Drug Delivery Challenges in Brain Disorders across the Blood–Brain Barrier: Novel Methods and Future Considerations for Improved Therapy
Abstract
:1. Introduction
2. Common Methods to Treat Selective Central Nervous System Disorders
2.1. Epilepsy
2.2. Stroke
2.3. Brain Cancer
2.4. Traumatic Brain Injury
3. Methods to Combat Structural, Chemical, and Transport-Mediated Challenges of Drug Delivery across the BBB
3.1. Structural Challenges
3.1.1. Nanoparticles
3.1.2. Liposomal Transport
3.1.3. Focused Ultrasound-Enhanced Drug Delivery
3.1.4. Exosomes
3.2. Chemical Challenges
3.2.1. Receptor-Mediated Transcytosis
3.2.2. Receptor Agonists or Antagonists and Enzyme Modulation
3.3. Transport-Mediated Challenges
Carrier-Mediated Transport and Analogs of Solute Carrier Proteins
4. Key Factors to Be Considered for Enhancing Drug Delivery across the BBB
4.1. Age
4.2. Biological Sex
4.3. Route of Administration
4.4. Pharmacokinetic and Pharmacodynamic Properties
5. Concluding Remarks and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Ballabh, P.; Braun, A.; Nedergaard, M. The blood-brain barrier: An overview: Structure, regulation, and clinical implications. Neurobiol. Dis. 2004, 16, 1–13. [Google Scholar] [CrossRef]
- Abbott, N.J.; Ronnback, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006, 7, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Armulik, A.; Genové, G.; Mäe, M.; Nisancioglu, M.H.; Wallgard, E.; Niaudet, C.; He, L.; Norlin, J.; Lindblom, P.; Strittmatter, K.; et al. Pericytes regulate the blood & brain barrier. Nature 2010, 468, 557–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarty, J.H. Cell adhesion and signaling networks in brain neurovascular units. Curr. Opin. Hematol. 2009, 16, 209–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuriya, M.; Hirase, H. Involvement of astrocytes in neurovascular communication. Prog. Brain Res. 2016, 225, 41–62. [Google Scholar] [CrossRef]
- Stamatovic, S.M.; Johnson, A.M.; Keep, R.; Andjelkovic, A.V. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers 2016, 4, e1154641. [Google Scholar] [CrossRef] [Green Version]
- Luissint, A.-C.; Artus, C.; Glacial, F.; Ganeshamoorthy, K.; Couraud, P.-O. Tight junctions at the blood brain barrier: Physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 2012, 9, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazzoni, G.; Dejana, E. Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis. Physiol. Rev. 2004, 84, 869–901. [Google Scholar] [CrossRef] [Green Version]
- Banks, W.A. The Blood–Brain Barrier and CNS Drug Delivery. In Burger’s Medicinal Chemistry and Drug Discovery; Wiley: Hoboken, NJ, USA, 2021; pp. 1–22. [Google Scholar]
- Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.E.; Rodriguez-Cruz, V.; Felmlee, M.A. SLC and ABC Transporters: Expression, localization, and species differences at the blood-brain and the blood-cerebrospinal fluid barriers. AAPS J. 2017, 19, 1317–1331. [Google Scholar] [CrossRef]
- Loscher, W.; Potschka, H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005, 2, 86–98. [Google Scholar] [CrossRef]
- International Transporter Consortium. Membrane transporters in drug development. Nat. Rev. Drug. Discov. 2010, 9, 215–236. [Google Scholar] [CrossRef]
- De Vries, E.; Prat, A. (Eds.) The Blood-Brain Barrier and Its Microenvironment, 1st ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar] [CrossRef]
- Abbott, N.J. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J. Inherit. Metab. Dis. 2013, 36, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Hersh, D.; Wadajkar, A.S.; Roberts, N.B.; Perez, J.G.; Connolly, N.P.; Frenkel, V.; Winkles, J.A.; Woodworth, G.F.; Kim, A.J. Evolving drug delivery strategies to overcome the blood brain barrier. Curr. Pharm. Des. 2016, 22, 1177–1193. [Google Scholar] [CrossRef] [Green Version]
- Dong, X. Current strategies for brain drug delivery. Theranostics 2018, 8, 1481–1493. [Google Scholar] [CrossRef] [PubMed]
- Haumann, R.; Videira, J.C.; Kaspers, G.J.L.; Van Vuurden, D.G.; Hulleman, E. Overview of current drug delivery methods across the blood–brain barrier for the treatment of primary brain tumors. CNS Drugs 2020, 34, 1121–1131. [Google Scholar] [CrossRef]
- Proctor, C.M.; Slézia, A.; Kaszas, A.; Ghestem, A.; del Agua, I.; Pappa, A.-M.; Bernard, C.; Williamson, A.; Malliaras, G.G. Electrophoretic drug delivery for seizure control. Sci. Adv. 2018, 4, eaau1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slezia, A.; Proctor, C.M.; Kaszas, A.; Malliaras, G.G.; Williamson, A. Electrophoretic Delivery of gamma-aminobutyric Acid (GABA) into Epileptic Focus Prevents Seizures in Mice. J. Vis. Exp. 2019, 147, e59268. [Google Scholar]
- Cook, M.; Murphy, M.; Bulluss, K.; D’Souza, W.; Plummer, C.; Priest, E.; Williams, C.; Sharan, A.; Fisher, R.; Pincus, S.; et al. Anti-seizure therapy with a long-term, implanted intra-cerebroventricular delivery system for drug-resistant epilepsy: A first-in-man study. EClinicalMedicine 2020, 22, 100326. [Google Scholar] [CrossRef]
- Chen, Y.; Yue, Z.; Moulton, S.E.; Hayes, P.; Cook, M.J.; Wallace, G.G. A simple and versatile method for microencapsulation of anti-epileptic drugs for focal therapy of epilepsy. J. Mater. Chem. B 2015, 3, 7255–7261. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, C.U.; Emik, S.; Orhan, N.; Temizyurek, A.; Atis, M.; Akcan, U.; Khodadust, R.; Arican, N.; Kucuk, M.; Gurses, C.; et al. Targeted delivery of lacosamide-conjugated gold nanoparticles into the brain in temporal lobe epilepsy in rats. Life Sci. 2020, 257, 118081. [Google Scholar] [CrossRef]
- Yousfan, A.; Rubio, N.; Natouf, A.H.; Daher, A.; Al-Kafry, N.; Venner, K.; Kafa, H. Preparation and characterisation of PHT-loaded chitosan lecithin nanoparticles for intranasal drug delivery to the brain. RSC Adv. 2020, 10, 28992–29009. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Tsai, Y.-H.; Tang, S.-C.; Liou, H.-C.; Kang, K.-H.; Liou, H.-H.; Jeng, J.-S.; Fu, W.-M. Cytokine MIF enhances blood-brain barrier permeability: Impact for therapy in ischemic stroke. Sci. Rep. 2018, 8, 743. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Jiang, Y.; Lv, W.; Wu, L.; Wang, B.; Lv, L.; Xu, Q.; Xin, H. Enhanced anti-ischemic stroke of ZL006 by T7-conjugated PEGylated liposomes drug delivery system. Sci. Rep. 2015, 5, 12651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Ahmady, Z.S.; Jasim, D.; Ahmad, S.S.; Wong, R.; Haley, M.; Coutts, G.; Schiessl, I.; Allan, S.M.; Kostarelos, K. Selective liposomal transport through blood brain barrier disruption in ischemic stroke reveals two distinct therapeutic opportunities. ACS Nano 2019, 13, 12470–12486. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, C.C.; Acosta, C.; Wu, S.Y.; Sun, T.; Konofagou, E.E. A new brain drug delivery strategy: Focused ultrasound-enhanced intranasal drug delivery. PLoS ONE 2014, 9, e108880. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Cho, H.R.; Cha, G.D.; Seo, H.; Lee, S.; Park, C.-K.; Kim, J.W.; Qiao, S.; Wang, L.; Kang, D.; et al. Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat. Commun. 2019, 10, 5205. [Google Scholar] [CrossRef] [PubMed]
- Juthani, R.; Madajewski, B.; Yoo, B.; Zhang, L.; Chen, P.-M.; Chen, F.; Turker, M.Z.; Ma, K.; Overholtzer, M.; Longo, V.A.; et al. Ultrasmall core-shell silica nanoparticles for precision drug delivery in a high-grade malignant brain tumor model. Clin. Cancer Res. 2020, 26, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Bonsack, B.; Corey, S.; Shear, A.; Heyck, M.; Cozene, B.; Sadanandan, N.; Zhang, H.; Gonzales-Portillo, B.; Sheyner, M.; Borlongan, C.V. Mesenchymal stem cell therapy alleviates the neuroinflammation associated with acquired brain injury. CNS Neurosci. Ther. 2020, 26, 603–615. [Google Scholar] [CrossRef]
- Xiong, Y.; Mahmood, A.; Chopp, M. Emerging potential of exosomes for treatment of traumatic brain injury. Neural Regen. Res. 2017, 12, 19–22. [Google Scholar] [CrossRef]
- Kim, D.K.; Nishida, H.; An, S.Y.; Shetty, A.K.; Bartosh, T.J.; Prockop, D.J. Chromatographically isolated CD63+CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc. Natl. Acad. Sci. USA 2016, 113, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Qiu, J.; Li, X.-L.; Aday, S.; Zhang, J.; Conley, G.; Xu, J.; Joseph, J.; Lan, H.; Langer, R.; et al. BBB pathophysiology–independent delivery of siRNA in traumatic brain injury. Sci. Adv. 2021, 7, eabd6889. [Google Scholar] [CrossRef]
- Zinger, A.; Soriano, S.; Baudo, G.; De Rosa, E.; Taraballi, F.; Villapol, S. Biomimetic nanoparticles as a theranostic tool for traumatic brain injury. Adv. Funct. Mater. 2021, 31, 2100722. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.T.; Rodrigo, A.C.; Patterson, A.K.; Hawkins, K.; Aly, M.M.S.; Sun, J.; Al Jamal, K.T.; Smith, D.K. Enhanced Delivery of Neuroactive Drugs via Nasal Delivery with a Self-Healing Supramolecular Gel. Adv. Sci. 2021, 8, 2101058. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yu, F.; Niu, X.; Wang, X.; Li, G.; Li, X. Co-loading of levodopa and curcumin using brain-targeted protocells as a drug delivery system for improving the efficacy of Parkinson’s Disease. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Anoop, U.R.; Verma, K. A New Technique and Device for Controlled and Continuous Drug Delivery into the Brain—A Proof of Concept Study. bioRxiv 2019. [Google Scholar] [CrossRef]
- Rezai, A.R.; Ranjan, M.; D’Haese, P.-F.; Haut, M.W.; Carpenter, J.; Najib, U.; Mehta, R.I.; Chazen, J.L.; Zibly, Z.; Yates, J.R.; et al. Noninvasive hippocampal blood−brain barrier opening in Alzheimer’s disease with focused ultrasound. Proc. Natl. Acad. Sci. USA 2020, 117, 9180–9182. [Google Scholar] [CrossRef] [Green Version]
- Stafstrom, C.E.; Carmant, L. Seizures and Epilepsy: An Overview for Neuroscientists. Cold Spring Harb. Perspect. Med. 2015, 5, a022426. [Google Scholar] [CrossRef]
- Scharfman, H.E. The neurobiology of epilepsy. Curr. Neurol. Neurosci. Rep. 2007, 7, 348–354. [Google Scholar] [CrossRef]
- Staley, K.J. Molecular mechanisms of epilepsy. Nat. Neurosci. 2015, 18, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Meldrum, B.S.; Rogawski, M. Molecular targets for antiepileptic drug development. Neurotherapeutics 2007, 4, 18–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chindo, B.A.; Adzu, B.; Gamaniel, K.S. Antiepileptic Drug Targets: An Update on Ion Channels. In Epileptology—The Modern State of Science; InTechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Greenfield, L.J., Jr. Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure 2013, 22, 589–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kammerer, M.; Rassner, M.P.; Freiman, T.M.; Feuerstein, T.J. Effects of antiepileptic drugs on GABA release from rat and human neocortical synaptosomes. Naunyn Schmiedeberg’s Arch. Pharmacol. 2011, 384, 47–57. [Google Scholar] [CrossRef]
- Lapenna, P.; Tormoehlen, L.M. The pharmacology and toxicology of third-generation anticonvulsant drugs. J. Med. Toxicol. 2017, 13, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Gaitatzis, A.; Sander, J.W. The long-term safety of antiepileptic drugs. CNS Drugs 2013, 27, 435–455. [Google Scholar] [CrossRef]
- Kwan, P.; Arzimanoglou, A.; Berg, A.T.; Brodie, M.J.; Allen Hauser, W.; Mathern, G.; Moshé, S.L.; Perucca, E.; Wiebe, S.; French, J. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010, 51, 1069–1077. [Google Scholar] [CrossRef]
- Kwan, P.; Brodie, M.J. Early Identification of Refractory Epilepsy. N. Engl. J. Med. 2000, 342, 314–319. [Google Scholar] [CrossRef]
- Perucca, E.; Brodie, M.J.; Kwan, P.; Tomson, T. 30 years of second-generation antiseizure medications: Impact and future perspectives. Lancet Neurol. 2020, 19, 544–556. [Google Scholar] [CrossRef]
- Laxer, K.D.; Trinka, E.; Hirsch, L.J.; Cendes, F.; Langfitt, J.; Delaney, N.; Resnick, T.; Benbadis, S.R. The consequences of refractory epilepsy and its treatment. Epilepsy Behav. 2014, 37, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Gorter, J.; Aronica, E.; Van Vliet, E. The roof is leaking and a storm is raging: Repairing the blood–brain barrier in the fight against epilepsy. Epilepsy Curr. 2019, 19, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Seiffert, E.; Dreier, J.; Ivens, S.; Bechmann, I.; Tomkins-Netzer, O.; Heinemann, U.; Friedman, A. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J. Neurosci. 2004, 24, 7829–7836. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, E.A.; da Costa Araujo, S.; Redeker, S.; van Schaik, R.; Aronica, E.; Gorter, J.A. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 2007, 130 Pt 2, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, C.; Gonzalez-Martinez, J.; Hossain, M.; Cucullo, L.; Fazio, V.; Janigro, D.; Marchi, N. Pattern of P450 expression at the human blood-brain barrier: Roles of epileptic condition and laminar flow. Epilepsia 2010, 51, 1408–1417. [Google Scholar] [CrossRef] [Green Version]
- Dauchy, S.; Dutheil, F.; Weaver, R.J.; Chassoux, F.; Daumas-Duport, C.; Couraud, P.-O.; Scherrmann, J.-M.; de Waziers, I.; Decleves, X. ABC transporters, cytochromes P450 and their main transcription factors: Expression at the human blood-brain barrier. J. Neurochem. 2008, 107, 1518–1528. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.; Hossain, M.; Ferguson, L.; Busch, R.M.; Marchi, N.; Gonzalez-Martinez, J.; Perucca, E.; Najm, I.M.; Ghosh, C. Neurovascular Drug Biotransformation Machinery in Focal Human Epilepsies: Brain CYP3A4 Correlates with Seizure Frequency and Antiepileptic Drug Therapy. Mol. Neurobiol. 2019, 56, 8392–8407. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Hartz, A.M.S.; Bauer, B. Drug-Resistant Epilepsy: Multiple Hypotheses, Few Answers. Front. Neurol. 2017, 8, 301. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, C.; Hossain, M.; Solanki, J.; Najm, I.M.; Marchi, N.; Janigro, D. Overexpression of pregnane X and glucocorticoid receptors and the regulation of cytochrome P450 in human epileptic brain endothelial cells. Epilepsia 2017, 58, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, C.; Hossain, M.; Mishra, S.; Khan, S.; Gonzalez-Martinez, J.; Marchi, N.; Janigro, D.; Bingaman, W.; Najm, I. Modulation of glucocorticoid receptor in human epileptic endothelial cells impacts drug biotransformation in an in vitro blood-brain barrier model. Epilepsia 2018, 59, 2049–2060. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Williams, S.; Ferguson, L.; Bingaman, W.; Ghosh, A.; Najm, I.M.; Ghosh, C. Heat shock proteins accelerate the maturation of brain endothelial cell glucocorticoid receptor in focal human drug-resistant epilepsy. Mol. Neurobiol. 2020, 57, 4511–4529. [Google Scholar] [CrossRef]
- Fang, M.; Xi, Z.-Q.; Wu, Y.; Wang, X.-F. A new hypothesis of drug refractory epilepsy: Neural network hypothesis. Med. Hypotheses 2011, 76, 871–876. [Google Scholar] [CrossRef]
- Rogawski, M.A.; Johnson, M.R. Intrinsic severity as a determinant of antiepileptic drug refractoriness. Epilepsy Curr. 2008, 8, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Boehme, A.K.; Esenwa, C.; Elkind, M.S. Stroke Risk Factors, Genetics, and Prevention. Circ. Res 2017, 120, 472–495. [Google Scholar] [CrossRef]
- Ojaghihaghighi, S.; Vahdati, S.S.; Mikaeilpour, A.; Ramouz, A. Comparison of neurological clinical manifestation in patients with hemorrhagic and ischemic stroke. World J. Emerg. Med. 2017, 8, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Hui, C.; Tadi, P.; Patti, L. Ischemic Stroke; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Kuriakose, D.; Xiao, Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 7609. [Google Scholar] [CrossRef]
- Thompson, B.J.; Ronaldson, P.T. Drug delivery to the ischemic brain. Adv. Pharmacol. 2014, 71, 165–202. [Google Scholar]
- Cheng, N.T.; Kim, A.S. Intravenous Thrombolysis for acute ischemic stroke within 3 hours versus between 3 and 4.5 hours of symptom onset. Neurohospitalist 2015, 5, 101–109. [Google Scholar] [CrossRef]
- Lansberg, M.G.; Bluhmki, E.; Thijs, V.N. Efficacy and safety of tissue plasminogen activator 3 to 4.5 hours after acute ischemic stroke. Stroke 2009, 40, 2438–2441. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, R.; Hill, M.D.; Shobha, N.; Menon, B.; Bal, S.; Kochar, P.; Watson, T.; Goyal, M.; Demchuk, A.M. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: Real-world experience and a call for action. Stroke 2010, 41, 2254–2258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keragala, C.B.; Woodruff, T.M.; Liu, Z.; Niego, B.; Ho, H.; McQuilten, Z.; Medcalf, R.L. Tissue-type plasminogen activator and tenecteplase-mediated increase in blood brain barrier permeability involves cell intrinsic complement. Front. Neurol. 2020, 11, 1603. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Rosenberg, G.A. Blood-Brain Barrier Breakdown in Acute and Chronic Cerebrovascular Disease. Stroke 2011, 42, 3323–3328. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Chen, S.; Luo, Y.; Han, Z. Crosstalk between Inflammation and the BBB in Stroke. Curr. Neuropharmacol. 2020, 18, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-S.; Chen, W.; Liu, S.; Zhang, Y.-Y.; Li, X.-H.; Yan-Shuang, L.; Wen, C.; Shuang, L.; Yuan-Yuan, Z.; Xiao-Hong, L. Serum macrophage migration inhibitory factor levels are associated with infarct volumes and long-term outcomes in patients with acute ischemic stroke. Int. J. Neurosci. 2016, 127, 539–546. [Google Scholar] [CrossRef]
- Marchi, N.; Betto, G.; Fazio, V.; Fan, Q.; Ghosh, C.; Machado, A.; Janigro, D. Blood-brain barrier damage and brain penetration of antiepileptic drugs: Role of serum proteins and brain edema. Epilepsia 2009, 50, 664–677. [Google Scholar] [CrossRef]
- Nadareishvili, Z.; Simpkins, A.N.; Hitomi, E.; Reyes, D.; Leigh, R. Post-stroke blood-brain barrier disruption and poor functional outcome in patients receiving throm-bolytic therapy. Cerebrovasc. Dis. 2019, 47, 135–142. [Google Scholar] [CrossRef]
- Lawrence, D.A.; Medcalf, R.L.; Fredriksson, L. tPA Modulation of the blood–brain barrier: A unifying explanation for the pleiotropic effects of tPA in the CNS. Semin. Thromb. Hemost. 2016, 43, 154–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Zong, H. Developmental origins of brain tumors. Curr. Opin. Neurobiol. 2012, 22, 844–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butowski, N.A. Epidemiology and diagnosis of brain tumors. Contin. Lifelong Learn. Neurol. 2015, 21, 301–313. [Google Scholar] [CrossRef]
- Collins, V.P. Brain tumours: Classification and genes. J. Neurol. Neurosurg. Psychiatry 2004, 75, ii2–ii11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, M.E. Glioblastoma: Overview of disease and treatment. Clin. J. Oncol. Nurs. 2016, 20, S2–S8. [Google Scholar] [CrossRef] [Green Version]
- Noch, E.; Khalili, K. Molecular mechanisms of necrosis in glioblastoma: The role of glutamate excitotoxicity. Cancer Biol. Ther. 2009, 8, 1791–1797. [Google Scholar] [CrossRef]
- Amjad, M.T.; Kasi, A. Cancer Chemotherapy; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Altun, I.; Sonkaya, A. The most common side effects experienced by patients were receiving first cycle of chemotherapy. Iran. J. Public Health 2018, 47, 1218–1219. [Google Scholar] [PubMed]
- Pearce, A.; Haas, M.; Viney, R.; Pearson, S.-A.; Haywood, P.; Brown, C.; Ward, R. Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study. PLoS ONE 2017, 12, e0184360. [Google Scholar] [CrossRef] [PubMed]
- Drugs Approved for Brain Tumors. 2021. Available online: https://www.cancer.gov/about-cancer/treatment/drugs/brain (accessed on 4 October 2021).
- Angeli, E.; Nguyen, T.T.; Janin, A.; Bousquet, G. How to make anticancer drugs cross the blood–Brain barrier to treat brain metastases. Int. J. Mol. Sci. 2019, 21, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deeken, J.F.; Löscher, W. The blood-brain barrier and cancer: Transporters, treatment, and trojan horses. Clin. Cancer Res. 2007, 13, 1663–1674. [Google Scholar] [CrossRef] [Green Version]
- El-Awady, R.; Saleh, E.; Hashim, A.; Soliman, N.; Dallah, A.; Elrasheed, A.; Elakraa, G. The Role of Eukaryotic and Prokaryotic ABC transporter family in failure of chemotherapy. Front. Pharmacol. 2017, 7, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, C.-H. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int. 2005, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Sarkaria, J.N.; Hu, L.S.; Parney, I.F.; Pafundi, D.H.; Brinkmann, D.H.; Laack, N.N.; Giannini, C.; Burns, T.C.; Kizilbash, S.; Laramy, J.K.; et al. Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro-oncology 2017, 20, 184–191. [Google Scholar] [CrossRef]
- Arvanitis, C.D.; Ferraro, G.B.; Jain, R.K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 2019, 20, 26–41. [Google Scholar] [CrossRef]
- Phoenix, T.N.; Patmore, D.M.; Boop, S.; Boulos, N.; Jacus, M.O.; Patel, Y.T.; Roussel, M.F.; Finkelstein, D.; Goumnerova, L.; Perreault, S.; et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 2016, 29, 508–522. [Google Scholar] [CrossRef] [Green Version]
- Galgano, M.; Toshkezi, G.; Qiu, X.; Russell, T.; Chin, L.; Zhao, L.R. Traumatic brain injury: Current treatment strategies and future endeavors. Cell Transpl. 2017, 26, 1118–1130. [Google Scholar] [CrossRef] [Green Version]
- Sivandzade, F.; Alqahtani, F.; Cucullo, L. Traumatic brain injury and blood-brain barrier (BBB): Underlying pathophysiological mechanisms and the influence of cigarette smoking as a premorbid condition. Int. J. Mol. Sci. 2020, 21, 2721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, L.; Wilson, C.; Grant, G. Blood–Brain Barrier Pathophysiology following Traumatic Brain Injury. In Translational Research in Traumatic Brain Injury; Laskowitz, D., Grant, G., Eds.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Dinh, M.M.; Bein, K.; Roncal, S.; Byrne, C.M.; Petchell, J.; Brennan, J. Redefining the golden hour for severe head injury in an urban setting: The effect of prehospital arrival times on patient outcomes. Injury 2013, 44, 606–610. [Google Scholar] [CrossRef]
- Lockman, P.; Mumper, R.J.; Khan, M.; Allen, D.D. Nanoparticle Technology for drug delivery across the blood-brain barrier. Drug Dev. Ind. Pharm. 2002, 28, 1–13. [Google Scholar] [CrossRef]
- Masserini, M. Nanoparticles for Brain Drug Delivery. ISRN Biochem. 2013, 2013, 238428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharadwaj, V.N.; Lifshitz, J.; Adelson, P.D.; Kodibagkar, V.D.; Stabenfeldt, S.E. Temporal assessment of nanoparticle accumulation after experimental brain injury: Effect of particle size. Sci. Rep. 2016, 6, 29988. [Google Scholar] [CrossRef] [Green Version]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Mainprize, T.; Lipsman, N.; Huang, Y.; Meng, Y.; Bethune, A.; Ironside, S.; Heyn, C.; Alkins, R.; Trudeau, M.; Sahgal, A.; et al. Blood-Brain Barrier Opening in Primary Brain Tumors with Non-invasive MR-Guided Focused Ultrasound: A Clinical Safety and Feasibility Study. Sci. Rep. 2019, 9, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, Q.; Upadhya, D.; Hattiangady, B.; Kim, D.K.; An, S.Y.; Shuai, B.; Prockop, D.J.; Shetty, A.K. Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proc. Natl. Acad. Sci. USA 2017, 114, E3536–E3545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, R.L.; Kaiser, E.E.; Scoville, S.L.; Thompson, T.A.; Fatima, S.; Pandya, C.; Sriram, K.; Swetenburg, R.L.; Vaibhav, K.; Arbab, A.S.; et al. Human neural stem cell extracellular vesicles improve tissue and functional recovery in the murine thromboembolic stroke model. Transl. Stroke Res. 2017, 9, 530–539. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Hu, Y.; Chen, G. The Antitumor effect of gene-engineered exosomes in the treatment of brain metastasis of breast cancer. Front. Oncol. 2020, 10, 1453. [Google Scholar] [CrossRef]
- Tashima, T. Smart strategies for therapeutic agent delivery into brain across the blood–brain barrier using receptor-mediated transcytosis. Chem. Pharm. Bull. 2020, 68, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Wevers, N.R.; Kasi, D.G.; Gray, T.; Wilschut, K.J.; Smith, B.; Van Vught, R.; Shimizu, F.; Sano, Y.; Kanda, T.; Marsh, G.; et al. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS 2018, 15, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardridge, W.M. Drug and gene delivery to the brain: The vascular route. Neuron 2002, 36, 555–558. [Google Scholar] [CrossRef] [Green Version]
- Freskgård, P.-O.; Urich, E. Antibody therapies in CNS diseases. Neuropharmacology 2017, 120, 38–55. [Google Scholar] [CrossRef] [PubMed]
- Anthony, D.P.; Hegde, M.; Shetty, S.S.; Rafic, T.; Mutalik, S.; Rao, B.S. Targeting receptor-ligand chemistry for drug delivery across blood-brain barrier in brain diseases. Life Sci. 2021, 274, 119326. [Google Scholar] [CrossRef] [PubMed]
- Hersom, M.; Helms, H.C.; Pretzer, N.; Goldeman, C.; Jensen, A.I.; Severin, G.; Nielsen, M.S.; Holm, R.; Brodin, B. Transferrin receptor expression and role in transendothelial transport of transferrin in cultured brain endothelial monolayers. Mol. Cell. Neurosci. 2016, 76, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Bourassa, P.; Alata, W.; Tremblay, C.; Paris-Robidas, S.; Calon, F. transferrin receptor-mediated uptake at the blood–brain barrier is not impaired by alzheimer’s disease neuropathology. Mol. Pharm. 2019, 16, 583–594. [Google Scholar] [CrossRef]
- Wouters, Y.; Jaspers, T.; De Strooper, B.; Dewilde, M. Identification and in vivo characterization of a brain-penetrating nanobody. Fluids Barriers CNS 2020, 17, 62. [Google Scholar] [CrossRef]
- Pardridge, W.; Chou, T. Mathematical models of blood-brain barrier transport of monoclonal antibodies targeting the transferrin receptor and the insulin receptor. Pharmaceuticals 2021, 14, 535. [Google Scholar] [CrossRef]
- Okuyama, T.; Eto, Y.; Sakai, N.; Nakamura, K.; Yamamoto, T.; Yamaoka, M.; Ikeda, T.; So, S.; Tanizawa, K.; Sonoda, H.; et al. A Phase 2/3 Trial of Pabinafusp Alfa, IDS Fused with anti-human transferrin receptor antibody, targeting neurodegeneration in MPS-II. Mol. Ther. 2021, 29, 671–679. [Google Scholar] [CrossRef]
- Giugliani, R.; Giugliani, L.; Poswar, F.D.O.; Donis, K.C.; Corte, A.D.; Schmidt, M.; Boado, R.J.; Nestrasil, I.; Nguyen, C.; Chen, S.; et al. Neurocognitive and somatic stabilization in pediatric patients with severe Mucopolysaccharidosis Type I after 52 weeks of intravenous brain-penetrating insulin receptor antibody-iduronidase fusion protein (valanafusp alpha): An open label phase 1-2 trial. Orphanet J. Rare Dis. 2018, 13, 110. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.S.; Chen, Y.; LeCluyse, E.L.; Negishi, M.; Goldstein, J.A. Human CYP2C8 Is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4α. Mol. Pharmacol. 2005, 68, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Canet, G.; Chevallier, N.; Zussy, C.; Desrumaux, C.; Givalois, L. Central role of glucocorticoid receptors in alzheimer’s disease and depression. Front. Neurosci. 2018, 12, 739. [Google Scholar] [CrossRef] [Green Version]
- Loose, D.S.; Stover, E.P.; Feldman, D. Ketoconazole binds to glucocorticoid receptors and exhibits glucocorticoid antagonist activity in cultured cells. J. Clin. Investig. 1983, 72, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Baglietto-Vargas, D.; Medeiros, R.; Martinez-Coria, H.; LaFerla, F.M.; Green, K.N. Mifepristone alters amyloid precursor protein processing to preclude amyloid beta and also reduces tau pathology. Biol. Psychiatry 2013, 74, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Ohtsuki, S.; Terasaki, T. Contribution of carrier-mediated transport systems to the blood–brain barrier as a supporting and protecting interface for the brain; Importance for CNS drug discovery and development. Pharm. Res. 2007, 24, 1745–1758. [Google Scholar] [CrossRef]
- Pardridge, W.M. Drug transport across the blood–brain barrier. Br. J. Pharmacol. 2012, 32, 1959–1972. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Welty, D.R. The simultaneous estimation of the influx and efflux blood-brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach. Pharm. Res. 1996, 13, 398–403. [Google Scholar] [CrossRef]
- Lin, J.; Raoof, D.A.; Thomas, D.G.; Greenson, J.K.; Giordano, T.J.; Robinson, G.S.; Bourner, M.J.; Bauer, C.T.; Orringer, M.B. L-type amino acid transporter-1 overexpression and melphalan sensitivity in Barrett’s adenocarcinoma. Neoplasia 2004, 6, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Bors, L.A.; Mándoki, M.; Tasi, B.J.; Cserey, G.; Imre, T.; Szabó, P.; Erdő, F. Modulation of nose-to-brain delivery of a P-glycoprotein (MDR1) substrate model drug (quinidine) in rats. Brain Res. Bull. 2020, 160, 65–73. [Google Scholar] [CrossRef]
- Dombrowski, S.M.; Desai, S.Y.; Marroni, M.; Cucullo, L.; Goodrich, K.; Bingaman, W.; Mayberg, M.R.; Bengez, L.; Janigro, D. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 2001, 42, 1501–1506. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, M.; Asselin, M.-C.; Liu, J.; Wang, S.; McMahon, A.; Anton-Rodriguez, J.M.; Walker, M.; Symms, M.; Brown, G.; Hinz, R.; et al. P-glycoprotein expression and function in patients with temporal lobe epilepsy: A case-control study. Lancet Neurol. 2013, 12, 777–785. [Google Scholar] [CrossRef]
- Hartz, A.M.S.; Pekcec, A.; Soldner, E.L.B.; Zhong, Y.; Schlichtiger, J.; Bauer, B. P-gp protein expression and transport activity in rodent seizure models and human epilepsy. Mol. Pharm. 2017, 14, 999–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuruo, T.; Iida, H.; Tsukagoshi, S.; Sakurai, Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981, 41, 1967–1972. [Google Scholar] [PubMed]
- Agarwal, S.; Hartz, A.M.; Elmquist, W.F.; Bauer, B. Breast Cancer Resistance Protein and P-Glycoprotein in Brain Cancer: Two Gatekeepers Team Up. Curr. Pharm. Des. 2011, 17, 2793–2802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fellner, S.; Bauer, B.; Miller, D.S.; Schaffrik, M.; Fankhänel, M.; Spruß, T.; Bernhardt, G.; Graeff, C.; Färber, L.; Gschaidmeier, H.; et al. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J. Clin. Investig. 2002, 110, 1309–1318. [Google Scholar] [CrossRef] [PubMed]
- Hubensack, M.; Müller, C.; Höcherl, P.; Fellner, S.; Spruss, T.; Bernhardt, G.; Buschauer, A. Effect of the ABCB1 modulators elacridar and tariquidar on the distribution of paclitaxel in nude mice. J. Cancer Res. Clin. Oncol. 2007, 134, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P.; Arumugam, T. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab. 2018, 27, 1176–1199. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.H.; Marioni, R.E.; Harris, S.E.; Deary, I.J. Brain age and other bodily ‘ages’: Implications for neuropsychiatry. Mol. Psychiatry 2019, 24, 266–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, T.; Nyúl-Tóth, Á.; Balasubramanian, P.; Tarantini, S.; Ahire, C.; DelFavero, J.; Yabluchanskiy, A.; Csipo, T.; Farkas, E.; Wiley, G.; et al. Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain. GeroScience 2020, 42, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Stamatovic, S.M.; Martinez-Revollar, G.; Hu, A.; Choi, J.; Keep, R.F.; Andjelkovic, A.V. Decline in Sirtuin-1 expression and activity plays a critical role in blood-brain barrier permeability in aging. Neurobiol. Dis. 2018, 126, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Buga, A.-M.; Sascau, M.; Pisoschi, C.; Herndon, J.G.; Kessler, C.; Popa-Wagner, A. The genomic response of the ipsilateral and contralateral cortex to stroke in aged rats. J. Cell. Mol. Med. 2008, 12, 2731–2753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, D.G.; Bellaver, B.; Raupp, G.S.; Souza, D.O.; Quincozes-Santos, A. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions. Neurochem. Int. 2015, 90, 93–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, R.D.; Winkler, E.A.; Sagare, A.P.; Singh, I.; LaRue, B.; Deane, R.; Zlokovic, B.V. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010, 68, 409–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Assema, D.M.; Lubberink, M.; Boellaard, R.; Schuit, R.C.; Windhorst, A.D.; Scheltens, P.; Lammertsma, A.A.; van Berckel, B.N. P-glycoprotein function at the blood-brain barrier: Effects of age and gender. Mol. Imaging Biol. 2012, 14, 771–776. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Zhang, J.; Wang, G.; Ling, L.; Yan, C. Permeability and distribution of nerve growth factor in the brain of neonatal rats by periphery venous injection in hypoxic-ischemic state. SpringerPlus 2016, 5, 1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdő, F.; Denes, L.; de Lange, E. Age-associated physiological and pathological changes at the blood–brain barrier: A review. J. Cereb. Blood Flow Metab. 2017, 37, 4–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bebawy, M.; Chetty, M. Gender differences in p-glycoprotein expression and function: Effects on drug disposition and outcome. Curr. Drug. Metab. 2009, 10, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Gudelsky, G.; Desai, P.B. Gender-based differences in brain and plasma pharmacokinetics of letrozole in sprague-dawley rats: Application of physiologically-based pharmacokinetic modeling to gain quantitative insights. PLoS ONE 2021, 16, e0248579. [Google Scholar] [CrossRef] [PubMed]
- Charalambous, M.; Volk, H.A.; Van Ham, L.; Bhatti, S.F.M. First-line management of canine status epilepticus at home and in hospital-opportunities and limitations of the various administration routes of benzodiazepines. BMC Vet. Res. 2021, 17, 103. [Google Scholar] [CrossRef]
- Calias, P.; Banks, W.A.; Begley, D.; Scarpa, M.; Dickson, P. Intrathecal delivery of protein therapeutics to the brain: A critical reassessment. Pharmacol. Ther. 2014, 144, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.D.; Saneto, R.P. Current oral and non-oral routes of antiepileptic drug delivery. Adv. Drug Deliv. Rev. 2012, 64, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, A.H.; Brosen, K.; Damkier, P. A comparative pharmacokinetic study in healthy volunteers of the effect of car-bamazepine and oxcarbazepine on cyp3a4. Epilepsia 2000, 48, 490–496. [Google Scholar] [CrossRef]
- Honarmand, A.; Safavi, M.; Zare, M. Gabapentin: An update of its pharmacological properties and therapeutic use in epilepsy. J. Res. Med. Sci. 2011, 16, 1062–1069. [Google Scholar] [PubMed]
- Yasaei, R.; Katta, S.; Saadabadi, A. Gabapentin; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Quintero, G.C. Review about gabapentin misuse, interactions, contraindications and side effects. J. Exp. Pharmacol. 2017, 9, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Luna-Tortós, C.; Fedrowitz, M.; Löscher, W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology 2008, 55, 1364–1375. [Google Scholar] [CrossRef]
- Patsalos, P. Pharmacokinetic profile of levetiracetam: Toward ideal characteristics. Pharmacol. Ther. 2000, 85, 77–85. [Google Scholar] [CrossRef]
- Kumar, A.; Maini, K.; Kadian, R. Levetiracetam; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Grant, S.M.; Faulds, D. Oxcarbazepine. A review of its pharmacology and therapeutic potential in epilepsy, trigeminal neuralgia and affective disorders. Drugs 1992, 43, 873–888. [Google Scholar] [CrossRef]
- Jelveghari, M.; Nokhodchi, A. Development and chemical stability studies of alcohol-free phenobarbital solution for use in pediatrics: A technical note. AAPS PharmSciTech 2008, 9, 939–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patsalos, P.N.; Zugman, M.; Lake, C.; James, A.; Ratnaraj, N.; Sander, J.W. Serum protein binding of 25 antiepileptic drugs in a routine clinical setting: A comparison of free non-protein-bound concentrations. Epilepsia 2017, 58, 1234–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadian, R.; Kumar, A. Zonisamide; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Lennernäs, H. Clinical pharmacokinetics of atorvastatin. Clin. Pharmacokinet. 2003, 42, 1141–1160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; He, K.; Herbst, J.J.; Kolb, J.; Shou, W.; Wang, L.; Balimane, P.V.; Han, Y.-H.; Gan, J.; Frost, C.E.; et al. Characterization of Efflux Transporters Involved in Distribution and Disposition of Apixaban. Drug Metab. Dispos. 2013, 41, 827–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byon, W.; Garonzik, S.; Boyd, R.A.; Frost, C.E. Apixaban: A clinical pharmacokinetic and pharmacodynamic review. Clin. Pharmacokinet. 2019, 58, 1265–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arif, H.; Aggarwal, S. Salicylic Acid (Aspirin); StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Eikelboom, J.W.; Hirsh, J.; Spencer, F.A.; Baglin, T.P.; Weitz, J.I. Antiplatelet drugs: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141 (Suppl. S2), e89S–e119S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessler, J.D.; Grip, L.T.; Mendell, J.; Giugliano, R.P. The P-glycoprotein transport system and cardiovascular drugs. J. Am. Coll. Cardiol. 2013, 61, 2495–2502. [Google Scholar] [CrossRef] [Green Version]
- Pereillo, J.-M.; Maftouh, M.; Andrieu, A.; Uzabiaga, M.-F.; Fedeli, O.; Savi, P.; Pascal, M.; Herbert, J.-M.; Maffrand, J.-P.; Picard, C. Structure and stereochemistry of the active metabolite of clopidogrel. Drug Metab. Dispos. 2002, 30, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Beavers, C.J.; Naqvi, I.A. Clopidogrel; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Dunois, C. Laboratory Monitoring of Direct Oral Anticoagulants (DOACs). Biomedicines 2021, 9, 445. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.S.; Yadav, E.; Verma, A.; Amin, S. Development, characterization, and pharmacodynamic evaluation of hydrochlorothiazide loaded self-nanoemulsifying drug delivery systems. Sci. World J. 2014, 2014, 274823. [Google Scholar] [CrossRef] [Green Version]
- Herman, L.L.; Bashir, K. Hydrochlorothiazide; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Mueck, W.; Stampfuss, J.; Kubitza, D.; Becka, M. Clinical Pharmacokinetic and Pharmacodynamic Profile of Rivaroxaban. Clin. Pharmacokinet. 2013, 53, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benchenane, K.; Berezowski, V.; Ali, C.; Fernández-Monreal, M.; López-Atalaya, J.P.; Brillault, J.; Chuquet, J.; Nouvelot, A.; MacKenzie, E.T.; Bu, G. Tissue-type plasminogen activator crosses the intact blood-brain barrier by low-density lipoprotein recep-tor-related protein-mediated transcytosis. Circulation 2005, 111, 2241–2249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deli, M.A.; Ábrahám, C.S.; Takahata, H.; Niwa, M. Tissue plasminogen activator inhibits P-glycoprotein activity in brain endothelial cells. Eur. J. Pharmacol. 2000, 411, R3–R5. [Google Scholar] [CrossRef]
- Miller, D.J.; Simpson, J.R.; Silver, B. Safety of thrombolysis in acute ischemic stroke: A review of complications, risk factors, and newer technologies. Neurohospitalist 2011, 1, 138–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gellatly, R.M. Intravenous Warfarin as an Alternative for Anticoagulation. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2007, 27, 933–935. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Singh, R.; Preuss, C.V.; Patel, N. Warfarin; Updated 31 August 2021; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470313/ (accessed on 7 September 2021).
- Kwok, K.K.; Vincent, E.C.; Gibson, J.N. 36–Antineoplastic Drugs. In Pharmacology and Therapeutics for Dentistry, 7th ed.; Dowd, F.J., Johnson, B.S., Mariotti, J., Eds.; Mosby: Maryland Heights, MO, USA, 2017; pp. 530–562. [Google Scholar]
- Sarin, H. Overcoming the challenges in the effective delivery of chemotherapies to CNS solid tumors. Ther. Deliv. 2010, 1, 289–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson-Arbor, K.; Dubey, R. Doxorubicin; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Houghton, P.J. Everolimus. Clin. Cancer Res. 2010, 16, 1368–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchner, G.I.; Meier-Wiedenbach, I.; Manns, M.P. Clinical Pharmacokinetics of Everolimus. Clin. Pharmacokinet. 2004, 43, 83–95. [Google Scholar] [CrossRef]
- Kastrissios, H.; Chao, N.J.; Blaschke, T.F. Pharmacokinetics of high-dose oral CCNU in bone marrow transplant patients. Cancer Chemother. Pharmacol. 1996, 38, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.; Sacapano, M.R.; Prosolovich, K.; Ong, J.; Black, K. Blood brain barrier permeability to temozolomide. Cancer Res. 2005, 65 (Suppl. S9), 330. [Google Scholar]
- Lee, S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016, 3, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Harris, L.; Hateley, S.; Tsang, K.T.; Wilson, M.; Seemungal, B.M. Impact of anti-epileptic drug choice on discharge in acute traumatic brain injury patients. J. Neurol. 2020, 267, 1774–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mojtahedzadeh, M.; Alimardani, S.; Sadrai, S.; Masoumi, H.T.; Salari, P.; Najafi, A.; Eftekhar, B. Pharmacokinetic behavior of phenytoin in head trauma and cerebrovascular accident patients in an iranian population. J. Res. Pharm. Pract. 2017, 6, 217–222. [Google Scholar] [CrossRef]
- Khan, S.A.; Bhatti, S.N.; Alam Khan, A.; Afridi, E.A.K.; Muhammad, G.; Gul, N.; Zadran, K.K.; Alam, S.; Aurangzeb, A. Comparison Of Efficacy Of Phenytoin And Levetiracetam For Prevention Of Early Post Traumatic Seizures. JAMC 2017, 28, 455–460. [Google Scholar]
- Alnemari, A.M.; Krafcik, B.M.; Mansour, T.R.; Gaudin, D. A Comparison of Pharmacologic Therapeutic Agents Used for the Reduction of Intracranial Pressure After Traumatic Brain Injury. World Neurosurg. 2017, 106, 509–528. [Google Scholar] [CrossRef]
- Mason, A.; Malik, A.; Ginglen, J.G. Hypertonic Fluids; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Shi, J.; Tan, L.; Ye, J.; Hu, L. Hypertonic saline and mannitol in patients with traumatic brain injury: A systematic and meta-analysis. Medicine 2020, 99, e21655. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, W.; Siwicka-Gieroba, D.; Robba, C.; Bielacz, M.; Sołek-Pastuszka, J.; Kotfis, K.; Bohatyrewicz, R.; Jaroszyński, A.; Malbrain, M.L.N.G.; Badenes, R. Potentially Detrimental Effects of Hyperosmolality in Patients Treated for Traumatic Brain Injury. J. Clin. Med. 2021, 10, 4141. [Google Scholar] [CrossRef]
- Burks, S.R.; Kersch, C.N.; Witko, J.A.; Pagel, M.A.; Sundby, M.; Muldoon, L.L.; Neuwelt, E.A.; Frank, J.A. Blood–brain barrier opening by intracarotid artery hyperosmolar mannitol induces sterile inflammatory and innate immune responses. Proc. Natl. Acad. Sci. USA 2021, 118. [Google Scholar] [CrossRef]
- Arnold, C.; Konkel, A.; Fischer, R.; Schunck, W.H. Cytochrome P450-dependent metabolism of omega-6 and omega-3 long-chain polyunsaturated fatty acids. Pharmacol. Rep. 2010, 62, 536–547. [Google Scholar] [CrossRef]
- Novotny, K.; Fritz, K.; Parmar, M. Omega-3 Fatty Acids; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Khalili, H.; Ahl, R.; Paydar, S.; Sjolin, G.; Cao, Y.; Fard, H.A.; Niakan, A.; Hanna, K.; Joseph, B.; Mohseni, S. Beta-blocker therapy in severe traumatic brain injury: A prospective randomized controlled trial. World J. Surg. 2020, 44, 1844–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahrokhi, M.; Gupta, V. Propranolol; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Laurens, C.; Abot, A.; Delarue, A.; Knauf, C. Central effects of beta-blockers may be due to nitric oxide and hydrogen peroxide release independently of their ability to cross the blood-brain barrier. Front. Neurosci. 2019, 13, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruppert, K.A.; Prabhakara, K.S.; Toledano-Furman, N.E.; Udtha, S.; Arceneaux, A.Q.; Park, H.; Dao, A.; Cox, C.S.; Olson, S.D. Human adipose-derived mesenchymal stem cells for acute and sub-acute TBI. PLoS ONE 2020, 15, e0233263. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, C.; Achar, A. Multiple hurdle mechanism and blood-brain barrier in epilepsy: Glucocorticoid receptor-heat shock proteins on drug regulation. Neural Regen. Res. 2021, 16, 2427–2428. [Google Scholar] [CrossRef]
- Liu, X. Clinical trials of intranasal delivery for treating neurological disorders—A critical review. Expert Opin. Drug Deliv. 2011, 8, 1681–1690. [Google Scholar] [CrossRef] [PubMed]
- Erdő, F.; Bors, L.A.; Farkas, D.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull. 2018, 143, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Falcone, J.A.; Salameh, T.S.; Yi, X.; Cordy, B.J.; Mortell, W.G.; Kabanov, A.; Banks, W.A. Intranasal Administration as a Route for Drug Delivery to the Brain: Evidence for a Unique Pathway for Albumin. J. Pharmacol. Exp. Ther. 2014, 351, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Shi, Y.; Yu, S.; Wang, Y.; Meng, Q.; Liang, G.; Eckenhoff, M.F.; Wei, H. Intranasal administration of dantrolene increased brain concentration and duration. PLoS ONE 2020, 15, e0229156. [Google Scholar] [CrossRef] [Green Version]
- Miyajima, M.; Arai, H. Evaluation of the Production and Absorption of Cerebrospinal Fluid. Neurol. Med. Chir. 2015, 55, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Pardridge, W.M. Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS 2011, 8, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, A.; Orgill, B.D.; Fitzgerald, B.M. Intrathecal Morphine; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Grogan, S.; Preuss, C.V. Pharmacokinetics; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Wanat, K. Biological barriers, and the influence of protein binding on the passage of drugs across them. Mol. Biol. Rep. 2020, 47, 3221–3231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, M.; Jamal, Z.; Zito, P.M. Pharmacodynamics; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Wright, D.F.B.; Winter, H.R.; Duffull, S.B. Understanding the time course of pharmacological effect: A PKPD approach. Br. J. Clin. Pharmacol. 2011, 71, 815–823. [Google Scholar] [CrossRef] [Green Version]
- Loscher, W.; Schmidt, D. Experimental and clinical evidence for loss of effect (Tolerance) during prolonged treatment with antiepileptic drugs. Epilepsia 2006, 47, 1253–1284. [Google Scholar] [CrossRef]
- Cree, I.A.; Charlton, P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 2017, 17, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valderas, J.M.; Starfield, B.; Sibbald, B.; Salisbury, C.; Roland, M. Defining Comorbidity: Implications for Understanding Health and Health Services. Ann. Fam. Med. 2009, 7, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Caughey, G.E.; Roughead, L.; Shakib, S.; McDermott, R.A.; Vitry, A.; Gilbert, A.L. Comorbidity of chronic disease and potential treatment conflicts in older people dispensed antidepressants. Age Ageing 2010, 39, 488–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bénard-Laribière, A.; Noize, P.; Pambrun, E.; Bazin, F.; Verdoux, H.; Tournier, M.; Bégaud, B.; Pariente, A. Comorbidities and concurrent medications increasing the risk of adverse drug reactions: Prevalence in French benzodiazepine users. Eur. J. Clin. Pharmacol. 2016, 72, 869–876. [Google Scholar] [CrossRef]
CNS Disorders | Novel Drug Delivery Methods | Description | References |
---|---|---|---|
Epilepsy | Electrophoretic drug delivery | The microfluidic ion pump detects seizure activity and electrophoretically pumps ions across the ion exchange membrane to deliver the localized treatment of inhibitory neurotransmitters, tested in mice. | [19,20] |
Implanted intracerebroventricular delivery system | The system (clinicaltrials.gov identifier NCT02899611) pumps the anti- seizure medication valproic acid into cerebrospinal fluid for long-term treatment in epilepsy patients. | [21] | |
Microencapsulation of anti-seizure medications | Polymer cores loaded with the anti-seizure medication lacosamide are covered with drug-free polymer shells, tested in vitro using artificial cerebrospinal fluid. | [22] | |
Nanoparticles | Glucose-coated gold nanoparticles are conjugated with the anti-seizure medication lacosamide for intravenous administration in rats. | [23] | |
Chitosan–lecithin nanoparticles were loaded with phenytoin for intranasal administration in mice. | [24] | ||
Stroke | Macrophage migration inhibitory factor antagonist ISO-1 | Intravenous administration of ISO-1 (4,5-Dihydro-3-(4-hydroxyphenyl)-5-isoxazoleacetic acid methyl ester) following middle cerebral artery occlusion in vivo in rats. | [25] |
Liposomes | T7-conjugated PEGylated liposomes were loaded with neuroprotectant and nNOS/PSD-95 inhibitor ZL006 in vivo in rat and mouse models of stroke. | [26,27] | |
Focused ultrasound-enhancedintranasal delivery | Intranasal administration of dextran in vivo in mice was followed by focused ultrasound and systemic administration of microbubbles. | [28] | |
Brain Cancer | Bioresorbable electronic patch | Patch performs long-term drug release and mild-thermic actuation increases drug permeation in a mouse model of brain tumor. | [29] |
Nanoparticles | Cornell prime dots with αvintegrin-binding/nontargeting peptides and PET labels delivered anti-cancer drug dasatinibin in a mouse model of glioblastoma. | [30] | |
Traumatic Brain Injury (TBI) | Exosomes | Exosomes derived from mesenchymal stem cells (MSC) containing biologically active molecules that aid in reducing inflammation in TBI; intravenous delivery; can cross the blood-brain barrier, shown in animal models. | [31,32,33] |
Nanoparticles | Poly(lactic-co-glycolic acid) nanoparticles in vivo in mice to deliver siRNA for the treatment of TBI; polysorbate 80-coated nanoparticles for receptor-mediated transport via lipoprotein receptor. | [34,35] | |
Other CNS Disorders | Supramolecular del (Parkinson’s disease) | Hydrogel loaded with amino acid L-DOPA rapidly releases drug after intranasal delivery in mice. | [36] |
Nanoparticles (Parkinson’s disease) | Protocells were co-loaded with Parkinson’s disease drugs levodopa and curcumin and lipid bilayer was modified for brain targeting via intraperitoneal injection in a mouse model of Parkinson’s. | [37] | |
Oral and maxillofacial device (Parkinson’s disease) | Device implanted in the oral or maxillofacial region delivers drug to brain via the respiratory mucosa in an in vivo rabbit model. | [38] | |
Magnetic resonance-guided low-intensity focused ultrasound (Alzheimer’s disease) | Magnetic resonance-guided low-intensity focused ultrasound treatment of the hippocampus and entorhinal cortex reversibly opens a large area of blood-brain barrier in humans. | [39] |
Drug Name and Classification | Properties | Route of Administration | Potential Challenges | References |
---|---|---|---|---|
Anti-seizure medications | ||||
Carbamazepine | Prolonged Tmax (6–12 h), insoluble, plasma half-life 35 h | Oral, rectal | Rectal administration caused irritating and cathartic effects, CYP3A4induction | [149,150] |
Gabapentin | Soluble, plasma half-life 5–7 h | Oral | Potential drug interactions | [151,152,153] |
Lamotrigine | Plasma half-life 29 h | Oral, rectal | Substrate of P-glycoprotein | [154] |
Levetiracetam | High bioavailability, plasma half-life 6–8 h | Oral, intravascular, intramuscular, rectal | Substrate of P-glycoprotein | [154,155,156] |
Oxcarbazepine | Rapidly reduced to active metabolite 10,11-dihydro-10-hydroxy-carbamazepine, plasma half-life 1–3.7 h; plasma half-life of monohydroxy derivative ~9.3 h | Oral | ~40% bound to plasma protein, CYP3A4 induction | [150,157] |
Phenobarbital | Poor water solubility, plasma half-life 100 h | Oral, intravascular, rectal | Substrate of P-glycoprotein, CYP450 inducer | [154,158] |
Phenytoin | Poor water solubility, plasma half-life 22 h | Oral, intravascular | Highly bound to serum proteins, substrate of P-glycoprotein | [154,159] |
Valproate | Fatty acid derivative, plasma half-life 4–16 h | Oral, intravascular, rectal | Highly bound to serum proteins | [159] |
Zonisamide | Plasma half-life 50–69 h (plasma)/105 h (RBCs) | Oral | ~40% bound to plasma proteins | [160] |
Stroke medications | ||||
Atorvastatin (statin) | Highly soluble, plasma half-life 7 h | Oral | Extensive first-pass metabolism, low oral bioavailability (14%), substrate of P-glycoprotein | [161] |
Apixaban (anticoagulant) | Rapidly absorbed, plasma half-life 12 h | Oral | Substrate of P-glycoprotein and breastcancer resistance protein | [162,163] |
Aspirin (antiplatelet) | Polar, small, plasma half-life of 15–20 min, platelet-inhibitory effect until platelet death (~10 days) | Oral, rectal, intravenous | Highly bound to albumin (87% in vitro, ~93% in vivo) | [164,165] |
Clopidogrel (antiplatelet) | Inactive prodrug, 2-step bioactivation process (esterase hydrolysis with CYP2C19 and CYP3A4), plasma half-life 6 h | Oral | Substrate of P-glycoprotein, low BBB permeability (50%), only ~15% is activated by CYP enzymes | [166,167,168] |
Dabigatran (anticoagulant) | High polarity, low bioavailability (dabigatran not bioavailable but bioavailability of prodrug abigatranetexilate increases slightly to is 3–7%), plasma half-life 8 h | Oral | Prodrug is substrate of P-glycoprotein | [166,169] |
Hydrochlorothiazide (antihypertensive) | Very poor water solubility, not metabolized, plasma half-life 6–12 h | Oral | Low absorption rate | [170,171] |
Rivaroxaban (anticoagulant) | CYP3A4/3A5 and CYP2J2 metabolism, high bioavailability (~80–100% with 10 mg dose), plasma half-life 5–9 h, | Oral | Substrate of P-glycoprotein and breast cancer resistance protein, high plasma protein binding ~92–95% | [166,169,172] |
Tissue plasminogen activator | Crosses BBB via LDL receptor-related protein-mediated transcytosis, inhibits P-glycoprotein, plasma half-life 4–5 min | Intravenous | Short window of administration (maximum 3–4.5 h), risk of brain hemorrhage | [173,174,175] |
Warfarin (anticoagulant) | Rapid absorption, CYP2C9 metabolism, plasma half-life 20–60 h | Oral, intravenous | Substrate of P-glycoprotein | [166,176,177] |
Cancer drugs | ||||
Carmustine | Lipophilic, rapidly crosses BBB, plasma half-life 15–30 min | Intravenous | Rapidly Metabolized | [178] |
Doxorubicin | Large size (greater than 0.4 kDa), plasma half-life 48 h | Intravenous | Too large for diffusion through phospholipid bilayer or intraendothelial cell junction pores, does not cross blood-brain barrier | [179,180] |
Everolimus | Large size (MW ≈ 1000), CYP3A4, CYP3A5 and CYP2C8 metabolism, plasma half-life 28 h | Oral | Substrate of P-glycoprotein, variable oral bioavailability | [181,182] |
Lomustine | Lipophilic, rapidly crosses BBB, initial plasma half-life 6 h, second phase plasma half-life 1–2 days | Oral | Rapidly metabolized | [178,183] |
Temozolomide | Small size, lipophilic, prodrug, plasma half-life 1.8 h | Intravenous | Resistance to temozolomide among 50% of patients with glioblastoma multiforme | [184,185] |
TBI treatments | ||||
Phenytoin | Free (unbound) drug can cross BBB, plasma half-life 22 h | Oral, Intravenous | 90% bound to serum albumin, 95% metabolized by liver, can cause dizziness in patients, careful dosing regimen must be followed due to metabolic enzyme saturation | [186,187,188] |
Levetiracetam | Serum half-life 6–8 h | Oral, Intravenous | Substrate of P-glycoprotein | [186] |
Hypertonic saline | Contains a higher concentration of NaCl than the plasma and interstitial fluid | Intravenous | Caution must be taken with patients who have congestive heart failure or renal insufficiency | [189,190,191] |
Mannitol | Contains a higher concentration of mannitol than the plasma and interstitial fluid | Intravenous | Unwanted blood-brain barrier damage can occur with high levels of hyperosmolar mannitol, eliminated quickly through renal excretion | [190,192,193] |
Docosahexaenoic Acid (DHA) | Omega-3 polyunsaturated fatty acid, passive diffusion across BBB, plasma half-life 48 h for repeated administration | Oral | Partially metabolized by CYP enzymes | Phase 2 clinical trial (NCT03345550) completed in July 2021 [194,195] |
Propranolol (beta-blocker) | Lipophilic, plasma half-life 3–6 h | Oral, intravenous | Mostly eliminated through renal excretion | [196,197,198] |
Mesenchymal stem cells (only validated in animal models thus far) | Too large to cross BBB, release exosomes that can cross BBB | Intra-arterial, intravenous, intracerebral | Are not able to cross the BBB but act on brain inflammation from the periphery | [32,199] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achar, A.; Myers, R.; Ghosh, C. Drug Delivery Challenges in Brain Disorders across the Blood–Brain Barrier: Novel Methods and Future Considerations for Improved Therapy. Biomedicines 2021, 9, 1834. https://doi.org/10.3390/biomedicines9121834
Achar A, Myers R, Ghosh C. Drug Delivery Challenges in Brain Disorders across the Blood–Brain Barrier: Novel Methods and Future Considerations for Improved Therapy. Biomedicines. 2021; 9(12):1834. https://doi.org/10.3390/biomedicines9121834
Chicago/Turabian StyleAchar, Aneesha, Rosemary Myers, and Chaitali Ghosh. 2021. "Drug Delivery Challenges in Brain Disorders across the Blood–Brain Barrier: Novel Methods and Future Considerations for Improved Therapy" Biomedicines 9, no. 12: 1834. https://doi.org/10.3390/biomedicines9121834
APA StyleAchar, A., Myers, R., & Ghosh, C. (2021). Drug Delivery Challenges in Brain Disorders across the Blood–Brain Barrier: Novel Methods and Future Considerations for Improved Therapy. Biomedicines, 9(12), 1834. https://doi.org/10.3390/biomedicines9121834