Epigenome-Wide Histone Acetylation Changes in Peripheral Blood Mononuclear Cells in Patients with Type 2 Diabetes and Atherosclerotic Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Carotid Plaque Imaging Project (CPIP) Cohort
2.2. PBMCs Isolation
2.3. Chromatin Immunoprecipitation (ChIP)
2.4. Library Preparation
2.5. ChIP-Seq Analysis
2.6. Statistical Analysis
2.7. Data and Resource Availability
3. Results
3.1. Genome-Wide Distribution of H3K9ac in Atherosclerosis Patients with T2D
3.2. The Dynamics of the H3K9ac Changes in T2D
3.3. H3K9ac-Enriched Genomic Regions in T2D Coincide with Genetic Loci Associated with T2D and Type 1 Diabetes (T1D)
3.4. Regions of H3K9ac Changes Are Enriched for T2D Single-Nucleotide Polymorphisms (SNPs)
3.5. Functional Pathways Related to T2D-Specific H3K9ac Enrichment Changes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kannel, W.B.; McGee, D.L. Diabetes and Glucose Tolerance as Risk Factors for Cardiovascular Disease: The Framingham Study. Diabetes Care 1979, 2, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.C.; Millns, H.; Neil, H.A.W.; Stratton, I.; Manley, S.E.; Matthews, D.R.; Holman, R.R. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom prospective diabetes study (UKPDS: 23). BMJ 1998, 316, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Bowes, A.J.; Werstuck, G.H. Diabetes, Hyperglycemia and Accelerated Atherosclerosis: Evidence Supporting a Role for Endoplasmic Reticulum (ER) Stress Signaling. Cardiovasc. Hematol. Disord. Targets 2010, 10, 151–157. [Google Scholar] [CrossRef]
- Chait, A.; Bornfeldt, K.E. Diabetes and atherosclerosis: Is there a role for hyperglycemia? J. Lipid Res. 2009, 50, S335–S339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aronson, D.; Rayfield, E.J. How hyperglycemia promotes atherosclerosis: Molecular mechanisms. Cardiovasc. Diabetol. 2002, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Bompada, P.; Atac, D.; Luan, C.; Andersson, R.; Omella, J.D.; Laakso, E.O.; Wright, J.; Groop, L.; De Marinis, Y. Histone acetylation of glucose-induced thioredoxin-interacting protein gene expression in pancreatic islets. Int. J. Biochem. Cell Biol. 2016, 81, 82–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Marinis, Y.; Cai, M.; Bompada, P.; Atac, D.G.; Kotova, O.; Johansson, M.E.; Garcia-Vaz, E.; Gomez, M.F.; Laakso, M.; Groop, L. Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney. Kidney Int. 2016, 89, 342–353. [Google Scholar] [CrossRef] [Green Version]
- Ling, C.; Groop, L. Epigenetics: A Molecular Link Between Environmental Factors and Type 2 Diabetes. Diabetes 2009, 58, 2718–2725. [Google Scholar] [CrossRef] [Green Version]
- Yucel, N.; Wang, Y.X.; Mai, T.; Porpiglia, E.; Lund, P.J.; Markov, G.; Garcia, B.A.; Bendall, S.C.; Angelo, M.; Blau, H.M. Glucose Metabolism Drives Histone Acetylation Landscape Transitions that Dictate Muscle Stem Cell Function. Cell Rep. 2019, 27, 3939–3955.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evertts, A.G.; Zee, B.; DiMaggio, P.; Gonzales-Cope, M.; Coller, H.A.; Garcia, B.A. Quantitative Dynamics of the Link between Cellular Metabolism and Histone Acetylation. J. Biol. Chem. 2013, 288, 12142–12151. [Google Scholar] [CrossRef] [Green Version]
- Wellen, K.E.; Hatzivassiliou, G.; Sachdeva, U.M.; Bui, T.V.; Cross, J.R.; Thompson, C.B. ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation. Science 2009, 324, 1076–1080. [Google Scholar] [CrossRef] [Green Version]
- Galdieri, L.; Vancura, A. Acetyl-CoA Carboxylase Regulates Global Histone Acetylation. J. Biol. Chem. 2012, 287, 23865–23876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davey, C.A.; Sargent, D.F.; Luger, K.; Maeder, A.W.; Richmond, T.J. Solvent Mediated Interactions in the Structure of the Nucleosome Core Particle at 1.9Å Resolution. J. Mol. Biol. 2002, 319, 1097–1113. [Google Scholar] [CrossRef]
- Kouzarides, T. Chromatin Modifications and Their Function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, N.; Gaikwad, A.B. Histone Acetylation Regulates Natriuretic Peptides and Neprilysin Gene Expressions in Diabetic Cardiomyopathy and Nephropathy. Curr. Mol. Pharmacol. 2019, 12, 61–71. [Google Scholar] [CrossRef]
- Miao, F.; Gonzalo, I.G.; Lanting, L.; Natarajan, R. In Vivo Chromatin Remodeling Events Leading to Inflammatory Gene Transcription under Diabetic Conditions. J. Biol. Chem. 2004, 279, 18091–18097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremlitzka, M.; Nowacka, A.A.; Mohlin, F.C.; Bompada, P.; De Marinis, Y.; Blom, A.M. Interaction of Serum-Derived and Internalized C3 With DNA in Human B Cells—A Potential Involvement in Regulation of Gene Transcription. Front. Immunol. 2019, 10, 493. [Google Scholar] [CrossRef]
- Audic, S.; Claverie, J.-M. The Significance of Digital Gene Expression Profiles. Genome Res. 1997, 7, 986–995. [Google Scholar] [CrossRef]
- Grant, S.F. The TCF7L2 Locus: A Genetic Window Into the Pathogenesis of Type 1 and Type 2 Diabetes. Diabetes Care 2019, 42, 1624–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altshuler, D.; Hirschhorn, J.N.; Klannemark, M.; Lindgren, C.; Vohl, M.-C.; Nemesh, J.; Lane, C.R.; Schaffner, S.F.; Bolk, S.; Brewer, C.G.; et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 2000, 26, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.F.A.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Manolescu, A.; Sainz, J.; Helgason, A.; Stefansson, H.; Emilsson, V.; Helgadottir, A.; et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 2006, 38, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Calo, E.; Wysocka, J. Modification of Enhancer Chromatin: What, How, and Why? Mol. Cell 2013, 49, 825–837. [Google Scholar] [CrossRef] [Green Version]
- Scott, R.A.; Scott, L.J.; Mägi, R.; Marullo, L.; Gaulton, K.J.; Kaakinen, M.; Pervjakova, N.; Pers, T.H.; Johnson, A.D.; Eicher, J.D.; et al. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes 2017, 66, 2888–2902. [Google Scholar] [CrossRef] [Green Version]
- Frostegård, J. Immune Mechanisms in Atherosclerosis, Especially in Diabetes Type. Front. Endocrinol. 2013, 4, 162. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Yoon, W.; Goldschmidt-Clermont, P.J. DNA Methylation and Atherosclerosis. J. Nutr. 2002, 132, 2406S–2409S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Kim, J.Y.; Song, K.S.; Lee, Y.H.; Seo, J.S.; Jelinek, J.; Goldschmidt-Clermont, P.J.; Issa, J.-P.J. Epigenetic changes in estrogen receptor β gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. Biochim. Biophys. Acta Mol. Basis Dis. 2007, 1772, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S. Inactivation of Monocarboxylate Transporter MCT3 by DNA Methylation in Atherosclerosis. Circulation 2005, 112, 1353–1361. [Google Scholar] [CrossRef] [PubMed]
- El-Osta, A.; Brasacchio, D.; Yao, D.; Pocai, A.; Jones, P.L.; Roeder, R.G.; Cooper, M.E.; Brownlee, M. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med. 2008, 205, 2409–2417. [Google Scholar] [CrossRef]
- Van Rooij, E.; Olson, E.N. MicroRNAs: Powerful new regulators of heart disease and provocative therapeutic targets. J. Clin. Investig. 2007, 117, 2369–2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khyzha, N.; Alizada, A.; Wilson, M.D.; Fish, J.E. Epigenetics of Atherosclerosis: Emerging Mechanisms and Methods. Trends Mol. Med. 2017, 23, 332–347. [Google Scholar] [CrossRef]
- Wierda, R.J.; Rietveld, I.M.; van Eggermond, M.C.; Belien, J.A.; van Zwet, E.W.; Lindeman, J.H.; Elsen, P.J.V.D. Global histone H3 lysine 27 triple methylation levels are reduced in vessels with advanced atherosclerotic plaques. Life Sci. 2015, 129, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Greißel, A.; Culmes, M.; Burgkart, R.; Zimmermann, A.; Eckstein, H.-H.; Zernecke, A.; Pelisek, J. Histone acetylation and methylation significantly change with severity of atherosclerosis in human carotid plaques. Cardiovasc. Pathol. 2015, 25, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, J.; Ning, C.; Zheng, X.; Fu, J.; Wang, A.; Zhang, Q.; Liu, J.-F. Genome-wide DNA methylation and transcriptome analyses reveal genes involved in immune responses of pig peripheral blood mononuclear cells to poly I:C. Sci. Rep. 2017, 7, 9709. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, J.; Tian, G.; Li, N.; Li, Q.; Ye, M.; Zheng, H.; Yu, J.; Wu, H.; Sun, J.; et al. The DNA Methylome of Human Peripheral Blood Mononuclear Cells. PLoS Biol. 2010, 8, e1000533. [Google Scholar] [CrossRef] [PubMed]
- Matei, D.; Fang, F.; Shen, C.; Schilder, J.; Arnold, A.; Zeng, Y.; Berry, W.A.; Huang, T.; Nephew, K.P. Epigenetic Resensitization to Platinum in Ovarian Cancer. Cancer Res. 2012, 72, 2197–2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Francesco, A.; Arosio, B.; Falconi, A.; Di Bonaventura, M.V.M.; Karimi, M.; Mari, D.; Casati, M.; Maccarrone, M.; D’Addario, C. Global changes in DNA methylation in Alzheimer’s disease peripheral blood mononuclear cells. Brain Behav. Immun. 2015, 45, 139–144. [Google Scholar] [CrossRef]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muendlein, A.; Saely, C.H.; Geller-Rhomberg, S.; Sonderegger, G.; Rein, P.; Winder, T.; Beer, S.; Vonbank, A.; Drexel, H. Single Nucleotide Polymorphisms of TCF7L2 Are Linked to Diabetic Coronary Atherosclerosis. PLoS ONE 2011, 6, e17978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, R.; Chen, M.; Zhang, C.; Chen, M.; Li, H. A comparison of gene expression profiles in patients with coronary artery disease, type 2 diabetes, and their coexisting conditions. Diagn. Pathol. 2017, 12, 44. [Google Scholar] [CrossRef]
- Noble, J.A.; Valdes, A. Genetics of the HLA Region in the Prediction of Type 1 Diabetes. Curr. Diabetes Rep. 2011, 11, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Senapati, P.; Kato, H.; Lee, M.; Leung, A.; Thai, C.; Sanchez, A.; Gallagher, E.J.; LeRoith, D.; Seewaldt, V.L.; Ann, D.K.; et al. Hyperinsulinemia promotes aberrant histone acetylation in triple-negative breast cancer. Epigenet. Chromatin 2019, 12, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, F.; Chen, Z.; Genuth, S.; Paterson, A.; Zhang, L.; Wu, X.; Li, S.M.; Cleary, P.; Riggs, A.; Harlan, D.M.; et al. Evaluating the Role of Epigenetic Histone Modifications in the Metabolic Memory of Type 1 Diabetes. Diabetes 2014, 63, 1748–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All | No T2D (n = 10) | T2D (n = 8) | |
---|---|---|---|
Age, years (IQR) | 69.5 (61.8–77.3) | 69.5 (62.8–73.3) | 69.5 (59.5–78.8) |
Sex, males (%) | 12 (67) | 6 (60) | 6 (75) |
Smoking, current and previous/non smokers (%) | 16/2 (89/11) | 9/1 (90/10) | 7/1 (88/12) |
BMI (IQR) * | 26.8 (24.1–28.8) | 26.4 (24.1–30.0) | 27.0 (24.6–27.7) |
C-peptide (pmol/L) | 1558.5 (253.6–3666.2) | 1471.0 (464.4–3588.4) | 1668.0 (253.6–3666.2) |
Degree of stenosis, % (IQR) | 87.5 (78.8–90.0) | 90 (83.4–91.3) | 85 (71.3–90.0) |
Hypertension, n(%) | 14 (78) | 9 (90) | 5 (63) |
Blood markers | |||
hsCRP, mg/L (IQR) † | 3.7 (2.7–5.0) | 3.7 (2.5–4.7) | 3.6 (2.2–6.0) |
HbA1c, mmol/mol (IQR) || | 49.5 (46.3–74.2) | 45 (38–47) | 64 (49–77) *** |
Total cholesterol, mmol/L (IQR) | 4.4 (3.7–5.4) | 4.6 (3.8–5.0) | 4.2 (3.4–6.0) |
LDL, mmol/L (IQR) ‡ | 2.6 (1.8–3.4) | 2.2 (1.8–2.9) | 2.7 (1.9–4.0) |
HDL, mmol/L (IQR) § | 1.0 (0.8–1.3) | 1.1 (0.8–1.8) | 1.0 (0.8–1.1) |
Triglycerides, mmol/L (IQR) | 1.7 (1.0–2.2) | 1.6 (0.9–2.2) | 1.7 (1.0–2.9) |
Blood pressure lowering treatment, n(%) | |||
RAS inhibitor | 10 (56) | 6 (60) | 4 (50) |
Beta blocker | 10 (56) | 7 (70) | 3 (38) |
Blood glucose lowering treatment, n(%) | |||
Lifestyle changes | 1 (6) | - | 1 (13) |
Oral glucose lowering treatment | 4 (22) | - | 4 (50) |
Insulin only | 0 (0) | - | 0 (0) |
Insulin and oral glucose lowering | 2 (11) | - | 2 (25) |
Statin treatment, n(%) | 18 (100) | 10 (100) | 8 (100) |
Gene Symbol | Peak Start | Peak End | M_Value_Rescaled | A_Value_Rescaled | −log10 (p-Value) |
---|---|---|---|---|---|
LOC100631378 | 38327931 | 38328189 | −5.49 | 2.11 | 7.14 |
HCG4B | 1188949 | 1189493 | −3.34 | 3.92 | 8.81 |
CHRM2 | 136684799 | 136685143 | −2.74 | 4.82 | 11.19 |
LOC349160 | 136684799 | 136685143 | −2.74 | 4.82 | 11.19 |
TCF7L2 | 114757868 | 114758883 | −2.66 | 18.27 | Inf |
HLA-C | 2586205 | 2587065 | −2.33 | 4.88 | 8.52 |
CATSPERB | 92107659 | 92108000 | −2.29 | 3.56 | 3.46 |
CECR2 | 18024490 | 18024867 | −2.25 | 5.16 | 9.75 |
XKR6 | 10790323 | 10790692 | −2.17 | 4.20 | 4.48 |
DPP6 | 154129998 | 154130240 | −2.15 | 4.10 | 4.27 |
Gene Symbol | Peak Start | Peak End | M_Value_Rescaled | A_Value_Rescaled | −log10 (p-Value) |
---|---|---|---|---|---|
GPSM3 | 3630151 | 3630907 | 5.33 | 2.66 | Inf |
RNF5P1 | 3616969 | 3617540 | 5.17 | 2.58 | Inf |
RNF5 | 3616969 | 3617540 | 5.17 | 2.58 | Inf |
APOM | 3129514 | 3130353 | 4.78 | 2.39 | Inf |
BAG6 | 3129514 | 3130353 | 4.78 | 2.39 | Inf |
HCP5 | 2940084 | 2941136 | 4.21 | 2.10 | 5.72 |
SERF1B | 70195996 | 70198315 | 4.03 | 2.02 | 5.18 |
SERF1A | 70195996 | 70198315 | 4.03 | 2.02 | 5.18 |
ATP6V1G2-DDX39B | 2888815 | 2890051 | 3.83 | 3.50 | 10.29 |
DDX39B | 2888815 | 2890051 | 3.83 | 3.50 | 10.29 |
GENE | CHR | START | STOP | ZSTAT | p-Value |
---|---|---|---|---|---|
TCF7L2 | 10 | 114757867 | 114758883 | 13.07 | 2.45E-39 |
TCF7L2 | 10 | 114757868 | 114758883 | 13.07 | 2.45E-39 |
HLA-B | 6 | 31322760 | 31325963 | 3.33 | 0.00044 |
HLA-DQB1 | 6 | 32631728 | 32636147 | 3.19 | 0.00070 |
HLA-B | 6 | 31320376 | 31326175 | 3.09 | 0.0010 |
HLA-DRB1 | 6 | 32551226 | 32558284 | 3.04 | 0.0012 |
HCG27 | 6 | 31164981 | 31166290 | 2.96 | 0.0015 |
HLA-DRB1 | 6 | 32551453 | 32552934 | 2.89 | 0.0019 |
HCG27 | 6 | 31164908 | 31166411 | 2.87 | 0.0021 |
XKR6 | 8 | 10790323 | 10790692 | 2.33 | 0.0099 |
HLA-DRB5 | 6 | 32496119 | 32498185 | 2.23 | 0.011 |
MAGI1 | 3 | 65678931 | 65679421 | 1.95 | 0.026 |
HLA-DQA1 | 6 | 32604890 | 32606948 | 1.92 | 0.027 |
PKD2L1 | 10 | 102055647 | 102056160 | 1.88 | 0.030 |
CA5A | 16 | 87933312 | 87933806 | 1.88 | 0.030 |
HLA-DQA1 | 6 | 32604815 | 32607091 | 1.85 | 0.032 |
DEPTOR | 8 | 120994091 | 120994421 | 1.85 | 0.032 |
Pathway | Peak Related Genes with Pathway Annotation | p-Value | Q-Value |
---|---|---|---|
Allograft rejection | 4 (4%) | 0.00032 | 0.025 |
Cell adhesion molecules (CAMs) | 7 (7%) | 0.00050 | 0.025 |
ErbB signaling pathway | 6 (6%) | 0.00053 | 0.025 |
Type I diabetes mellitus | 4 (4%) | 0.00058 | 0.025 |
Autoimmune thyroid disease | 4 (4%) | 0.0010 | 0.029 |
Graft-versus-host disease | 4 (4%) | 0.0010 | 0.029 |
Endocytosis | 9 (9%) | 0.0017 | 0.043 |
Asthma | 3 (3%) | 0.0019 | 0.043 |
Acute myeloid leukemia | 4 (4%) | 0.0034 | 0.067 |
Intestinal immune network for IgA production | 3 (3%) | 0.0052 | 0.092 |
Antigen processing and presentation | 4 (4%) | 0.0074 | 0.11 |
Herpes simplex infection | 6 (6%) | 0.0078 | 0.11 |
Viral myocarditis | 4 (4%) | 0.0087 | 0.18 |
Aldosterone synthesis and secretion | 4 (4%) | 0.0099 | 0.12 |
Epstein–Barr virus infection | 6 (6%) | 0.012 | 0.15 |
Inflammatory bowel disease (IBD) | 3 (3%) | 0.015 | 0.16 |
Wnt signaling pathway | 5 (5%) | 0.016 | 0.16 |
Influenza A | 6 (6%) | 0.016 | 0.16 |
Endometrial cancer | 3 (3%) | 0.017 | 0.16 |
EGFR tyrosine kinase inhibitor resistance | 4 (4%) | 0.018 | 0.16 |
Cholinergic synapse | 4 (4%) | 0.019 | 0.16 |
PI3K-Akt signaling pathway | 8 (8%) | 0.021 | 0.17 |
HTLV-I infection | 6 (6%) | 0.024 | 0.18 |
Leishmaniasis | 3 (3%) | 0.025 | 0.18 |
Rheumatoid arthritis | 3 (3%) | 0.030 | 0.21 |
Inositol phosphate metabolism | 3 (3%) | 0.033 | 0.23 |
Dopaminergic synapse | 4 (4%) | 0.037 | 0.24 |
Systemic lupus erythematosus | 4 (4%) | 0.038 | 0.24 |
Proteoglycans in cancer | 7 (7%) | 0.041 | 0.25 |
MicroRNAs in cancer | 5 (5%) | 0.045 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bompada, P.; Goncalves, I.; Wu, C.; Gao, R.; Sun, J.; Mir, B.A.; Luan, C.; Renström, E.; Groop, L.; Weng, J.; et al. Epigenome-Wide Histone Acetylation Changes in Peripheral Blood Mononuclear Cells in Patients with Type 2 Diabetes and Atherosclerotic Disease. Biomedicines 2021, 9, 1908. https://doi.org/10.3390/biomedicines9121908
Bompada P, Goncalves I, Wu C, Gao R, Sun J, Mir BA, Luan C, Renström E, Groop L, Weng J, et al. Epigenome-Wide Histone Acetylation Changes in Peripheral Blood Mononuclear Cells in Patients with Type 2 Diabetes and Atherosclerotic Disease. Biomedicines. 2021; 9(12):1908. https://doi.org/10.3390/biomedicines9121908
Chicago/Turabian StyleBompada, Pradeep, Isabel Goncalves, Chuanyan Wu, Rui Gao, Jiangming Sun, Bilal Ahmad Mir, Cheng Luan, Erik Renström, Leif Groop, Jianping Weng, and et al. 2021. "Epigenome-Wide Histone Acetylation Changes in Peripheral Blood Mononuclear Cells in Patients with Type 2 Diabetes and Atherosclerotic Disease" Biomedicines 9, no. 12: 1908. https://doi.org/10.3390/biomedicines9121908
APA StyleBompada, P., Goncalves, I., Wu, C., Gao, R., Sun, J., Mir, B. A., Luan, C., Renström, E., Groop, L., Weng, J., Hansson, O., Edsfeldt, A., & De Marinis, Y. (2021). Epigenome-Wide Histone Acetylation Changes in Peripheral Blood Mononuclear Cells in Patients with Type 2 Diabetes and Atherosclerotic Disease. Biomedicines, 9(12), 1908. https://doi.org/10.3390/biomedicines9121908