Therapy of Pseudoxanthoma Elasticum: Current Knowledge and Future Perspectives
Abstract
:1. Introduction
2. Literature Research
3. Therapeutic Approaches
3.1. Therapy for Skin Lesions
3.1.1. Cosmetic Surgery
3.1.2. Injectable Collagen
3.1.3. Fractional CO2 Laser
3.1.4. Conclusions
3.2. Therapy for Choroidal Neovascularization
3.2.1. Laser Photocoagulation
3.2.2. Transpupillary Thermotherapy
3.2.3. Photodynamic Therapy
3.2.4. Surgery
3.2.5. Anti-VEGF Treatment
3.2.6. Conclusions
3.3. Therapy for Arterial Calcification
3.3.1. General Recommendations and Walking Exercise
3.3.2. Medical Treatment of Peripheral and Coronary Artery Disease
3.3.3. Antiplatelet (AP) and Anticoagulant (AC) Drugs in PXE
3.3.4. Interventional and Surgical Therapy for PAD in PXE
3.3.5. Interventional and Surgical Therapy for CAD in PXE
3.3.6. Conclusions
3.4. Supplementary and Dietary Approaches
3.4.1. Calcium and Phosphate
3.4.2. Magnesium
3.4.3. Tocopherol Acetate and Ascorbic Acid
3.4.4. Vitamin K
3.4.5. Conclusions
3.5. Pyrophosphate, Bisphosphonates, and the Direct Inhibition of Hydroxyapatite Formation
3.5.1. Pyrophosphate and the Inhibition of Tissue Non-Specific Alkaline Phosphatase (TNAP)
3.5.2. Bisphosphonates
3.5.3. Phytate
3.5.4. Sodium Thiosulfate
3.5.5. Conclusions
3.6. Gene Therapy and ABCC6 Targeted Therapy
3.6.1. Directed Gene Transfer
3.6.2. Sodium 4-Phenylbutyrate
Treatment/Administered Drug | Rationale | References |
---|---|---|
Supplemental and dietary approaches | ||
Reduced calcium intake and administration of phosphate binders | Regulation of calcium and phosphate as the main substrates of hydroxyapatite formation | [149,151,152,153] |
Magnesium | Inhibition of hydroxyapatite formation and reduction of osteogenic expression in vascular smooth muscle cells | [151,157,158,159,160,161,162] |
Tocopherol acetate and ascorbic acid | Reduction of oxidative stress | [164,165,166,167] |
Vitamin K | Mutations in genes encoding vitamin-K-dependent enzymes result in a PXE-like phenotype; reduced levels of vitamin K promote arterial calcification | [140,148,171,172,173,174,175,176,177,178] |
Pyrophosphate, bisphosphonates, and direct inhibition of hydroxyapatite formation | ||
PPi supplementation | Restoration of serum PPi levels | [186,187,188,189] |
TNAP inhibition | Suppression of PPi hydrolyzation | [192,193,194,195] |
Pyrophosphate administration | Administration of stable PPi analogues; suppression of plaque calcification | [201,202,204,205,206,207,208,209] |
INS-3001 | Inhibition of hydroxyapatite formation | [216] |
Sodium thiosulfate | Calcium chelating and reduction of calcification | [144,219,220,221] |
Gene therapy and ABCC6 target therapy | ||
Directed gene transfer | Adenovirus-mediated delivery of wild-type ABCC6 to the liver | [222] |
Sodium 4-phenylbutyrate | Re-localization of misfolded ABCC6 proteins to the plasma membrane | [227,228] |
PTC-124 | Readthrough of premature stop codons | [231] |
3.6.3. PTC-124
3.6.4. Conclusions
4. Final Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartstra, J.W.; Risseeuw, S.; de Jong, P.A.; van Os, B.; Kalsbeek, L.; Mol, C.; Baas, A.F.; Verschuere, S.; Vanakker, O.; Florijn, R.J.; et al. Genotype-phenotype correlation in pseudoxanthoma elasticum. Atherosclerosis 2021, 324, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Kranenburg, G.; Baas, A.F.; Jong PA de Asselbergs, F.W.; Visseren, F.L.J.; Spiering, W. The prevalence of pseudoxanthoma elasticum: Revised estimations based on genotyping in a high vascular risk cohort. Eur. J. Med Genet. 2019, 62, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, S.; Swart, J.; Tijmes, N.; Sandkuijl, L.A.; Rommers, J.; Bergen, A.A. A locus for autosomal recessive pseudoxanthoma elasticum, with penetrance of vascular symptoms in carriers, maps to chromosome 16p13.1. Genome Res. 1997, 7, 830–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Saux, O.; Urbana, Z.; Göring, H.H.; Csiszara, K.; Popec, F.M.; Richardsd, A.; Ronchettie, I.P.; Terryf, S.; Bercovitchg, L.; Lebwohl, M.G.; et al. Pseudoxanthoma Elasticum Maps to an 820-kb Region of the p13.1 Region of Chromosome 16. Genomic 1999, 62, 10585762. [Google Scholar] [CrossRef] [PubMed]
- Neldner, K.H. Pseudoxanthoma elasticum. Int. J. Dermatol. 1988, 27, 98–100. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, Q.; Pfendner, E.; Váradi, A.; Uitto, J. Pseudoxanthoma elasticum: Clinical phenotypes, molecular genetics and putative pathomechanisms. Exp. Dermatol. 2008, 18, 1–11. [Google Scholar] [CrossRef]
- Gliem, M.; Zaeytijd J de Finger, R.P.; Holz, F.G.; Leroy, B.P.; Charbel Issa, P. An update on the ocular phenotype in patients with pseudoxanthoma elasticum. Front. Genet. 2013, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Hess, K.; Gliem, M.; Birtel, J.; Müller, P.; Hendig, D.; Andrews, C.; Murray, I.J.; Holz, F.G.; Issa, P.C. Impaired dark adaptation associated with a diseased bruch membrane in Pseudoxanthoma Elasticum. Retin 2020, 40, 1988–1995. [Google Scholar] [CrossRef]
- Leftheriotis, G.; Kauffenstein, G.; Hamel, J.F.; Abraham, P.; Le Saux, O.; Willoteaux, S.; Henrion, D.; Martin, L. The Contribution of Arterial Calcification to Peripheral Arterial Disease in Pseudoxanthoma Elasticum. PLoS ONE 2014, 9, e96003. [Google Scholar] [CrossRef] [Green Version]
- Pingel, S.; Pausewang, K.S.; Passon, S.G.; Blatzheim, A.K.; Gliem, M.; Issa, P.C.; Hendig, D.; Horlbeck, F.; Tuleta, I.; Nickenig, G.; et al. Increased vascular occlusion in patients with pseudoxanthoma elasticum. Vasa 2017, 46, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Kranenburg, G.; Jong, P.A.; de Mali, W.P.; Attrach, M.; Visseren, F.L.J.; Spiering, W. Prevalence and severity of arterial calcifications in pseudoxanthoma elasticum (PXE) compared to hospital controls. Novel insights into the vascular phenotype of PXE. Atherosclerosis 2017, 256, 7–14. [Google Scholar] [CrossRef]
- Brampton, C.; Pomozi, V.; Chen, L.-H.; Apana, A.; McCurdy, S.; Zoll, J.; Boisvert, W.A.; Lambert, G.; Henrion, D.; Blanchard, S.; et al. ABCC6 deficiency promotes dyslipidemia and atherosclerosis. Sci. Rep. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Stumpf, M.J.; Mahn, T.; Steinmetz, M.; Fimmers, R.; Pizarro, C.; Nickenig, G.; Skowasch, D.; Schahab, N.; Schaefer, C.A. Pseudoxanthoma elasticum–also a microvascular disease. Vasa 2020, 49, 57–62. [Google Scholar] [CrossRef]
- Pingel, S.; Passon, S.G.; Pausewang, K.S.; Blatzheim, A.K.; Pizarro, C.; Tuleta, I.; Gliem, M.; Issa, P.C.; Schahab, N.; Nickenig, G.; et al. Pseudoxanthoma Elasticum – Also a Lung Disease? The Respiratory Affection of Patients with Pseudoxanthoma Elasticum. PLoS ONE 2016, 11, e0162337. [Google Scholar] [CrossRef]
- Finger, R.P.; Fenwick, E.; Marella, M.; Issa, P.C.; Scholl, H.P.; Holz, F.G.; Lamoureux, E.L. The relative impact of vision impairment and cardiovascular disease on quality of life: The example of pseudoxanthoma elasticum. Heal. Qual. Life Outcomes 2011, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Germain, D.P. Pseudoxanthoma elasticum. Orphanet J. Rare Dis. 2017, 12, 85. [Google Scholar] [CrossRef]
- Shimada, B.K.; Pomozi, V.; Zoll, J.; Kuo, S.; Martin, L.; Le Saux, O. ABCC6, Pyrophosphate and Ectopic Calcification: Therapeutic Solutions. Int. J. Mol. Sci. 2021, 22, 4555. [Google Scholar] [CrossRef] [PubMed]
- Naouri, M.; Boisseau, C.; Bonicel, P.; Daudon, P.; Bonneau, D.; Chassaing, N.; Martin, L. Manifestations of pseudoxanthoma elasticum in childhood. Br. J. Dermatol. 2009, 161, 635–639. [Google Scholar] [CrossRef]
- Marconi, B.; Bobyr, I.; Campanati, A.; Molinelli, E.; Consales, V.; Brisigotti, V.; Scarpelli, M.; Racchini, S.; Offidani, A. Pseudoxanthoma elasticum and skin: Clinical manifestations, histopathology, pathomechanism, perspectives of treatment. Intractable Rare Dis. Res. 2015, 4, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Laube, S.; Moss, C. Pseudoxanthoma elasticum. Arch. Dis. Childhood 2005, 90, 754–756. [Google Scholar] [CrossRef] [Green Version]
- Maronese, C.A.; Spigariolo, C.B.; Boggio, F.L.; Moltrasio, C.; Brena, M.; Zelin, E.; Genovese, G.; Marzano, A.V.; Nazzaro, G. Clinical, genetic, and ultrasonographic features of Periumbilical Perforating Pseudoxanthoma Elasticum. Ski. Res. Technol. 2021, 27, 646–647. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, D.L.; Bloch, C.; Beighton, P. Plastic Surgery in Pseudoxanthoma Elasticum. Plast. Reconstr. Surg. 1990, 85, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.; O’Sullivan, S.; Sharpe, D. Plastic surgery and pseudoxanthoma elasticum. Br. J. Plast. Surg. 1999, 52, 594–596. [Google Scholar] [CrossRef]
- Akali, A.; Sharpe, D. Cervical midline Z-plasty revision surgery for pseudoxanthoma elasticum. Br. J. Plast. Surg. 2003, 56, 289–291. [Google Scholar] [CrossRef]
- Marwah, M.; Nadkarni, N.; Patil, S.; Gautam, M.; Godse, K. Surgical correction of pseudoxanthoma elasticum. J. Cutan. Aesthetic Surg. 2012, 5, 212–213. [Google Scholar] [CrossRef]
- Tien-Hsing, C.; Fu-Chan, W.; Chen, F.-C.W.T.-H. Pseudoxanthoma Elasticum: Case report. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1998, 32, 421–424. [Google Scholar] [CrossRef]
- Galadari, H.; Lebwohl, M. Pseudoxanthoma elasticum: Temporary treatment of chin folds and lines with injectable collagen. J. Am. Acad. Dermatol. 2003, 49, 265–266. [Google Scholar] [CrossRef]
- Salles, A.G.; Remigio, A.F.D.N.; Moraes, L.B.; Varoni, A.C.C.; Gemperli, R.; Ferreira, M.C. Pseudoxanthoma Elasticum Treatment with Fractional CO2 Laser. Plast. Reconstr. Surg.-Glob. Open 2014, 2, e219. [Google Scholar] [CrossRef]
- Darier, J. Pseudoxanthoma elasticum. Mon. F. Prakt. Dermatol. 1896, 23, 609–616. [Google Scholar]
- Edwards, M.; Lutty, G.A. Bruch’s Membrane and the Choroid in Age-Related Macular Degeneration. Adv. Exp. Med. Biol. 2021, 1256, 89–119. [Google Scholar] [CrossRef]
- Nakagawa, S.; Yamashiro, K.; Tsujikawa, A.; Otani, A.; Tamura, H.; Ooto, S.; Yoshimura, N. The time course changes of choroidal neovascularization in angioid streaks. Retina 2013, 33, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F. Peau D’orange and Angioid Streaks. Retina 2015, 35, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Photocoagu, T. Laser Photocoagulation for Juxtafoveal Choroidal Neovascularization. Arch Ophthalmol. 1994, 112, 500. [Google Scholar] [CrossRef]
- Ammar, M.J.; Hsu, J.; Chiang, A.; Ho, A.C.; Regillo, C.D. Age-related macular degeneration therapy: A review. Curr. Opin. Ophthalmol. 2020, 31, 215–221. [Google Scholar] [CrossRef]
- Findlay, Q.; Jobling, A.; Vessey, K.A.; Greferath, U.; Phipps, J.A.; Guymer, R.H.; Fletcher, E. Prophylactic laser in age-related macular degeneration: The past, the present and the future. Eye 2018, 32, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Singerman, L.J.; Hatem, G. Laser Treatment of Choroidal Neovascular Membranes in Angioid Streaks. Retina 1981, 1, 75–83. [Google Scholar] [CrossRef]
- Brancato, R.; Menchini, U.; Pece, A.; Davì, G.; Capoferri, C. Laser Treatment of Macular Subretinal Neovascularizations in Angioid Streaks. Ophthalmol. 1987, 195, 84–87. [Google Scholar] [CrossRef]
- Lim, J.I.; Bressler, N.M.; Marsh, M.J.; Bressler, S.B. Laser Treatment of Choroidal Neovascularization in Patients With Angioid Streaks. Am. J. Ophthalmol. 1993, 116, 414–423. [Google Scholar] [CrossRef]
- Peck, A.; Avanza, P.; Galli, L.; Brancato, R. Laser photocoagulation of choroidal neovascularization in angioid streaks. Retina 1997, 17, 12–16. [Google Scholar] [CrossRef]
- Fuisting, B.; Richard, G. Transpupillary thermotherapy (TTT)—Review of the clinical indication spectrum. Med. Laser Appl. 2010, 25, 214–222. [Google Scholar] [CrossRef]
- Aras, C.; Başerer, T.; Yolar, M.; Yetik, H.; Artunay, O.; Guzel, H.; Ozkan, S. Two cases of choroidal neovascularization treated with transpupillary thermotherapy in angioid streaks. Retina 2004, 24, 801–803. [Google Scholar] [CrossRef] [PubMed]
- Ozdek, S.; Bozan, E.; Gürelik, G.; Hasanreisoglu, B. Transpupillary thermotherapy for the treatment of choroidal neovascularization secondary to angioid streaks. Can. J. Ophthalmol. 2007, 42, 95–100. [Google Scholar] [CrossRef]
- Chan, W.M.; Lim, T.-H.; Pece, A.; Silva, R.; Yoshimura, N. Verteporfin PDT for non-standard indications—A review of current literature. Graefe’s Arch. Clin. Exp. Ophthalmol. 2010, 248, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Karacorlu, M.; Karacorlu, S.; Ozdemir, H.; Mat, C. Photodynamic therapy with verteporfin for choroidal neovascularization in patients with angioid streaks. Am. J. Ophthalmol. 2002, 134, 360–366. [Google Scholar] [CrossRef]
- Shaikh, S.; Ruby, A.J.; Williams, G.A. Photodynamic therapy using verteporfin for choroidal neovascularization in angioid streaks. Am. J. Ophthalmol. 2003, 135, 1–6. [Google Scholar] [CrossRef]
- Menchini, U.; Virgili, G.; Introini, U.; Bandello, F.; Ambesi-Impiombato, M.; Pece, A.; Parodi, M.B.; Giacomelli, G.; Capobianco, B.; Varano, M.; et al. Outcome of choroidal neovascularization in angioid streaks after photodynamic therapy. Retina 2004, 24, 763–771. [Google Scholar] [CrossRef]
- Browning, A.C.; Chung, A.; Ghanchi, F.; Harding, S.; Musadiq, M.; Talks, S.; Yang, Y.; Amoaku, W. Verteporfin Photodynamic Therapy of Choroidal Neovascularization in Angioid Streaks: One-Year Results of a Prospective Case Series. Ophthalmology 2005, 112, 1227–1231.e1. [Google Scholar] [CrossRef] [PubMed]
- Browning, A.C.; Amoaku, W.M.; Chung, A.K.; Ghanchi, F.; Harding, S.; Musadiq, M.; Yang, Y.C.; Talks, S. Photodynamic Therapy for Angioid Streaks. Ophthalmology 2007, 114, 1592.e2. [Google Scholar] [CrossRef]
- Heimann, H.; Gelisken, F.; Wachtlin, J.; Wehner, A.; Völker, M.; Foerster, M.H.; Bartz-Schmidt, K.U. Photodynamic therapy with verteporfin for choroidal neovascularisation associated with angioid streaks. Graefe’s Arch. Clin. Exp. Ophthalmol. 2005, 243, 1115–1123. [Google Scholar] [CrossRef]
- Ladas, I.; Georgalas, I.; Rouvas, A.; Gotsis, S.; Karagiannis, D.; Moschos, M. Photodynamic Therapy with Verteporfin of Choroidal Neovascularization in Angioid Streaks: Conventional versus Early Retreatment. Eur. J. Ophthalmol. 2005, 15, 69–73. [Google Scholar] [CrossRef]
- Arias, L.; Pujol, O.; Rubio, M.; Caminal, J. Long-term results of photodynamic therapy for the treatment of choroidal neovascularization secondary to angioid streaks. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 244, 753–757. [Google Scholar] [CrossRef]
- Jurklies, B.; Bornfeld, N.; Schilling, H. Photodynamic Therapy Using Verteporfin for Choroidal Neovascularization Associated with Angioid Streaks – Long-Term Effects. Ophthalm. Res. 2006, 38, 209–217. [Google Scholar] [CrossRef]
- Chung, A.K.K.; Gauba, V.; Ghanchi, F.D. Photodynamic therapy (PDT) using verteporfin for juxtafoveal choroidal neovascularisation (CNV) in angioid streaks (AS) associated with pseudoxanthoma elasticum: 40 months results. Eye 2005, 20, 629–631. [Google Scholar] [CrossRef] [Green Version]
- Schargus, M.; Guthoff, R.; Keilhauer, C.; Schrader, W.F. Photodynamische Therapie mit Verteporfin bei klassischer chorioidaler Neovaskularisation bei Patienten mit Angioid Streaks. Klin. Mon. Für Augenheilkd. 2006, 223, 987–992. [Google Scholar] [CrossRef]
- Lee, J.M.; Nam, W.H.; Kim, H.K. Photodynamic Therapy With Verteporfin for Choroidal Neovascularization in Patients with Angioid Streaks. Korean J. Ophthalmol. 2007, 21, 142–145. [Google Scholar] [CrossRef] [Green Version]
- Macular Translocation. American Academy of Ophthalmology. Ophthalmology 2000, 107, 1015–1018. Available online: https://pubmed.ncbi.nlm.nih.gov/10811099/ (accessed on 1 November 2021). [CrossRef]
- Ehlers, J.P.; Maldonado, R.; Sarin, N.; Toth, C.A. Treatment of non-age-related macular degeneration submacular diseases with macular translocation surgery. Retina 2011, 31, 1337–1346. [Google Scholar] [CrossRef]
- Fujii, G.Y.; Humayun, M.S.; Pieramici, D.J.; Schachat, A.P.; Au Eong, K.-G.; Juan, D.E. Initial experience of inferior limited macular translocation for subfoveal choroidal neovascularization resulting from causes other than age-related macular degeneration. Am. J. Ophthalmol. 2001, 131, 90–100. [Google Scholar] [CrossRef]
- Roth, D.B.; Estafanous, M.; Lewis, H. Macular translocation for subfoveal choroidal neovascularization in angioid streaks. Am. J. Ophthalmol. 2001, 131, 390–392. [Google Scholar] [CrossRef]
- Thomas, M.A.; Dickinson, J.D.; Melberg, N.S.; Ibanez, H.; Dhaliwal, R.S. Visual Results after Surgical Removal of Subfoveal Choroidal Neovascular Membranes. Ophthalmology 1994, 101, 1384–1396. [Google Scholar] [CrossRef]
- Adelberg, D.A.; Del Priore, L.V.; Kaplan, H.J. Surgery for subfoveal membranes in myopia, angioid streaks, and other disorders. Retina 1995, 15, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, M.; Wells, J.A.; Aylward, B.; Gregor, Z. Surgical removal of non-age-related subfoveal choroidal neovascular membranes. Eye 1998, 12, 775–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mennel, S.; Schmidt, J.C.; Meyer, C.H. Therapeutic strategies in choroidal neovascularizations secondary to angioid streaks. Am. J. Ophthalmol. 2003, 136, 580–582. [Google Scholar] [CrossRef]
- Parolini, B.; Alkabes, M.; Baldi, A.; Pinackatt, S. Visual recovery after autologous retinal pigment epithelium and choroidal patch in a patient with choroidal neovascularization secondary to angioid streaks: Long-term results. Retin. Cases Brief Rep. 2016, 10, 368–372. [Google Scholar] [CrossRef]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef] [Green Version]
- Tufail, A.; Patel, P.J.; Egan, C.; Hykin, P.; Da Cruz, L.; Gregor, Z.; Dowler, J.; A Majid, M.; Bailey, C.; Mohamed, Q.; et al. Bevacizumab for neovascular age related macular degeneration (ABC Trial): Multicentre randomised double masked study. BMJ 2010, 340, c2459. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.F.; Maguire, M.G.; Fine, S.L.; Ying, G.-S.; Jaffe, G.J.; Grunwald, J.E.; Toth, C.; Redford, M.; Ferris, F. Ranibizumab and Bevacizumab for Treatment of Neovascular Age-related Macular Degeneration: Two-Year Results. Ophthalmology 2020, 127, S135–S145. [Google Scholar] [CrossRef]
- Teixeira, A.; Moraes, N.; Farah, M.E.; Bonomo, P.P. Choroidal neovascularization treated with intravitreal injection of bevacizumab (Avastin) in angioid streaks. Acta Ophthalmol. Scand. 2006, 84, 835–836. [Google Scholar] [CrossRef]
- Lommatzsch, A.; Spital, G.; Trieschmann, M.; Pauleikhoff, D. Intraokulare Injektion von Bevacizumab – Eine mögliche Therapie der sekundären CNV bei “angioid streaks”. Der Ophthalmol. 2007, 104, 325–328. [Google Scholar] [CrossRef]
- Bhatnagar, P.; Freund, K.B.; Spaide, R.F.; Klancnik, J.M.; Cooney, M.J.; Ho, I.; Fine, H.F.; Yannuzzi, L.A. Intravitreal bevacizumab for the management of choroidal neovascularization in pseudoxanthoma elasticum. Retina 2007, 27, 897–902. [Google Scholar] [CrossRef]
- Rinaldi, M.; Dell’Omo, R.; Romano, M.R.; Chiosi, F.; Cipollone, U.; Costagliola, C. Intravitreal Bevacizumab for Choroidal Neovascularization Secondary to Angioid Streaks. Arch. Ophthalmol. 2007, 125, 1422–1423. [Google Scholar] [CrossRef] [Green Version]
- Finger, R.P.; Issa, P.C.; Ladewig, M.; Holz, F.G.; Scholl, H.P.N. Intravitreal bevacizumab for choroidal neovascularisation associated with pseudoxanthoma elasticum. Br. J. Ophthalmol. 2008, 92, 483–487. [Google Scholar] [CrossRef]
- Lomoriello, D.S.; Parravano, M.C.; Chiaravalloti, A.; Varano, M. Choroidal Neovascularization in Angioid Streaks and Pseudoxanthoma Elasticum: 1 Year Follow-Up. Eur. J. Ophthalmol. 2009, 19, 151–153. [Google Scholar] [CrossRef]
- Wiegand, T.W.; Rogers, A.H.; McCabe, F.; Reichel, E.; Duker, J.S. Intravitreal bevacizumab (Avastin) treatment of choroidal neovascularisation in patients with angioid streaks. Br. J. Ophthalmol. 2008, 93, 47–51. [Google Scholar] [CrossRef]
- Neri, P.; Salvolini, S.; Mariotti, C.; Mercanti, L.; Celani, S.; Giovannini, A. Long-term control of choroidal neovascularisation secondary to angioid streaks treated with intravitreal bevacizumab (Avastin). Br. J. Ophthalmol. 2008, 93, 155–158. [Google Scholar] [CrossRef]
- Sawa, M.; Gomi, F.; Tsujikawa, M.; Sakaguchi, H.; Tano, Y. Long-term Results of Intravitreal Bevacizumab Injection for Choroidal Neovascularization Secondary to Angioid Streaks. Am. J. Ophthalmol. 2009, 148, 584–590. [Google Scholar] [CrossRef]
- Myung, J.S.; Bhatnagar, P.; Spaide, R.F.; Klancnik, J.M.; Cooney, M.J.; Yannuzzi, L.A.; Freund, K.B. Long-term outcomes of intravitreal antivascular endothelial growth factor therapy for the management of choroidal neovascularization in pseudoxanthoma elasticum. Retina 2010, 30, 748–755. [Google Scholar] [CrossRef]
- Ladas, I.D.; I Kotsolis, A.; Ladas, D.S.; Niskopoulou, M.; Georgalas, I.; Papakonstantinou, D.; A Rouvas, A. INTRAVITREAL RANIBIZUMAB TREATMENT OF MACULAR CHOROIDAL NEOVASCULARIZATION SECONDARY TO ANGIOID STREAKS. Retina 2010, 30, 1185–1189. [Google Scholar] [CrossRef]
- Finger, R.P.; Issa, P.C.; Hendig, D.; Scholl, H.P.; Holz, F.G. Monthly Ranibizumab for Choroidal Neovascularizations Secondary to Angioid Streaks in Pseudoxanthoma Elasticum: A One-Year Prospective Study. Am. J. Ophthalmol. 2011, 152, 695–703. [Google Scholar] [CrossRef]
- Finger, R.P.; Issa, P.C.; Schmitz-Valckenberg, S.; Holz, F.G.; Scholl, H.N. Long-term effectiveness of intravitreal bevacizumab for choroidal neovascularization secondary to angioid streaks in pseudoxanthoma elasticum. Retina 2011, 31, 1268–1278. [Google Scholar] [CrossRef]
- Zebardast, N.; Adelman, R.A. Intravitreal Ranibizumab for Treatment of Choroidal Neovascularization Secondary to Angioid Streaks in Pseudoxanthoma Elasticum: Five-year Follow-up. Semin. Ophthalmol. 2012, 27, 61–64. [Google Scholar] [CrossRef]
- Alagöz, C.; Alagöz, N.; Özkaya, A.; Çelik, U.; Turan, M.F.; Yazici, A.T.; Çekiç, O.; Demirok, A. Intravitreal bevacizumab in the treatment of choroidal neovascular membrane due to angioid streaks. Retina 2015, 35, 2001–2010. [Google Scholar] [CrossRef]
- Rosina, C.; Romano, M.; Cigada, M.; de Polo, L.; Staurenghi, G.; Bottoni, F. Intravitreal Bevacizumab for Choroidal Neovascularization Secondary to Angioid Streaks: A Long-Term Follow-Up Study. Eur. J. Ophthalmol. 2015, 25, 47–50. [Google Scholar] [CrossRef]
- Ladas, D.S.; Koutsandrea, C.; Kotsolis, A.I.; Georgalas, I.; Moschos, M.M.; Ladas, I.D. Intravitreal ranibizumab for choroidal neovascularization secondary to angiod streaks. Comparison of the 12 and 24-month results of treatment in treatment-naïve eyes. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 2779–2785. Available online: https://pubmed.ncbi.nlm.nih.gov/27424975/ (accessed on 1 November 2021).
- Mimoun, G.; Ebran, J.-M.; Grenet, T.; Donati, A.; Cohen, S.-Y.; Ponthieux, A. Ranibizumab for choroidal neovascularization secondary to pseudoxanthoma elasticum: 4-year results from the PIXEL study in France. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 1651–1660. [Google Scholar] [CrossRef] [Green Version]
- Lekha, T.; Prasad, H.N.; Sarwate, R.N.; Patel, M.; Karthikeyan, S. Intravitreal bevacizumab for choroidal neovascularization associated with angioid streaks: Long-term results. Middle East Afr. J. Ophthalmol. 2017, 24, 136–142. [Google Scholar] [CrossRef]
- Gliem, M.; Birtel, J.; Herrmann, P.; Fimmers, R.; Berger, M.; Coch, C.; Wingen, A.; Holz, F.G.; Issa, P.C. Aflibercept for choroidal neovascularizations secondary to pseudoxanthoma elasticum: A prospective study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 258, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Sekfali, R.; Mimoun, G.; Cohen, S.Y.; Querques, G.; Bandello, F.; Sacconi, R.; Souied, E.H.; Capuano, V. Switching from ranibizumab to aflibercept in choroidal neovascularization secondary to angioid streaks. Eur. J. Ophthalmol. 2019, 30, 550–556. [Google Scholar] [CrossRef]
- Chatziralli, I.; Saitakis, G.; Dimitriou, E.; Chatzirallis, A.; Stoungioti, S.; Theodossiadis, G.; Theodossiadis, P. Angioid streaks. Retina 2019, 39, 1–11. [Google Scholar] [CrossRef]
- Gliem, M.; Finger, R.P.; Fimmers, R.; Brinkmann, C.K.; Holz, F.G.; Charbel Issa, P. Treatment of choroidal neovascularization due to angioid streaks: A comprehensive review. Retina 2013, 33, 1300–1314. [Google Scholar] [CrossRef]
- Spaide, R. Ranibizumab according to need: A treatment for age-related macular degeneration. Am. J. Ophthalmol. 2007, 143, 679–680. [Google Scholar] [CrossRef] [PubMed]
- Falavarjani, K.G.; Nguyen, Q.D. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature. Eye 2013, 27, 787–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csaky, K.; Do, D.V. Safety implications of vascular endothelial growth factor blockade for subjects receiving intravitreal anti-vascular endothelial growth factor therapies. Am. J. Ophthalmol. 2009, 148, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Eshtiaghi, A.; Issa, M.; Popovic, M.M.; Muni, R.H.; Kertes, P.J. Geographic Atrophy Incidence and Progression Following Intravitreal Injections of Anti-Vascular Endothelial Growth Factor Agents for Age-Related Macular Degeneration: A Meta-Analysis. Retina 2021. [Google Scholar] [CrossRef]
- Artunay, O.; Yuzbasioglu, E.; Rasier, R.; Sengul, A.; Senel, A.; Bahcecioglu, H. Combination treatment with intravitreal injection of ranibizumab and reduced fluence photodynamic therapy for choroidal neovascularization secondary to angioid streaks: Preliminary clinical results of 12-month follow-up. Retina 2011, 31, 1279–1286. [Google Scholar] [CrossRef]
- Mendelsohn, G.; Bulkley, B.H.; Hutchins, G.M. Cardiovascular manifestations of Pseudoxanthoma elasticum. Arch. Pathol. Lab. Medicine 1978, 102, 298–302. Available online: https://pubmed.ncbi.nlm.nih.gov/580722/ (accessed on 1 November 2021).
- Miki, K.; Yuri, T.; Takeda, N.; Takehana, K.; Iwasaka, T.; Tsubura, A. An autopsy case of pseudoxanthoma elasticum: Histochemical characteristics. Med. Mol. Morphology. 2007, 40, 172–177. [Google Scholar] [CrossRef]
- Passon, S.G.; Küllmar, V.; Blatzheim, A.K.; Pausewang, K.S.; Stumpf, M.J.; Hendig, D.; Gliem, M.; Pingel, S.; Schueler, R.; Skowasch, D.; et al. Carotid strain measurement in patients with pseudoxanthoma elasticum—Hint for a different pathomechanism? Intractable Rare Dis. Res. 2018, 7, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef]
- Omarjee, L.; Mention, P.-J.; Janin, A.; Kauffenstein, G.; Le Pabic, E.; Meilhac, O.; Blanchard, S.; Navasiolava, N.; Leftheriotis, G.; Couturier, O.; et al. Assessment of Inflammation and Calcification in Pseudoxanthoma Elasticum Arteries and Skin with 18F-FluroDeoxyGlucose and 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography Imaging: The GOCAPXE Trial. J. Clin. Med. 2020, 9, 3448. [Google Scholar] [CrossRef]
- Ibold, B.; Tiemann, J.; Faust, I.; Ceglarek, U.; Dittrich, J.; Gorgels, T.G.M.F.; Bergen, A.A.B.; Vanakker, O.; Van Gils, M.; Knabbe, C.; et al. Genetic deletion of Abcc6 disturbs cholesterol homeostasis in mice. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Tiemann, J.; Lindenkamp, C.; Plümers, R.; Faust, I.; Knabbe, C.; Hendig, D. Statins as a Therapeutic Approach for the Treatment of Pseudoxanthoma Elasticum Patients: Evaluation of the Spectrum Efficacy of Atorvastatin In Vitro. Cells 2021, 10, 442. [Google Scholar] [CrossRef]
- Lefthériotis, G.; Omarjee, L.; Le Saux, O.; Henrion, D.; Abraham, P.; Prunier, F.; Willoteaux, S.; Martin, L. The vascular phenotype in Pseudoxanthoma elasticum and related disorders: Contribution of a genetic disease to the understanding of vascular calcification. Front. Genet. 2013, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Vos, A.; Kranenburg, G.; De Jong, P.A.; Mali, W.P.T.M.; Van Hecke, W.; Bleys, R.L.A.W.; Isgum, I.; Vink, A.; Spiering, W. The amount of calcifications in pseudoxanthoma elasticum patients is underestimated in computed tomographic imaging; a post-mortem correlation of histological and computed tomographic findings in two cases. Insights Imaging 2018, 9, 493–498. [Google Scholar] [CrossRef]
- Bete, J.M.; Banas, J.S.; Moran, J.; Pinn, V.; Levine, H.J. Coronary artery disease in an 18 year old girl with pseudoxanthoma elasticum: Successful surgical therapy. Am. J. Cardiol. 1975, 36, 515–520. [Google Scholar] [CrossRef]
- Slade, A.K.; John, R.M.; Swanton, R.H. Pseudoxanthoma elasticum presenting with myocardial infarction. Hear 1990, 63, 372–373. [Google Scholar] [CrossRef] [Green Version]
- Kévorkian, J.-P.; Masquet, C.; Kural-Ménasché, S.; Le Dref, O.; Beaufils, P. New Report of Severe Coronary Artery Disease in an Eighteen-Year-Old Girl with Pseudoxanthoma Elasticum. Angiolog 1997, 48, 735–741. [Google Scholar] [CrossRef]
- Araki, Y.; Yokoyama, T.; Sagawa, N.; Okuno, S.; Hoshino, Y.; Sando, Y.; Hasegawa, A.; Kurabayashi, M. Pseudoxanthoma Elasticum Diagnosed 25 Years after the Onset of Cardiovascular Disease. Intern. Med. 2001, 40, 1117–1120. [Google Scholar] [CrossRef] [Green Version]
- Kocaman, S.A.; Tavil, Y.; Yalcin, M.R. Severe coronary artery disease in a 21-year-old girl with pseudoxanthoma elasticum anomalous origin of the right coronary artery. Acta Cardiol. 2007, 62, 417–419. [Google Scholar] [CrossRef]
- Baglini, R.; Sesana, M.; Capuano, C.; Danzi, G.B. Intracoronary ultrasound guided percutaneous coronary angioplasty using a drug eluting stent in a patient with pseudoxanthoma elasticum. Atherosclero 2005, 180, 205–207. [Google Scholar] [CrossRef]
- Alexopoueos, D.; Vagenarkis, A.G.; Christodoulou, J.; Cokkinos, D. Accelerated coronary artery disease in a young woman with pseudoxanthoma elasticum and elevated lipoprotein(a). Eur. Hear. J. 1994, 15, 1428–1430. [Google Scholar] [CrossRef]
- Rossiter-Thornton, M.; Iliopoulos, J.; Manganas, C. Evaluation of Arterial Grafts Prior to Coronary Bypass in Pseudoxanthoma Elasticum. Hear. Lung Circ. 2011, 20, 726–727. [Google Scholar] [CrossRef]
- Arraj, A. Pseudoxanthoma elasticum of the internal mammary artery. Cardiovasc. Surg. 1999, 7, 381–384. [Google Scholar] [CrossRef]
- Sasai, H.; Sakakura, K.; Wada, H.; Sugawara, Y.; Ako, J.; Momomura, S.-I. Stiff Coronary Stenosis in a Young Female with Pseudoxanthoma Elasticum. JACC Cardiovasc. Interv. 2012, 5, 112–113. [Google Scholar] [CrossRef] [Green Version]
- Anzai, F.; Kunii, H.; Kanno, Y.; Kamioka, M.; Kobayashi, A.; Suzuki, H.; Saitoh, S.; Takeishi, Y. Successful revascularization of advanced coronary artery disease associated with pseudoxanthoma elasticum. J. Cardiol. Cases 2017, 16, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Song, H.K.; Sharoni, E.; Williams, B.; A Guyton, R.; Puskas, J.D. Long-term left internal mammary artery graft patency for coronary artery disease associated with pseudoxanthoma elasticum. Ann. Thorac. Surg. 2004, 78, 691–693. [Google Scholar] [CrossRef]
- Karam, C.; Soulat, G.; Germain, D.P.; Lacombe, P.; Dubourg, O. Coronary CT angiography for chest pain in pseudoxanthoma elasticum and cardiac intervention management. J. Cardiovasc. Comput. Tomogr. 2015, 9, 238–241. [Google Scholar] [CrossRef]
- Trip, M.D.; Smulders, Y.M.; Wegman, J.J.; Hu, X.; Boer, J.M.; Brink, J.B.T.; Zwinderman, A.H.; Kastelein, J.J.; Feskens, E.J.; Bergen, A.A. Frequent mutation in the ABCC6 gene (R1141X) is associated with a strong increase in the prevalence of coronary artery disease. Circle 2002, 106, 773–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köblös, G.; Andrikovics, H.; Prohászka, Z.; Tordai, A.; Váradi, A.; Arányi, T. The R1141X Loss-of-Function Mutation of the ABCC6 Gene Is a Strong Genetic Risk Factor for Coronary Artery Disease. Genet. Test. Mol. Biomarkers 2010, 14, 75–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prunier, F.; Terrien, G.; Le Corre, Y.; Apana, A.L.Y.; Bière, L.; Kauffenstein, G.; Furber, A.; Bergen, A.A.B.; Gorgels, T.G.M.F.; Le Saux, O.; et al. Pseudoxanthoma Elasticum: Cardiac Findings in Patients and Abcc6-Deficient Mouse Model. PLoS ONE 2013, 8, e68700. [Google Scholar] [CrossRef] [PubMed]
- Gheduzzi, D.; Sammarco, R.; Quaglino, D.; Bercovitch, L.; Terry, S.; Taylor, W.; Ronchetti, I.P. Extracutaneous ultrastructural alterations in pseudoxanthoma elasticum. Ultrastruct. Pathol. 2003, 27, 375–384. [Google Scholar] [CrossRef]
- Campens, L.; Vanakker, O.M.; Trachet, B.; Segers, P.; Leroy, B.P.; De Zaeytijd, J.; Voet, D.; De Paepe, A.; De Backer, T.; De Backer, J. Characterization of Cardiovascular Involvement in Pseudoxanthoma Elasticum Families. Arter. Thromb. Vasc. Biol. 2013, 33, 2646–2652. [Google Scholar] [CrossRef] [Green Version]
- Bière, L.; Donal, E.; Terrien, G.; Furber, A.; Martin, L.; Prunier, F. Left Ventricular Function in a Large Cohort of Pseudoxanthoma Elasticum Patients. PLoS ONE 2014, 9, e90364. [Google Scholar] [CrossRef] [Green Version]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Omarjee, L.; Roy, C.; Leboeuf, C.; Favre, J.; Henrion, D.; Mahe, G.; Leftheriotis, G.; Martin, L.; Janin, A.; Kauffenstein, G. Evidence of Cardiovascular Calcification and Fibrosis in Pseudoxanthoma Elasticum Mouse Models Subjected to DOCA-Salt Hypertension. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Aboyans, V.; Ricco, J.-B.; Bartelink, M.-L.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.-P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document Covering Atherosclerotic Disease of Extracranial Carotid and Vertebral, Mesenteric, Renal, Upper and Lower Extremity Arteries Endorsed by: The European Stroke Organization (ESO) The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef] [Green Version]
- Haas, T.L.; Lloyd, P.G.; Yang, H.; Terjung, R.L. Exercise Training and Peripheral Arterial Disease. Compr. Physiol. 2012, 2, 2933–3017. [Google Scholar] [CrossRef] [Green Version]
- Hageman, D.; Fokkenrood, H.J.; Gommans, L.N.; Houten, M.M.V.D.; Teijink, J.A. Supervised exercise therapy versus home-based exercise therapy versus walking advice for intermittent claudication. Cochrane Database Syst. Rev. 2018, 2018, CD005263. [Google Scholar] [CrossRef]
- Hosen, M.J.; Zubaer, A.; Thapa, S.; Khadka, B.; De Paepe, A.; Vanakker, O.M. Molecular Docking Simulations Provide Insights in the Substrate Binding Sites and Possible Substrates of the ABCC6 Transporter. PLoS ONE 2014, 9, e102779. [Google Scholar] [CrossRef] [Green Version]
- Kuzaj, P.; Kuhn, J.; Dabisch-Ruthe, M.; Faust, I.; Götting, C.; Knabbe, C.; Hendig, D. ABCC6- a new player in cellular cholesterol and lipoprotein metabolism? Lipids Heal. Dis. 2014, 13, 118. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Li, Q.; Chou, D.W.; Uitto, J. Atorvastatin counteracts aberrant soft tissue mineralization in a mouse model of pseudoxanthoma elasticum (ABCC6−/−). J. Mol. Med. 2013, 91, 1177–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, E.D.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2019, 41, 255–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhli-Hattenbach, C.; Fischer, I.B.; Schalnus, R.; Hattenbach, L.-O. Subretinal Hemorrhages Associated with Age-Related Macular Degeneration in Patients Receiving Anticoagulation or Antiplatelet Therapy. Am. J. Ophthalmol. 2010, 149, 316–321.e1. [Google Scholar] [CrossRef] [PubMed]
- Ying, G.-S.; Maguire, M.G.; Daniel, E.; Grunwald, J.E.; Ahmed, O.; Martin, D.F. Association between Antiplatelet or Anticoagulant Drugs and Retinal or Subretinal Hemorrhage in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology 2016, 123, 352–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buitendijk, G.H.; Schauwvlieghe, A.-S.M.; Van Schooneveld, M.; Wezel, M.; Stam, H.; Jansen-Kok, C.; Althoff, A.; Van Der Zee, A.; Stam, M.; De Vries, D.; et al. Antiplatelet and Anticoagulant Drugs Do Not Affect Visual Outcome in Neovascular Age-Related Macular Degeneration in the BRAMD Trial. Am. J. Ophthalmol. 2018, 187, 130–137. [Google Scholar] [CrossRef]
- Robman, L.D.; Thao, L.T.P.; Guymer, R.H.; Wolfe, R.; Woods, R.L.; Hodgson, L.A.; Phung, J.; Makeyeva, G.A.; Le-Pham, Y.-A.; Orchard, S.G.; et al. Baseline characteristics and age-related macular degeneration in participants of the “ASPirin in Reducing Events in the Elderly” (ASPREE)-AMD trial. Contemp. Clin. Trials Commun. 2020, 20, 100667. [Google Scholar] [CrossRef]
- Robman, L.; Guymer, R.; Woods, R.; Ward, S.; Wolfe, R.; Phung, J.; Hodgson, L.; Makeyeva, G.; Aung, K.Z.; Gilbert, T.; et al. Age-related macular degeneration in a randomized controlled trial of low-dose aspirin: Rationale and study design of the ASPREE-AMD study. Contemp. Clin. Trials Commun. 2017, 6, 105–114. [Google Scholar] [CrossRef]
- Alappan, H.R.; Kaur, G.; Manzoor, S.; Navarrete, J.; O’Neill, W.C. Warfarin Accelerates Medial Arterial Calcification in Humans. Arter. Thromb. Vasc. Biol. 2020, 40, 1413–1419. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Guo, H.; Chou, D.W.; Harrington, D.J.; Schurgers, L.; Terry, S.F.; Uitto, J. Warfarin Accelerates Ectopic Mineralization in ABCC6−/− Mice: Clinical Relevance to Pseudoxanthoma Elasticum. Am. J. Pathol. 2013, 182, 1139–1150. [Google Scholar] [CrossRef] [Green Version]
- Michaux, A.; Matagrin, B.; Debaux, J.-V.; Schurgers, L.J.; Benoit, E.; Lattard, V. Missense mutation of VKORC1 leads to medial arterial calcification in rats. Sci. Rep. 2018, 8, 13733. [Google Scholar] [CrossRef]
- Carter, D.J.; Vince, F.P.; Woodward, D.A.K. Arterial surgery in pseudoxanthoma elasticum. Postgrad. Med. J. 1976, 52, 291–292. [Google Scholar] [CrossRef]
- Rühlmann, C.; Wittig, I.; Lochner, A.; Klotzer, B.; Wilke, B.; Mittag, M.; Pfeiffer, D. Das Grönblad-Strandberg-Syndrom aus angiologischer Sicht. DMW-Dtsch. Med. Wochenschr. 1998, 123, 312–317. [Google Scholar] [CrossRef]
- Ammi, M.; Kranenburg, G.; Omarjee, L.; Martin, L.; Spiering, W.; Lefthériotis, G. Abnormally high failure rate for femoral angioplasty in patients with pseudoxanthoma elasticum. J. Vasc. Surg. Cases 2015, 1, 276–278. [Google Scholar] [CrossRef] [Green Version]
- Omarjee, L.; Nitschke, Y.; Verschuere, S.; Bourrat, E.; Vignon, M.; Navasiolava, N.; Leftheriotis, G.; Kauffenstein, G.; Rutsch, F.; Vanakker, O.; et al. Severe early-onset manifestations of pseudoxanthoma elasticum resulting from the cumulative effects of several deleterious mutations in ENPP1, ABCC6 and HBB: Transient improvement in ectopic calcification with sodium thiosulfate. Br. J. Dermatol. 2019, 183, 367–372. [Google Scholar] [CrossRef]
- Miwa, K.; Higashikata, T.; Mabuchi, H. Intravascular ultrasound findings of coronary wall morphology in a patient with pseudoxanthoma elasticum. Heart 2004, 90, e61. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Endo, M.; Dibra, F.; Wang, K.; Uitto, J. Pseudoxanthoma Elasticum Is a Metabolic Disease. J. Investig. Dermatol. 2009, 129, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Oldenburg, R.; Otsuru, S.; Grand-Pierre, A.E.; Horwitz, E.M.; Uitto, J. Parabiotic Heterogenetic Pairing of ABCC6−/−/Rag1−/− Mice and Their Wild-Type Counterparts Halts Ectopic Mineralization in a Murine Model of Pseudoxanthoma Elasticum. Am. J. Pathol. 2010, 176, 1855–1862. [Google Scholar] [CrossRef]
- Theuwissen, E.; Smit, E.; Vermeer, C. The Role of Vitamin K in Soft-Tissue Calcification. Adv. Nutr. 2012, 3, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Renie, W.A.; Pyeritz, R.E.; Combs, J.; Fine, S.L. Pseudoxanthoma elasticum: High calcium intake in early life correlates with severity. Am. J. Med Genet. 1984, 19, 235–244. [Google Scholar] [CrossRef]
- Gorgels, T.G.; Hu, X.; Scheffer, G.L.; van der Wal, A.; Toonstra, J.; De Jong, P.T.; Van Kuppevelt, T.H.; Levelt, C.N.; De Wolf, A.; Loves, W.J.; et al. Disruption of Abcc6 in the mouse: Novel insight in the pathogenesis of pseudoxanthoma elasticum. Hum. Mol. Genet. 2005, 14, 1763–1773. [Google Scholar] [CrossRef] [Green Version]
- Gorgels, T.G.M.F.; Waarsing, J.H.; de Wolf, A.; Brink, J.B.T.; Loves, W.J.P.; Bergen, A.A.B. Dietary magnesium, not calcium, prevents vascular calcification in a mouse model for pseudoxanthoma elasticum. J. Mol. Med. 2010, 88, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Sherer, D.W.; Singer, G.; Uribarri, J.; Phelps, R.G.; Sapadin, A.N.; Freund, K.B.; Yanuzzi, L.; Fuchs, W.; Lebwohl, M. Oral phosphate binders in the treatment of pseudoxanthoma elasticum. J. Am. Acad. Dermatol. 2005, 53, 610–615. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Blum, R.R.; Singer, G.K.; Stern, D.K.; Emanuel, P.O.; Fuchs, W.; Phelps, R.G.; Terry, S.F.; Lebwohl, M.G. A randomized controlled trial of oral phosphate binders in the treatment of pseudoxanthoma elasticum. J. Am. Acad. Dermatol. 2011, 65, 341–348. [Google Scholar] [CrossRef]
- Ter Braake, A.D.; Shanahan, C.M.; de Baaij, J.H. Magnesium Counteracts Vascular Calcification. Arter. Thromb. Vasc. Biol. 2017, 37, 1431–1445. [Google Scholar] [CrossRef] [Green Version]
- Kostov, K.; Halacheva, L. Role of Magnesium Deficiency in Promoting Atherosclerosis, Endothelial Dysfunction, and Arterial Stiffening as Risk Factors for Hypertension. Int. J. Mol. Sci. 2018, 19, 1724. [Google Scholar] [CrossRef] [Green Version]
- D’Marco, L.; Lima-Martínez, M.; Karohl, C.; Chacín, M.; Bermúdez, V. Pseudoxanthoma Elasticum: An Interesting Model to Evaluate Chronic Kidney Disease-Like Vascular Damage without Renal Disease. Kidney Dis. 2020, 6, 92–97. [Google Scholar] [CrossRef]
- LaRusso, J.; Jiang, Q.; Li, Q.; Uitto, J. Ectopic mineralization of connective tissue inAbcc6-/-mice: Effects of dietary modifications and a phosphate binder—A preliminary study. Exp. Dermatol. 2007, 17, 203–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Q.; Uitto, J. Restricting dietary magnesium accelerates ectopic connective tissue mineralization in a mouse model of pseudoxanthoma elasticum(ABCC6−/−). Exp. Dermatol. 2012, 21, 694–699. [Google Scholar] [CrossRef]
- LaRusso, J.; Li, Q.; Jiang, Q.; Uitto, J. Elevated Dietary Magnesium Prevents Connective Tissue Mineralization in a Mouse Model of Pseudoxanthoma Elasticum (ABCC6−/−). J. Investig. Dermatol. 2009, 129, 1388–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; LaRusso, J.; Grand-Pierre, A.E.; Uitto, J. Magnesium Carbonate-Containing Phosphate Binder Prevents Connective Tissue Mineralization inAbcc6−/−Mice–Potential for Treatment of Pseudoxanthoma Elasticum. Clin. Transl. Sci. 2009, 2, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Kupetsky, E.A.; Rincon, F.; Uitto, J. Rate of Change of Carotid Intima-Media Thickness with Magnesium Administration in ABCC6−/− Mice. Clin. Transl. Sci. 2013, 6, 485–486. [Google Scholar] [CrossRef] [Green Version]
- Kupetsky-Rincon, E.A.; Li, Q.; Uitto, J. Magnesium Reduces Carotid Intima-Media Thickness in a Mouse Model of Pseudoxanthoma Elasticum: A Novel Treatment Biomarker. Clin. Transl. Sci. 2012, 5, 259–264. [Google Scholar] [CrossRef]
- Rose, S.; On, S.J.; Fuchs, W.; Chen, C.; Phelps, R.; Kornreich, D.; Haddican, M.; Singer, G.; Wong, V.; Baum, D.; et al. Magnesium supplementation in the treatment of pseudoxanthoma elasticum: A randomized trial. J. Am. Acad. Dermatol. 2019, 81, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Pasquali-Ronchetti, I.; Garcia-Fernandez, M.I.; Boraldi, F.; Quaglino, D.; Gheduzzi, D.; Paolinelli, C.D.V.; Tiozzo, R.; Bergamini, S.; Ceccarelli, D.; Muscatello, U. Oxidative stress in fibroblasts from patients with pseudoxanthoma elasticum: Possible role in the pathogenesis of clinical manifestations. J. Pathol. 2005, 208, 54–61. [Google Scholar] [CrossRef]
- Takata, T.; Ikeda, M.; Kodama, H.; Kitagawa, N. Treatment of Pseudoxanthoma Elasticum with Tocopherol Acetate and Ascorbic Acid. Pediatr. Dermatol. 2007, 24, 424–425. [Google Scholar] [CrossRef]
- Akoglu, G.; Li, Q.; Gokoz, O.; Gazyagci, A.S.; Uitto, J. Clinical and histopathological characteristics of a family with R1141X mutation of pseudoxanthoma elasticum—Presymptomatic testing and lack of carrier phenotypes. Int. J. Dermatol. 2013, 53, 692–698. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Jiang, Q.; Uitto, J. Pseudoxanthoma Elasticum: Oxidative Stress and Antioxidant Diet in a Mouse Model (ABCC6−/−). J. Investig. Dermatol. 2008, 128, 1160–1164. [Google Scholar] [CrossRef] [Green Version]
- Vanakker, O.M.; Martin, L.; Gheduzzi, D.; Leroy, B.P.; Loeys, B.; Guerci, V.I.; Matthys, D.; Terry, S.F.; Coucke, P.J.; Pasquali-Ronchetti, I.; et al. Pseudoxanthoma Elasticum-Like Phenotype with Cutis Laxa and Multiple Coagulation Factor Deficiency Represents a Separate Genetic Entity. J. Investig. Dermatol. 2007, 127, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Nollet, L.; Van Gils, M.; Verschuere, S.; Vanakker, O. The Role of Vitamin K and Its Related Compounds in Mendelian and Acquired Ectopic Mineralization Disorders. Int. J. Mol. Sci. 2019, 20, 2142. [Google Scholar] [CrossRef] [Green Version]
- Garcia, A.A.; Reitsma, P.H. VKORC1 and the Vitamin K Cycle. Vitam. Horm. 2008, 78, 23–33. [Google Scholar] [CrossRef]
- Levy, D.S.; Grewal, R.; Le, T.H. Vitamin K deficiency: An emerging player in the pathogenesis of vascular calcification and an iatrogenic consequence of therapies in advanced renal disease. Am. J. Physiol. Physiol. 2020, 319, F618–F623. [Google Scholar] [CrossRef]
- Vanakker, O.M.; Martin, L.; Schurgers, L.; Quaglino, D.; Costrop, L.; Vermeer, C.; Pasquali-Ronchetti, I.; Coucke, P.J.; De Paepe, A. Low serum vitamin K in PXE results in defective carboxylation of mineralization inhibitors similar to the GGCX mutations in the PXE-like syndrome. Lab. Investig. 2010, 90, 895–905. [Google Scholar] [CrossRef] [Green Version]
- Mackay, E.W.; Apschner, A.; Schulte-Merker, S. Vitamin K reduces hypermineralisation in zebrafish models of PXE and GACI. Development 2015, 142, 1095–1101. [Google Scholar] [CrossRef] [Green Version]
- Fülöp, K.; Jiang, Q.; Wetering, K.V.; Pomozi, V.; Szabó, P.; Arányi, T.; Sarkadi, B.; Borst, P.; Uitto, J.; Váradi, A. ABCC6 does not transport vitamin K3-glutathione conjugate from the liver: Relevance to pathomechanisms of pseudoxanthoma elasticum. Biochem. Biophys. Res. Commun. 2011, 415, 468–471. [Google Scholar] [CrossRef] [Green Version]
- Brampton, C.; Yamaguchi, Y.; Vanakker, O.; Van Laer, L.; Chen, L.-H.; Thakore, M.; De Paepe, A.; Pomozi, V.; Szabó, P.; Martin, L.; et al. Vitamin K does not prevent soft tissue mineralization in a mouse model of pseudoxanthoma elasticum. Cell Cycle 2011, 10, 1810–1820. [Google Scholar] [CrossRef] [Green Version]
- Gorgels, T.G.M.F.; Waarsing, J.H.; Herfs, M.; Versteeg, D.; Schoensiegel, F.; Sato, T.; Schlingemann, R.O.; Ivandic, B.; Vermeer, C.; Schurgers, L.J.; et al. Vitamin K supplementation increases vitamin K tissue levels but fails to counteract ectopic calcification in a mouse model for pseudoxanthoma elasticum. J. Mol. Med. 2011, 89, 1125–1135. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Li, Q.; Grand-Pierre, A.E.; Schurgers, L.; Uitto, J. Administration of vitamin K does not counteract the ectopic mineralization of connective tissues inAbcc6-/-mice, a model for pseudoxanthoma elasticum. Cell Cycle 2011, 10, 701–707. [Google Scholar] [CrossRef]
- Carrillo-Linares, J.L.; Fernández, M.I.G.; Morillo, M.J.; Sánchez, P.; Rioja, J.; Barón, F.J.; Ariza, M.J.; Harrington, D.J.; Card, D.; Boraldi, F.; et al. The Effects of Parenteral K1 Administration in Pseudoxanthoma Elasticum Patients Versus Controls. A Pilot Study. Front. Med. 2018, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Fleisch, H.; Bisaz, S. Mechanism of Calcification: Inhibitory Role of Pyrophosphate. Nat. Cell Biol. 1962, 195, 911. [Google Scholar] [CrossRef]
- Lomashvili, K.A.; Narisawa, S.; Millán, J.L.; O’Neill, W.C. Vascular calcification is dependent on plasma levels of pyrophosphate. Kidney Int. 2014, 85, 1351–1356. [Google Scholar] [CrossRef] [Green Version]
- Azpiazu, D.; Gonzalo, S.; Villa-Bellosta, R. Tissue Non-Specific Alkaline Phosphatase and Vascular Calcification: A Potential Therapeutic Target. Curr. Cardiol. Rev. 2019, 15, 91–95. [Google Scholar] [CrossRef]
- Stuart, A.G. Idiopathic arterial calcification of infancy and pyrophosphate deficiency. J. Pediatr. 1993, 123, 170–171. [Google Scholar] [CrossRef]
- Zhao, J.; Kingman, J.; Sundberg, J.P.; Uitto, J.; Li, Q. Plasma PPi Deficiency Is the Major, but Not the Exclusive, Cause of Ectopic Mineralization in an ABCC6−/− Mouse Model of PXE. J. Investig. Dermatol. 2017, 137, 2336–2343. [Google Scholar] [CrossRef] [Green Version]
- Jansen, R.; Kucukosmanoglu, A.; de Haas, M.; Sapthu, S.; Otero, J.A.; Hegman, I.E.M.; Bergen, A.A.B.; Gorgels, T.G.M.F.; Borst, P.; van de Wetering, K. ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. Proc. Natl. Acad. Sci. USA 2013, 110, 20206–20211. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, W.C.; Lomashvili, K.A.; Malluche, H.H.; Faugere, M.-C.; Riser, B.L. Treatment with pyrophosphate inhibits uremic vascular calcification. Kidney Int. 2011, 79, 512–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schibler, D.; Russell, R.G.; Fleisch, H. Inhibition by pyrophosphate and polyphosphate of aortic calcification induced by vitamin D3 in rats. Clin. Sci. 1968, 35, 363–372. Available online: https://pubmed.ncbi.nlm.nih.gov/4305530/ (accessed on 1 November 2021). [PubMed]
- Pomozi, V.; Brampton, C.; Van De Wetering, K.; Zoll, J.; Calio, B.; Pham, K.; Owens, J.B.; Marh, J.; Moisyadi, S.; Váradi, A.; et al. Pyrophosphate Supplementation Prevents Chronic and Acute Calcification in ABCC6-Deficient Mice. Am. J. Pathol. 2017, 187, 1258–1272. [Google Scholar] [CrossRef] [Green Version]
- Dedinszki, D.; Szeri, F.; Kozák, E.; Pomozi, V.; Tőkési, N.; Mezei, T.R.; Merczel, K.; Letavernier, E.; Tang, E.; Le Saux, O.; et al. Oral administration of pyrophosphate inhibits connective tissue calcification. EMBO Mol. Med. 2017, 9, 1463–1470. [Google Scholar] [CrossRef]
- Pomozi, V.; Julian, C.B.; Zoll, J.; Pham, K.; Kuo, S.; Tőkési, N.; Martin, L.; Váradi, A.; Le Saux, O. Dietary Pyrophosphate Modulates Calcification in a Mouse Model of Pseudoxanthoma Elasticum: Implication for Treatment of Patients. J. Investig. Dermatol. 2019, 139, 1082–1088. [Google Scholar] [CrossRef]
- Orimo, H. The Mechanism of Mineralization and the Role of Alkaline Phosphatase in Health and Disease. J. Nippon. Med. Sch. 2010, 77, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Lomashvili, K.; Garg, P.; Narisawa, S.; Millan, J.; O’Neill, W. Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: Potential mechanism for uremic vascular calcification. Kidney Int. 2008, 73, 1024–1030. [Google Scholar] [CrossRef] [Green Version]
- Hilaire, C.S.; Ziegler, S.G.; Markello, T.C.; Brusco, A.; Groden, C.; Gill, F.; Carlson-Donohoe, H.; Lederman, R.J.; Chen, M.Y.; Yang, D.; et al. NT5EMutations and Arterial Calcifications. N. Engl. J. Med. 2011, 364, 432–442. [Google Scholar] [CrossRef]
- Ziegler, S.G.; Ferreira, C.R.; MacFarlane, E.G.; Riddle, R.C.; Tomlinson, R.E.; Chew, E.Y.; Martin, L.; Ma, C.-T.; Sergienko, E.; Pinkerton, A.B.; et al. Ectopic calcification in pseudoxanthoma elasticum responds to inhibition of tissue-nonspecific alkaline phosphatase. Sci. Transl. Med. 2017, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Sheen, C.R.; Kuss, P.; Narisawa, S.; Yadav, M.C.; Nigro, J.; Wang, W.; Chhea, T.N.; Sergienko, E.A.; Kapoor, K.; Jackson, M.R.; et al. Pathophysiological Role of Vascular Smooth Muscle Alkaline Phosphatase in Medial Artery Calcification. J. Bone Miner. Res. 2015, 30, 824–836. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Huang, J.; Pinkerton, A.; Millan, J.L.; van Zelst, B.D.; Levine, M.; Sundberg, J.P.; Uitto, J. Inhibition of Tissue-Nonspecific Alkaline Phosphatase Attenuates Ectopic Mineralization in the Abcc6 Mouse Model of PXE but Not in the Enpp1 Mutant Mouse Models of GACI. J. Investig. Dermatol. 2019, 139, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Lee, I.-K.; Jeon, J.-H. Vascular Calcification—New Insights into Its Mechanism. Int. J. Mol. Sci. 2020, 21, 2685. [Google Scholar] [CrossRef] [Green Version]
- Caffarelli, C.; Montagnani, A.; Nuti, R.; Gonnelli, S. Bisphosphonates, atherosclerosis and vascular calcification: Update and systematic review of clinical studies. Clin. Interv. Aging 2017, 12, 1819–1828. [Google Scholar] [CrossRef] [Green Version]
- Russell, R.G.G. Bisphosphonates: From Bench to Bedside. Ann. N. Y. Acad. Sci. 2006, 1068, 367–401. [Google Scholar] [CrossRef] [Green Version]
- Fleisch, H.A.; Russell, R.G.G.; Bisaz, S.; Mühlbauer, R.C.; Williams, D.A. The Inhibitory Effect of Phosphonates on the Formation of Calcium Phosphate Crystals in vitro and on Aortic and Kidney Calcification in vivo. Eur. J. Clin. Investig. 1970, 1, 12–18. [Google Scholar] [CrossRef]
- Santos, L.L.; Cavalcanti, T.B.; Bandeira, F.A. Vascular Effects of Bisphosphonates–-A Systematic Review. Clin. Med. Insights: Endocrinol. Diabetes 2012, 5, 47–54. [Google Scholar] [CrossRef]
- Rutsch, F.; Böyer, P.; Nitschke, Y.; Ruf, N.; Lorenz-Depierieux, B.; Wittkampf, T.; Weissen-Plenz, G.; Fischer, R.-J.; Mughal, Z.; Gregory, J.W.; et al. Hypophosphatemia, Hyperphosphaturia, and Bisphosphonate Treatment Are Associated With Survival Beyond Infancy in Generalized Arterial Calcification of Infancy. Circ. Cardiovasc. Genet. 2008, 1, 133–140. [Google Scholar] [CrossRef]
- A Ramjan, K.; Roscioli, T.; Rutsch, F.; Sillence, D.; Munns, C.F. Generalized arterial calcification of infancy: Treatment with bisphosphonates. Nat. Rev. Endocrinol. 2009, 5, 167–172. [Google Scholar] [CrossRef]
- Rutsch, F.; Ruf, N.; Vaingankar, S.; Toliat, M.R.; Suk, A.; Höhne, W.; Schauer, G.; Lehmann, M.; Roscioli, T.; Schnabel, D.; et al. Mutations in ENPP1 are associated with ’idiopathic’ infantile arterial calcification. Nat. Genet. 2003, 34, 379–381. [Google Scholar] [CrossRef]
- Li, Q.; Sundberg, J.P.; Levine, M.; Terry, S.F.; Uitto, J. The effects of bisphosphonates on ectopic soft tissue mineralization caused by mutations in the ABCC6 gene. Cell Cycle 2015, 14, 1082–1089. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Kingman, J.; Sundberg, J.P.; Levine, M.; Uitto, J. Etidronate prevents, but does not reverse, ectopic mineralization in a mouse model of pseudoxanthoma elasticum (ABCC6−/−). Oncotarget 2018, 9, 30721–30730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabisch-Ruthe, M.; Kuzaj, P.; Götting, C.; Knabbe, C.; Hendig, D. Pyrophosphates as a major inhibitor of matrix calcification in Pseudoxanthoma elasticum. J. Dermatol. Sci. 2014, 75, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Kranenburg, G.; de Jong, P.A.; Bartstra, J.W.; Lagerweij, S.J.; Lam, M.G.; Norel, J.O.-V.; Risseeuw, S.; van Leeuwen, R.; Imhof, S.M.; Verhaar, H.J.; et al. Etidronate for Prevention of Ectopic Mineralization in Patients With Pseudoxanthoma Elasticum. J. Am. Coll. Cardiol. 2018, 71, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Bartstra, J.W.; de Jong, P.A.; Kranenburg, G.; Wolterink, J.M.; Isgum, I.; Wijsman, A.; Wolf, B.; Harder, A.M.D.; Mali, W.P.T.M.; Spiering, W. Etidronate halts systemic arterial calcification in pseudoxanthoma elasticum. Atherosclero 2020, 292, 37–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risseeuw, S.; van Leeuwen, R.; Imhof, S.M.; de Jong, P.A.; Mali, W.P.T.M.; Spiering, W.; Norel, J.O. The effect of etidronate on choroidal neovascular activity in patients with pseudoxanthoma elasticum. PLoS ONE 2020, 15, e0240970. [Google Scholar] [CrossRef] [PubMed]
- Centre Hospitalier Universitaire de Nice. PyROphosPHate Supplementation to Fight ECtopIc Calcification in PseudoXanthoma Elasticum: PROPHECI Study, NCT04868578, 19-APN-01 [updated 22 July 2021]. Available online: https://clinicaltrials.gov/ct2/show/NCT04868578 (accessed on 2 November 2021).
- Irvine, R.F.; Schell, M.J. Back in the water: The return of the inositol phosphates. Nat. Rev. Mol. Cell Biol. 2001, 2, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Grases, F. Phytate (Myo-inositol hexakisphosphate) inhibits cardiovascular calcifications in rats. Front. Biosci. 2006, 11, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Raggi, P.; Bellasi, A.; Bushinsky, D.; Bover, J.; Rodriguez, M.; Ketteler, M.; Sinha, S.; Salcedo, C.; Gillotti, K.; Padgett, C.; et al. Slowing Progression of Cardiovascular Calcification With SNF472 in Patients on Hemodialysis. Circlulation 2020, 141, 728–739. [Google Scholar] [CrossRef]
- Schantl, A.E.; Verhulst, A.; Neven, E.; Behets, G.J.; D’Haese, P.C.; Maillard, M.; Mordasini, D.; Phan, O.; Burnier, M.; Spaggiari, D.; et al. Inhibition of vascular calcification by inositol phosphates derivatized with ethylene glycol oligomers. Nat. Commun. 2020, 11, 721. [Google Scholar] [CrossRef]
- Ferrer, M.D.; Ketteler, M.; Tur, F.; Tur, E.; Isern, B.; Salcedo, C.; Joubert, P.H.; Behets, G.J.; Neven, E.; D’Haese, P.C.; et al. Characterization of SNF472 pharmacokinetics and efficacy in uremic and non-uremic rats models of cardiovascular calcification. PLoS ONE 2018, 13, e0197061. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, I.J.; Li, D.; Ivarsson, M.E.; Uitto, J.; Li, Q. A phytic acid analogue INS-3001 prevents ectopic calcification in an Abcc6 −/− mouse model of pseudoxanthoma elasticum. Exp. Dermatol. 2021, 30, 853–858. [Google Scholar] [CrossRef]
- Reade, M.C.; Davies, S.R.; Morley, P.T.; Dennett, J.; Jacobs, I.C.; Council, T.A.R. Review article: Management of cyanide poisoning. Emerg. Med. Australas. 2012, 24, 225–238. [Google Scholar] [CrossRef]
- Djuric, P.; Dimkovic, N.; Schlieper, G.; Djuric, Z.; Pantelic, M.; Mitrovic, M.; Jankovic, A.; Milanov, M.; Pficer, J.K.; Floege, J. Sodium thiosulphate and progression of vascular calcification in end-stage renal disease patients: A double-blind, randomized, placebo-controlled study. Nephrol. Dial. Transplant. 2019, 35, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Malbos, S.; Ureña-Torres, P.; Bardin, T.; Ea, H.-K. Sodium thiosulfate is effective in calcific uremic arteriolopathy complicating chronic hemodialysis. Jt. Bone Spine 2016, 83, 89–92. [Google Scholar] [CrossRef]
- Ishikawa, M.; Motegi, S.-I.; Toki, S.; Endo, Y.; Yasuda, M.; Ishikawa, O. Calciphylaxis and nephrogenic fibrosing dermopathy with pseudoxanthoma elasticum-like changes: Successful treatment with sodium thiosulfate. J. Dermatol. 2019, 46, e240–e242. [Google Scholar] [CrossRef]
- Bourgeois, P.; De Haes, P. Sodium thiosulfate as a treatment for calciphylaxis: A case series. J. Dermatol. Treat. 2016, 27, 520–524. [Google Scholar] [CrossRef]
- Huang, J.; Snook, A.; Uitto, J.; Li, Q. Adenovirus-Mediated ABCC6 Gene Therapy for Heritable Ectopic Mineralization Disorders. J. Investig. Dermatol. 2019, 139, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Bishop, E.S.; Zhang, R.; Yu, X.; Farina, E.M.; Yan, S.; Zhao, C.; Zeng, Z.; Shu, Y.; Wu, X.; et al. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 2017, 4, 43–63. [Google Scholar] [CrossRef] [PubMed]
- Aravalli, R.N.; Steer, C.J. Gene editing technology as an approach to the treatment of liver diseases. Expert Opin. Biol. Ther. 2016, 16, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Von Niessen, A.G.O.; Poleganov, M.A.; Rechner, C.; Plaschke, A.; Kranz, L.; Fesser, S.; Diken, M.; Löwer, M.; Vallazza, B.; Beissert, T.; et al. Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3′ UTRs Identified by Cellular Library Screening. Mol. Ther. 2019, 27, 824–836. [Google Scholar] [CrossRef] [Green Version]
- ClinVar. ABCC6[gene]—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/?term=ABCC6%5Bgene%5D (accessed on 4 November 2021).
- Pomozi, V.; Brampton, C.; Szeri, F.; Dedinszki, D.; Kozák, E.; van de Wetering, K.; Hopkins, H.; Martin, L.; Váradi, A.; Le Saux, O. Functional Rescue of ABCC6 Deficiency by 4-Phenylbutyrate Therapy Reduces Dystrophic Calcification in Abcc6–/– Mice. J. Investig. Dermatol. 2017, 137, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Le Saux, O.; Fülöp, K.; Yamaguchi, Y.; Iliás, A.; Szabó, Z.; Brampton, C.N.; Pomozi, V.; Huszár, K.; Arányi, T.; Váradi, A. Expression and In Vivo Rescue of Human ABCC6 Disease-Causing Mutants in Mouse Liver. PLoS ONE 2011, 6, e24738. [Google Scholar] [CrossRef] [Green Version]
- Iannitti, T.; Palmieri, B. Clinical and Experimental Applications of Sodium Phenylbutyrate. Drugs R&D 2011, 11, 227–249. [Google Scholar] [CrossRef]
- Gonzales, E.; Grosse, B.; Schuller, B.; Davit-Spraul, A.; Conti, F.; Guettier, C.; Cassio, D.; Jacquemin, E. Targeted pharmacotherapy in progressive familial intrahepatic cholestasis type 2: Evidence for improvement of cholestasis with 4-phenylbutyrate. Hepatology 2015, 62, 558–566. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Q.; Takahagi, S.; Shao, C.; Uitto, J. Premature Termination Codon Read-Through in the ABCC6 Gene: Potential Treatment for Pseudoxanthoma Elasticum. J. Investig. Dermatol. 2013, 133, 2672–2677. [Google Scholar] [CrossRef] [Green Version]
- Götting, C.; Schulz, V.; Hendig, D.; Grundt, A.; Dreier, J.; Szliska, C.; Brinkmann, T.; Kleesiek, K. Assessment of a rapid-cycle PCR assay for the identification of the recurrent c.3421C>T mutation in the ABCC6 gene in pseudoxanthoma elasticum patients. Lab. Investig. 2003, 84, 122–130. [Google Scholar] [CrossRef]
- Keeling, K.M.; Bedwell, D.M. Suppression of nonsense mutations as a therapeutic approach to treat genetic diseases. Wiley Interdiscip. Rev. RNA 2011, 2, 837–852. [Google Scholar] [CrossRef] [Green Version]
- Welch, E.M.; Barton, E.R.; Zhuo, J.; Tomizawa, Y.; Friesen, W.J.; Trifillis, P.; Paushkin, S.; Patel, M.; Trotta, C.R.; Hwang, S.; et al. PTC124 targets genetic disorders caused by nonsense mutations. Nat. Cell Biol. 2007, 447, 87–91. [Google Scholar] [CrossRef]
- Wilschanski, M.; Miller, L.L.; Shoseyov, D.; Blau, H.; Rivlin, J.; Aviram, M.; Cohen, M.; Armoni, S.; Yaakov, Y.; Pugatch, T.; et al. Chronic ataluren (PTC124) treatment of nonsense mutation cystic fibrosis. Eur. Respir. J. 2011, 38, 59–69. [Google Scholar] [CrossRef]
- Kerem, E.; Konstan, M.W.; De Boeck, K.; Accurso, F.J.; Sermet-Gaudelus, I.; Wilschanski, M.; Elborn, J.; Melotti, P.; Bronsveld, I.; Fajac, I.; et al. Ataluren for the treatment of nonsense-mutation cystic fibrosis: A randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir. Med. 2014, 2, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Konstan, M.W.; VanDevanter, D.R.; Rowe, S.M.; Wilschanski, M.; Kerem, E.; Sermet-Gaudelus, I.; DiMango, E.; Melotti, P.; McIntosh, J.; De Boeck, K. Efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis not receiving chronic inhaled aminoglycosides: The international, randomized, double-blind, placebo-controlled Ataluren Confirmatory Trial in Cystic Fibrosis (ACT CF). J. Cyst. Fibros. 2020, 19, 595–601. [Google Scholar] [CrossRef]
- Zarbock, R.; Hendig, D.; Szliska, C.; Kleesiek, K.; Götting, C. Pseudoxanthoma Elasticum: Genetic Variations in Antioxidant Genes Are Risk Factors for Early Disease Onset. Clin. Chem. 2007, 53, 1734–1740. [Google Scholar] [CrossRef] [Green Version]
- Dabisch-Ruthe, M.; Brock, A.; Kuzaj, P.; Issa, P.C.; Szliska, C.; Knabbe, C.; Hendig, D. Variants in genes encoding pyrophosphate metabolizing enzymes are associated with Pseudoxanthoma elasticum. Clin. Biochem. 2014, 47, 60–67. [Google Scholar] [CrossRef]
- Hendig, D.; Knabbe, C.; Götting, C. New insights into the pathogenesis of pseudoxanthoma elasticum and related soft tissue calcification disorders by identifying genetic interactions and modifiers. Front. Genet. 2013, 4, 114. [Google Scholar] [CrossRef] [Green Version]
- Kawahara, T.; Nishikawa, M.; Kawahara, C.; Inazu, T.; Sakai, K.; Suzuki, G. Atorvastatin, Etidronate, or Both in Patients at High Risk for Atherosclerotic Aortic Plaques. Circulation 2013, 127, 2327–2335. [Google Scholar] [CrossRef] [Green Version]
Author (Year) | Design | Population | PXE (%) * | Follow-Up [Months] (Mean) | Treatment | Summary |
---|---|---|---|---|---|---|
Teixeira et al. (2006) [68] | Case report | 1 patient (1 eye) | 0 | 3.5 | Bevacizumab (2 × 1.25 mg) |
|
Lommatzsch et al. (2007) [69] | Case report | 1 patient (1 eye) | 1 (100) | N/A | Bevacizumab (3 × 1.25 mg) |
|
Bhatnagar et al. (2007) [70] | Retrospective case series | 9 patients (9 eyes) | 9 (100) | 4–8 (6) | Bevacizumab (mean: 1.8 × 1.25 mg) |
|
Rinaldi et al. (2007) [71] | Retrospective case series | 5 patients (5 eyes) | 5 (100) | 3–9 (6) | Bevacizumab (1–2 × 1.25 mg) |
|
Finger et al. (2007) [72] | Prospective case study | 15 patients (16 eyes) | 15 (100) | 2–20 (8) | Bevacizumab (monthly, PRN, mean: 2.4 × 1.5 mg) |
|
Schiano et al. (2008) [73] | Case report | 2 patients (2 eyes) | 2 (100) | 14 | Bevacizumab (3 × 1.25 mg) |
|
Wiegand et al. (2008) [74] | Retrospective case study | 6 patients (9 eyes) | 2 (33) | 10–28 (19) | Bevacizumab (mean: 4.4 × 1.25 mg) |
|
Neri et al. (2009) [75] | Prospective case study | 11 patients (11 eyes) | N/A | 20–29 (24) | Bevacizumab (monthly, PRN, mean: 3.5 × 1.25 mg) |
|
Sawa et al. (2009) [76] | Retrospective case series | 13 patients (15 eyes) | 7 (54) | 12–24 (19) | Bevacizumab (mean: 4.5 × 1.0 mg) |
|
Myung et al. (2010) [77] | Retrospective case series | 9 patients (9 eyes) | 9 (100) | 24–31 (29) | Bevacizumab (1.25 mg) or ranibizumab (0.5 mg) |
|
Ladas et al. (2010) [78] | Prospective case study | 14 patients (15 eyes) | 3 (21) | 12 | Ranibizumab (7 × 0.5 mg, “inject and extend”) |
|
Finger et al. (2011) [79] | Prospective clinical trial | 7 patients (7 eyes) | 7 (100) | 12 | Ranibizumab (monthly, 12 × 0.5 mg) |
|
Finger et al. (2011) [80] | Retrospective case series | 14 patients (16 eyes) | 14 (100) | Mean: 23–32 | Bevacizumab (monthly, PRN, 6.5 × 1.5 mg) |
|
Zebardast and Adelman et al. (2012) [81] | Case report | 1 patient (1 eye) | 1 (100) | 5 years | Ranibizumab (monthly for 12 months, PRN afterwards, 14 × 0.5 mg). |
|
Alagöz et al. (2015) [82] | Retrospective case series | 20 patients (23 eyes) | 10 (50) | 6–58 (23) | Bevacizumab (PRN, mean: 5.1 × 1.25 mg) |
|
Rosina et al. (2015) [83] | Retrospective case study | 10 patients (16 eyes) | N/A | 30–67 (52) | Bevacizumab (PRN, 2.5 × 1.25 mg) |
|
Ladas et al. (2016) [84] | Prospective case study | 19 patients (20 eyes) | 3 (14) | 24 | Ranibizumab (9 × 0.5mg, “inject and extend”) |
|
Mimoun et al. (2017) [85] | Multicenter, retrospective, observational study | 72 patients (98 eyes) | 72 (100) | 48 | Ranibizumab (mean annual: 4.1 × 0.5 mg) |
|
Lekha et al. (2017) [86] | Retrospective case series | 10 patients (15 eyes) | 3 (30) | 25–100 (57) | Bevacizumab (PRN, mean: 5.6 × 1.25 mg) |
|
| ||||||
Gliem et al. (2019) [87] | Prospective clinical trial | 15 patients (15 eyes) | 15 (100) | 12 | Aflibercept (initial injection of 2 mg, PRN thereafter, mean: 6.7 × 2 mg) |
|
Sekfali et al. (2020) [88] | Retrospective case series | 13 patients (14 eyes) | N/A | 12 | Switching from ranibizumab to afliberzept (dose not reported; most likely 6.6 × 2 mg) |
|
Author (Year) | Design | Population | Treatment | Summary |
---|---|---|---|---|
Interventional/surgical treatment of peripheral artery disease | ||||
Carter et al. (1976) [141] | Case report | 1 patient | Femoropopliteal bypass grafting |
|
Slade et al. (1990) [106] | Case report | 1 patient | PTA |
|
Rühlmann et al. (1998) [142] | Case report | 1 patient | Surgical endarterectomy |
|
Ammi et al. (2015) [143] | Retrospective case series | 4 patients | PTA with and without stenting; femoropopliteal bypass grafting; conservative proceedings |
|
Interventional/surgical treatment of coronary artery disease | ||||
Bete et al. (1975) [105] | Case report | 1 woman (18 years old) | CABG |
|
Slade et al. (1990) [106] | Case report | 1 man (31 years old) | Conservative proceeding |
|
Alexopoulos et al. (1994) [111] | Case report | 1 woman (29 years old) | Conservative proceeding |
|
Kévorkian et al. (1997) [107] | Case report | 1 woman (18 years old) | Conservative proceeding |
|
Sarraj et al. (1999) [113] | Case report | 1 man (61 years old) | CABG |
|
Araki et al. (2001) [108] | Case report | 1 man (63 years old) | PCI |
|
Song et al. (2004) [116] | Case report | 1 woman (67 years old) | CABG |
|
Baglini et al. (2005) [110] | Case report | 1 man (52 years old) | PCI |
|
Kocaman et al. (2007) [109] | Case report | 1 woman (21 years old) | CABG |
|
Rossiter-Thornten et al. (2011) [112] | Case report | 1 man (56 years old) | CABG |
|
Sasai et al. (2012) [114] | Case report | 1 woman (26 years old) | PCI |
|
Karam et al. (2015) [117] | Case report | 1 woman (42 years old) | PCI |
|
Anzai et al. (2017) [115] | Case report | 1 man (58 years old) | PCI, POBA |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stumpf, M.J.; Schahab, N.; Nickenig, G.; Skowasch, D.; Schaefer, C.A. Therapy of Pseudoxanthoma Elasticum: Current Knowledge and Future Perspectives. Biomedicines 2021, 9, 1895. https://doi.org/10.3390/biomedicines9121895
Stumpf MJ, Schahab N, Nickenig G, Skowasch D, Schaefer CA. Therapy of Pseudoxanthoma Elasticum: Current Knowledge and Future Perspectives. Biomedicines. 2021; 9(12):1895. https://doi.org/10.3390/biomedicines9121895
Chicago/Turabian StyleStumpf, Max Jonathan, Nadjib Schahab, Georg Nickenig, Dirk Skowasch, and Christian Alexander Schaefer. 2021. "Therapy of Pseudoxanthoma Elasticum: Current Knowledge and Future Perspectives" Biomedicines 9, no. 12: 1895. https://doi.org/10.3390/biomedicines9121895
APA StyleStumpf, M. J., Schahab, N., Nickenig, G., Skowasch, D., & Schaefer, C. A. (2021). Therapy of Pseudoxanthoma Elasticum: Current Knowledge and Future Perspectives. Biomedicines, 9(12), 1895. https://doi.org/10.3390/biomedicines9121895