, 9, 988–998. [Google Scholar] [CrossRef] [PubMed]
- Cortinovis, M.; Aiello, S.; Mister, M.; Conde-Knape, K.; Noris, M.; Novelli, R.; Solini, S.; Rodriguez Ordonez, P.Y.; Benigni, A.; Remuzzi, G. Autotaxin Inhibitor Protects from Chronic Allograft Injury in Rat Kidney Allotransplantation. Nephron 2020, 1, 38–48. [Google Scholar] [CrossRef]
- Jankowski, M. Autotaxin: Its role in biology of melanoma cells and as a pharmacological target. Enzym. Res. 2011, 2011, 194857. [Google Scholar] [CrossRef] [Green Version]
- Verdijk, P.; Aarntzen, E.H.; Punt, C.J.; de Vries, I.J.; Figdor, C.G. Maximizing dendritic cell migration in cancer immunotherapy. Expert Opin. Biol. Ther. 2008, 7, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.H.; Sougawa, N.; Tanaka, T.; Hirata, T.; Hiroi, T.; Tohya, K.; Guo, Z.; Umemoto, E.; Ebisuno, Y.; Yang, B.-G.; et al. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J. Immunol. 2006, 2, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Pektor, S.; Balkow, S.; Hemkemeyer, S.A.; Liu, Z.; Grobe, K.; Hanley, P.J.; Shen, L.; Bros, M.; Schmidt, T.; et al. Dendritic cell motility and T cell activation requires regulation of Rho-cofilin signaling by the Rho-GTPase activating protein myosin IXb. J. Immunol. 2014, 8, 3559–3568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choo, E.H.; Lee, J.-H.; Park, E.-H.; Park, H.E.; Jung, N.-C.; Kim, T.-H.; Koh, Y.-S.; Kim, E.; Seung, K.-B.; Park, C.; et al. Infarcted Myocardium-Primed Dendritic Cells Improve Remodeling and Cardiac Function After Myocardial Infarction by Modulating the Regulatory T Cell and Macrophage Polarization. Circulation 2017, 15, 1444–1457. [Google Scholar] [CrossRef]
- Grobner, S.; Lukowski, R.; Autenrieth, I.B.; Ruth, P. Lipopolysaccharide induces cell volume increase and migration of dendritic cells. Microbiol. Immunol. 2014, 1, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, S.Y.; Dusaban, S.S.; Brown, J.H. Lysophospholipid receptor activation of RhoA and lipid signaling pathways. Biochim. Biophys. Acta 2013, 1, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Miyasaka, M.; Takeda, A.; Hata, E.; Sasaki, N.; Umemoto, E.; Jalkanen, S. The Role of Lysophospholipids in Immune Cell Trafficking and Inflammation. In Chronic Inflammation; Springer: Tokyo, Japan, 2016; pp. 459–471. [Google Scholar]
- Van Meeteren, L.A.; Ruurs, P.; Stortelers, C.; Bouwman, P.; van Rooijen, M.A.; Pradere, J.P.; Pettit, T.R.; Wakelam, M.J.O.; Saulnier-Blache, J.S.; Mummery, C.L.; et al. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol. Cell. Biol. 2006, 26, 5015–5022. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Okudaira, S.; Kishi, Y.; Ohkawa, R.; Iseki, S.; Ota, M.; Noji, S.; Yatomi, Y.; Aoki, J.; Arai, H.; et al. Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J. Biol. Chem. 2006, 35, 25822–25830. [Google Scholar] [CrossRef] [Green Version]
- Jung, N.-C.; Lee, J.-H.; Choi, H.-J.; Hwang, S.-U.; Song, J.-Y.; Seo, H.G.; Choi, J.; Jung, S.Y.; Han, S.G.; Lim, D.-S. Dendritic Cell Immunotherapy Combined with Cytokine-Induced Killer Cells Effectively Suppresses Established Hepatocellular Carcinomas in Mice. Immunol. Investig. 2016, 6, 553–565. [Google Scholar] [CrossRef]
- Ferguson, C.G.; Bigman, C.S.; Richardson, R.D.; van Meeteren, L.A.; Moolenaar, W.H.; Prestwich, G.D. Fluorogenic phospholipid substrate to detect lysophospholipase D/autotaxin activity. Org. Lett. 2006, 10, 2023–2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.G.; Jung, N.-C.; Lee, J.-H.; Song, J.-Y.; Ryu, S.-Y.; Seo, H.G.; Han, S.G.; Ahn, K.J.; Hong, K.S.; Choi, J.; et al. Tolerogenic dendritic cells show gene expression profiles that are different from those of immunogenic dendritic cells in DBA/1 mice. Autoimmunity 2016, 2, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Palucka, K.; Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 2012, 4, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.D.; Coulie, P.G.; Van den Eynde, B.J.; Agostinis, P. Integrating Next-Generation Dendritic Cell Vaccines into the Current Cancer Immunotherapy Landscape. Trends Immunol. 2017, 8, 577–593. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 13, 3328. [Google Scholar] [CrossRef] [Green Version]
- Savaskan, N.E.; Rocha, L.; Kotter, M.; Baer, A.; Lubec, G.; van Meeteren, L.; Kishi, Y.; Aoki, J.; Moolenaar, W.H.; Nitsch, R.; et al. Autotaxin (NPP-2) in the brain: Cell type-specific expression and regulation during development and after neurotrauma. Cell. Mol. Life Sci. 2007, 2, 230–243. [Google Scholar] [CrossRef]
- Brisbin, A.G.; Asmann, Y.W.; Song, H.; Tsai, Y.-Y.; A Aakre, J.; Yang, P.; Jenkins, R.B.; Pharoah, P.; Schumacher, F.; Conti, D.V.; et al. Meta-analysis of 8q24 for seven cancers reveals a locus between NOV and ENPP2 associated with cancer development. BMC Med. Genet. 2011, 12, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; O’Connor, K.L. Integrin alpha6beta4 promotes expression of autotaxin/ENPP2 autocrine motility factor in breast carcinoma cells. Oncogene 2005, 32, 5125–5130. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, K.; Nzirorera, C.; Cowie, A.M.; Varghese, G.P.; Trivedi, P.; Eichmann, T.O.; Biswas, D.; Touaibia, M.; Morris, A.J.; Aidinis, V.; et al. Autotaxin-LPA signaling contributes to obesity-induced insulin resistance in muscle and impairs mitochondrial metabolism. J. Lipid Res. 2018, 10, 1805–1817. [Google Scholar] [CrossRef] [Green Version]
- Knowlden, S.; Georas, S.N. The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. J. Immunol. 2014, 3, 851–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randolph, G.J.; Ochando, J.; Partida-Sanchez, S. Migration of dendritic cell subsets and their precursors. Annu. Rev. Immunol. 2008, 26, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Bros, M.; Haas, K.; Moll, L.; Grabbe, S. RhoA as a Key Regulator of Innate and Adaptive Immunity. Cells 2019, 7, E733. [Google Scholar] [CrossRef] [Green Version]
- Panther, E.; Idzko, M.; Corinti, S.; Ferrari, D.; Herouy, Y.; Mockenhaupt, M.; Dichmann, S.; Gebicke-Haerter, P.; Di Virgilio, F.; Girolomoni, G.; et al. The Influence of Lysophosphatidic Acid on the Functions of Human Dendritic Cells. J. Immunol. 2002, 8, 4129–4135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Roman, J.; Guo, J.; West, E.; McDyer, J.; Williams, M.A.; Georas, S.N. Lysophosphatidic Acid Modulates the Activation of Human Monocyte-Derived Dendritic Cells. Stem Cells Dev. 2006, 15, 797–804. [Google Scholar] [CrossRef]
- Chan, L.C.; Peters, W.; Xu, Y.; Chun, J.; Farese, R.V., Jr.; Caseschen, S. LPA3 receptor mediates chemotaxis of immature murine dendritic cells to unsaturated lysophosphatidic acid (LPA). J. Leukoc. Biol. 2007, 5, 1193–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salous, A.K.; Panchatcharam, M.; Sunkara, M.; Mueller, P.; Dong, A.; Wang, Y.; Graf, G.A.; Smyth, S.S.; Morris, A.J. Mechanism of rapid elimination of lysophosphatidic acid and related lipids from the circulation of mice. J. Lipid Res. 2013, 54, 2775–2784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albers, H.M.H.G.; Dong, A.; van Meeteren, L.A.; Egan, D.A.; Sunkara, M.; van Tilburg, E.W.; Schuurman, K.; van Tellingen, O.; Morris, A.J.; Smyth, S.S.; et al. Boronic acid-based inhibitor of autotaxin reveals rapid turnover of LPA in the circulation. Proc. Natl. Acad. Sci. USA 2010, 107, 7257–7262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridley, A.J. Rho GTPase signalling in cell migration. Curr. Opin. Cell. Biol. 2015, 35, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katakai, T.; Kondo, N.; Ueda, Y.; Kinashi, T. Autotaxin produced by stromal cells promotes LFA-1-independent and Rho-dependent interstitial T cell motility in the lymph node paracortex. J. Immunol. 2014, 2, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhang, M.; Wang, S.; Hong, B.; Wang, Z.; Li, H.; Zheng, Y.; Yang, J.; Davis, R.E.; Qian, J.; et al. p38 MAPK-inhibited dendritic cells induce superior antitumour immune responses and overcome regulatory T-cell-mediated immunosuppression. Nat. Commun. 2014, 5, 4229. [Google Scholar] [CrossRef] [Green Version]
- Fessler, M.B.; Arndt, P.G.; Just, I.; Nick, J.A.; Malcolm, K.C.; Worthen, G.S. Dual role for RhoA in suppression and induction of cytokines in the human neutrophil. Blood 2007, 3, 1248–1256. [Google Scholar] [CrossRef] [Green Version]
- Martino, A.; Volpe, E.; Baldini, P.M. The influence of lysophosphatidic acid on the immunophenotypic differentiation of human monocytes into dendritic cells. Haematologica 2006, 9, 1273–1274. [Google Scholar]
- Clatworthy, M.R.; Aronin, C.E.; Mathews, R.J.; Morgan, N.Y.; Smith, K.G.; Germain, R.N. Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes. Nat. Med. 2014, 12, 1458–1463. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Choi, S.-Y.; Park, S.-Y.; Jung, N.-C.; Noh, K.-E.; Nam, J.-H.; Oh, J.-S.; Choi, H.-J.; Jang, J.-S.; Yoo, J.-Y.; et al. Enpp2 Expression by Dendritic Cells Is a Key Regulator in Migration. Biomedicines 2021, 9, 1727. https://doi.org/10.3390/biomedicines9111727
Lee J-H, Choi S-Y, Park S-Y, Jung N-C, Noh K-E, Nam J-H, Oh J-S, Choi H-J, Jang J-S, Yoo J-Y, et al. Enpp2 Expression by Dendritic Cells Is a Key Regulator in Migration. Biomedicines. 2021; 9(11):1727. https://doi.org/10.3390/biomedicines9111727
Chicago/Turabian StyleLee, Jun-Ho, So-Yeon Choi, Soo-Yeoun Park, Nam-Chul Jung, Kyung-Eun Noh, Ji-Hee Nam, Ji-Soo Oh, Hyun-Ji Choi, Ji-Su Jang, Ji-Young Yoo, and et al. 2021. "Enpp2 Expression by Dendritic Cells Is a Key Regulator in Migration" Biomedicines 9, no. 11: 1727. https://doi.org/10.3390/biomedicines9111727
APA StyleLee, J. -H., Choi, S. -Y., Park, S. -Y., Jung, N. -C., Noh, K. -E., Nam, J. -H., Oh, J. -S., Choi, H. -J., Jang, J. -S., Yoo, J. -Y., Song, J. -Y., Seo, H. G., & Lim, D. -S. (2021). Enpp2 Expression by Dendritic Cells Is a Key Regulator in Migration. Biomedicines, 9(11), 1727. https://doi.org/10.3390/biomedicines9111727