Increased Plasma Soluble PD-1 Concentration Correlates with Disease Progression in Patients with Cancer Treated with Anti-PD-1 Antibodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection and Ethics Statement
2.2. sPD-1 Detection
2.3. Immunohistochemical (IHC) Analysis of PD-L1 Expression on Tumor Cells
2.4. Statistical Analyses
2.5. Literature Review of Previous Studies on sPD-1 in Several Types of Cancer
3. Results
3.1. Patients’ Clinicopathological Characteristics
3.2. Comparison of Plasma sPD-1 Concentration at Each Treatment Point
3.3. Association between sPD-1 Levels and Tumor Size after Four Cycles of ICI Therapy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montemagno, C.; Hagege, A.; Borchiellini, D.; Thamphya, B.; Rastoin, O.; Ambrosetti, D.; Iovanna, J.; Rioux-Leclercq, N.; Porta, C.; Negrier, S.; et al. Soluble forms of PD-L1 and PD-1 as prognostic and predictive markers of sunitinib efficacy in patients with metastatic clear cell renal cell carcinoma. Oncoimmunology 2020, 9, 1846901. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Pan, Y.; Guo, Y.; Li, B.; Tang, Y. Study on the Expression Levels and Clinical Significance of PD-1 and PD-L1 in Plasma of NSCLC Patients. J. Immunother. 2020, 43, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Fife, B.T.; Bluestone, J.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol. Rev. 2008, 224, 166–182. [Google Scholar] [CrossRef] [PubMed]
- Hamanishi, J.; Mandai, M.; Matsumura, N.; Abiko, K.; Baba, T.; Konishi, I. PD-1/PD-L1 blockade in cancer treatment: Perspectives and issues. Int. J. Clin. Oncol. 2016, 21, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Zou, W.; Wolchok, J.D.; Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 2016, 8, 328rv4. [Google Scholar] [CrossRef] [Green Version]
- Horn, L.; Mansfield, A.S.; Szczęsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. IMpower133 Study Group. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef]
- Wagner, G.; Stollenwerk, H.K.; Klerings, I.; Pecherstorfer, M.; Gartlehner, G.; Singer, J. Efficacy and safety of immune checkpoint inhibitors in patients with advanced non-small cell lung cancer (NSCLC): A systematic literature review. Oncoimmunology 2020, 9, 1774314. [Google Scholar] [CrossRef]
- Kang, Y.K.; Boku, N.; Satoh, T.; Ryu, M.H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. KEYNOTE-045 Investigators. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Liu, F.; Liu, L. Prognostic significance of PD-L1 in solid tumor: An updated meta-analysis. Medicine 2017, 96, e6369. [Google Scholar] [CrossRef]
- Robert, C.; Ribas, A.; Wolchok, J.D.; Hodi, F.S.; Hamid, O.; Kefford, R.; Weber, J.S.; Joshua, A.M.; Hwu, W.J.; Gangadhar, T.C.; et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet 2014, 384, 1109–1117. [Google Scholar] [CrossRef]
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Lang, J. Soluble PD-1 and PD-L1: Predictive and prognostic significance in cancer. Oncotarget 2017, 8, 97671–97682. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Sun, C.; Li, J.; Hu, L.; Li, M.; Liu, J.; Pu, L.; Xiong, S. The Prognostic Significance of Soluble Programmed Death Ligand 1 Expression in Cancers: A Systematic Review and Meta-analysis. Scand. J. Immunol. 2017, 86, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Ando, K.; Hamada, K.; Watanabe, M.; Ohkuma, R.; Shida, M.; Onoue, R.; Kubota, Y.; Matsui, H.; Ishiguro, T.; Hirasawa, Y.; et al. Plasma Levels of Soluble PD-L1 Correlate with Tumor Regression in Patients With Lung and Gastric Cancer Treated With Immune Checkpoint Inhibitors. Anticancer. Res. 2019, 39, 5195–5201. [Google Scholar] [CrossRef]
- Ando, K.; Hamada, K.; Shida, M.; Ohkuma, R.; Kubota, Y.; Horiike, A.; Matsui, H.; Ishiguro, T.; Hirasawa, Y.; Ariizumi, H.; et al. A high number of PD-L1+ CD14+ monocytes in peripheral blood is correlated with shorter survival in patients receiving immune checkpoint inhibitors. Cancer Immunol. Immunother. 2020, 70, 337–378. [Google Scholar] [CrossRef]
- Cheng, S.; Zheng, J.; Zhu, J.; Xie, C.; Zhang, X.; Han, X.; Song, B.; Ma, Y.; Liu, J. PD-L1 gene polymorphism and high level of plasma soluble PD-L1 protein may be associated with non-small cell lung cancer. Int. J. Biol. Markers 2015, 30, e364-8. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Pawłowska, A.; Suszczyk, D.; Tarkowski, R.; Paduch, R.; Kotarski, J.; Wertel, I. Programmed Death-1 Receptor (PD-1) as a Potential Prognosis Biomarker for Ovarian Cancer Patients. Cancer Manag. Res. 2020, 12, 9691–9709. [Google Scholar] [CrossRef]
- Zhang, X.; Schwartz, J.C.; Guo, X.; Bhatia, S.; Cao, E.; Lorenz, M.; Cammer, M.; Chen, L.; Zhang, Z.Y.; Edidin, M.A.; et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 2004, 20, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Abu Hejleh, T.; Furqan, M.; Ballas, Z.; Clamon, G. The clinical significance of soluble PD-1 and PD-L1 in lung cancer. Crit. Rev. Oncol. Hematol. 2019, 143, 148–152. [Google Scholar] [CrossRef]
- Sorensen, S.F.; Demuth, C.; Weber, B.; Sorensen, B.S.; Meldgaard, P. Increase in soluble PD-1 is associated with prolonged survival in patients with advanced EGFR-mutated non-small cell lung cancer treated with erlotinib. Lung Cancer 2016, 100, 77–84. [Google Scholar] [CrossRef]
- Greisen, S.R.; Rasmussen, T.K.; Stengaard-Pedersen, K.; Hetland, M.L.; Hørslev-Petersen, K.; Hvid, M.; Deleuran, B. Increased soluble programmed death-1 (sPD-1) is associated with disease activity and radiographic progression in early rheumatoid arthritis. Scand. J. Rheumatol. 2014, 43, 101–108. [Google Scholar] [CrossRef]
- Incorvaia, L.; Fanale, D.; Badalamenti, G.; Brando, C.; Bono, M.; De Luca, I.; Algeri, L.; Bonasera, A.; Corsini, L.R.; Scurria, S.; et al. A “Lymphocyte MicroRNA Signature” as Predictive Biomarker of Immunotherapy Response and Plasma PD-1/PD-L1 Expression Levels in Patients with Metastatic Renal Cell Carcinoma: Pointing towards Epigenetic Reprogramming. Cancers 2020, 12, 3396. [Google Scholar] [CrossRef]
- Babačić, H.; Lehtiö, J.; Pico de Coaña, Y.; Pernemalm, M.; Eriksson, H. In-depth plasma proteomics reveals increase in circulating PD-1 during anti-PD-1 immunotherapy in patients with metastatic cutaneous melanoma. J. Immunother. Cancer 2020, 8, e000204. [Google Scholar] [CrossRef]
- Tiako Meyo, M.; Jouinot, A.; Giroux-Leprieur, E.; Fabre, E.; Wislez, M.; Alifano, M.; Leroy, K.; Boudou-Rouquette, P.; Tlemsani, C.; Khoudour, N.; et al. Predictive Value of Soluble PD-1, PD-L1, VEGFA, CD40 Ligand and CD44 for Nivolumab Therapy in Advanced Non-Small Cell Lung Cancer: A Case-Control Study. Cancers 2020, 12, 473. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Cui, X.; Yang, Y.J.; Chen, Q.Q.; Zhong, L.; Zhang, T.; Cai, R.L.; Miao, J.Y.; Yu, S.C.; Zhang, F. Serum sPD-1 and sPD-L1 as Biomarkers for Evaluating the Efficacy of Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients. Clin. Breast Cancer 2019, 19, 326–332. [Google Scholar] [CrossRef]
- Dillman, R.O.; Nistor, G.I.; McLelland, B.T.; Hsieh, C.; Poole, A.J.; Cornforth, A.N.; Keirstead, H.S. Preliminary observations on soluble programmed cell death protein-1 as a prognostic and predictive biomarker in patients with metastatic melanoma treated with patient-specific autologous vaccines. Oncotarget 2019, 10, 5359–5371. [Google Scholar] [CrossRef] [Green Version]
- Bian, B.; Fanale, D.; Dusetti, N.; Roque, J.; Pastor, S.; Chretien, A.S.; Incorvaia, L.; Russo, A.; Olive, D.; Iovanna, J. Prognostic significance of circulating PD-1, PD-L1, pan-BTN3As, BTN3A1 and BTLA in patients with pancreatic adenocarcinoma. Oncoimmunology 2019, 8, e1561120. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, T.; Akiyoshi, T.; Yamamoto, N.; Taguchi, S.; Mori, S.; Nagasaki, T.; Fukunaga, Y.; Ueno, M. Clinical significance of soluble programmed cell death-1 and soluble programmed cell death-ligand 1 in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. PLoS ONE 2019, 14, e0212978. [Google Scholar] [CrossRef] [Green Version]
- Chang, B.; Huang, T.; Wei, H.; Shen, L.; Zhu, D.; He, W.; Chen, Q.; Zhang, H.; Li, Y.; Huang, R.; et al. The correlation and prognostic value of serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death-ligand 1 (sPD-L1) in patients with hepatocellular carcinoma. Cancer Immunol. Immunother. 2019, 68, 353–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruger, S.; Legenstein, M.L.; Rösgen, V.; Haas, M.; Modest, D.P.; Westphalen, C.B.; Ormanns, S.; Kirchner, T.; Heinemann, V.; Holdenrieder, S.; et al. Serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death ligand 1 (sPD-L1) in advanced pancreatic cancer. Oncoimmunology 2017, 6, e1310358. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, C.; Ohm-Laursen, L.; Barington, T.; Husby, S.; Lillevang, S.T. Alternative splice variants of the human PD-1 gene. Cell Immunol. 2005, 235, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Elhag, O.A.; Hu, X.J.; Wen-Ying, Z.; Li, X.; Yuan, Y.Z.; Deng, L.F.; Liu, D.L.; Liu, Y.L.; Hui, G. Reconstructed adeno-associated virus with the extracellular domain of murine PD-1 induces antitumor immunity. Asian Pac. J. Cancer Prev. 2012, 13, 4031–4036. [Google Scholar] [CrossRef] [Green Version]
- Song, M.Y.; Park, S.H.; Nam, H.J.; Choi, D.H.; Sung, Y.C. Enhancement of vaccine-induced primary and memory CD8(+) T-cell responses by soluble PD-1. J. Immunother. 2011, 34, 297–306. [Google Scholar] [CrossRef]
- Gu, D.; Ao, X.; Yang, Y.; Chen, Z.; Xu, X. Soluble immune checkpoints in cancer: Production, function and biological significance. J. Immunother. Cancer. 2018, 6, 132. [Google Scholar] [CrossRef] [Green Version]
Case | Sex | Age, Years | Cancer Type | Stage | ICI | Tumor mPD-L1 Expression (IHC,%) | sPD-1 Concentration (pg/mL) | Relative Change in Tumor Size (%) | PFS (Months) | OS (Months) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-ICI | Post-ICI | Relative Change | |||||||||||||
After 2 Cycles | After 4 Cycles | After 2 Cycles/Pre-ICI | After 4 Cycles/Pre-ICI | After 4 Cycles/After 2 Cycles | |||||||||||
1 | M | 78 | NSCLC | IV | Nivolumab | 20~30 | 110.20 | 6642.70 | 6338.05 | 60.28 | 57.51 | 0.95 | -36.9 | 40.4 | 45.0 |
2 | M | 61 | NSCLC | IIIR | Nivolumab | N/A | 5940.23 | 6659.75 | 4947.05 | 1.12 | 0.83 | 0.74 | -83.3 | 20.3 | 28.6 |
3 | F | 70 | NSCLC | IV | Nivolumab | N/A | N.D. | 2757.00 | 4093.38 | N/A | N/A | 1.48 | 19.4 | 2.3 | 5.6 |
4 | M | 67 | NSCLC | IIIR | Nivolumab | 70~80 | 28,352.41 | 35,479.60 | 43,041.72 | 1.25 | 1.52 | 1.21 | -66.9 | 13.5 | 27.2 |
5 | M | 63 | GC | IIIR | Nivolumab | N/A | 33.30 | 3796.888 | 5369.81 | 839.28 | 161.27 | 1.41 | 45.3 | 3.4 | 4.2 |
6 | M | 74 | GC | IV | Nivolumab | N/A | 421.07 | N/A | N/A | N/A | N/A | N/A | N/A | 2.4 | 4.8 |
7 | M | 68 | GC | IV | Nivolumab | N/A | 1959.76 | 7870.94 | 12,614.14 | 4.02 | 6.44 | 1.60 | 9.0 | 3.9 | 8.3 |
8 | M | 67 | NSCLC | IIIR | Nivolumab | 50~60 | 1035.29 | 1276.05 | 1625.91 | 1.23 | 1.57 | 1.27 | 12.7 | 1.3 | 8.2 |
9 | F | 68 | GC | IV | Nivolumab | N/A | N.D. | 4355.20 | 3871.38 | N/A | N/A | 0.89 | 1.1 | 1.3 | 2.3 |
10 | M | 66 | GC | IIIR | Nivolumab | N/A | N.D. | 2945.92 | N/A | N/A | N/A | N/A | N/A | 1.2 | 7.4 |
11 | M | 60 | GC | IIIR | Nivolumab | N/A | N.D. | N/A | N/A | N/A | N/A | N/A | N/A | 0.5 | 1.5 |
12 | F | 49 | GC | IIIR | Nivolumab | N/A | 386.35 | N/A | N/A | N/A | N/A | N/A | N/A | 0.5 | 2.5 |
13 | F | 75 | GC | IV | Nivolumab | N/A | N.D. | N/A | N/A | N/A | N/A | N/A | N/A | 3.6 | 9.4 |
14 | F | 57 | GC | IV | Nivolumab | N/A | 245.33 | N/A | N/A | N/A | N/A | N/A | N/A | 1.2 | 1.5 |
15 | M | 72 | NSCLC | IV | Pembrolizumab | 70~80 | 373.86 | 23,400.47 | 69,979.36 | 62.59 | 187.18 | 2.99 | 56.0 | 2.4 | 7.5 |
16 | M | 71 | NSCLC | IV | Pembrolizumab | 60~70 | 378.87 | N/A | N/A | N/A | N/A | N/A | N/A | 20.4 | 34.3 |
17 | M | 59 | NSCLC | IV | Pembrolizumab | 60~70 | 40.85 | N/A | N/A | N/A | N/A | N/A | N/A | 1.0 | 1.5 |
18 | M | 64 | NSCLC | IV | Pembrolizumab | 60~70 | 7.42 | 6225.54 | 6441.62 | 839.28 | 868.41 | 1.03 | -43.6 | 7.0 | 22.0 |
19 | M | 70 | NSCLC | IV | Pembrolizumab | 70~80 | 426.00 | 6414.20 | N/A | N/A | N/A | N/A | N/A | 1.6 | 1.7 |
20 | M | 71 | NSCLC | IV | Pembrolizumab | >90 | N.D. | 4840.64 | N/A | N/A | N/A | N/A | N/A | 2.4 | 4.6 |
21 | F | 70 | BLDC | IV | Pembrolizumab | N/A | 1967.59 | 8023.49 | N/A | N/A | N/A | N/A | N/A | 7.4 | 20.3 |
22 | M | 68 | NSCLC | IV | Pembrolizumab | 10~20 | N.D. | N/A | N/A | N/A | N/A | N/A | N/A | 6.1 | 26.7 |
Author, Year of Publication | Tumor Types | Patients Number | Serum/Plasma | ICI | Major Findings Related to sPD-1 | |
---|---|---|---|---|---|---|
1 | Montemagno C, et al., 2020 | RCC | 50 (Sunitinib) 37 (Bevasizumab) | Plasma | — | High levels of sPD-1 were independent prognostic factors of PFS in the sunitinib group. (The levels of sPD-1 were not correlated to PFS under bevacizumab.) |
2 | Incorvaia L, et al., 2020 | RCC | 9 (long-responder) | Plasma | Nivolumab | At baseline, high sPD-1 levels were observed. Conversely, after 4 weeks from starting nivolumab, sPD-1 levels were strongly reduced only in patients with PR/CR/SD to nivolumab >18 months. |
3 | Pawłowska A, et al., 2020 | OC | 50 | Plasma | — | The higher level of CD4+PD-1+ T cells in the circulation and the higher sPD-1 level in plasma predict poor survival of OC patients. |
4 | Babačić H, et al., 2020 | MM | 24 | Plasma | Nivolumab Ipilimumab Ipi + Nivo | Circulating sPD-1 had the highest increase during anti-PD-1 treatment and in anti-PD-1 responders. |
5 | He J, et al., 2020 | NSCLC | 88 | Plasma | — | The plasma concentrations of sPD-1 were higher than those in the healthy control group. Higher sPD-L1/sPD-1 ratio indicates a relatively better prognosis. (High levels of sPD-L1 indicates better prognosis, but the levels of sPD-1 were not correlated to survival time.) |
6 | Tiako Meyo M, et al., 2020 | NSCLC | 87 | Serum | Nivolumab | After two cycles of nivolumab, an increased or stable sPD-1 level independently correlated with longer PFS and OS). |
7 | Li Y, et al., 2019 | TNBC | 59 | Serum | — | Compared to healthy women, the serum concentration of sPD-1 was significantly elevated in TNBC patients. Patients who experienced complete or partial remission after NAC had significantly decreased serum levels of sPD-1 compared to patients with a poor response to NAC. |
8 | Dillman RO, et al., 2019 | MM | 39 | Serum | — | Baseline sPD-1 (cut-off value is 1,200 pg/mL) was not a prognostic marker for survival for melanoma patients. |
9 | Bian B, et al., 2019 | PDAC | 32 | Plasma | — | The soluble forms of PD-1 and PD-L1 share a strong correlation. Patients with high level of sPD-1 (>8.6 ng/ml) have a shorter overall survival than for patients with low level of sPD-1. |
10 | Tominaga T, et al., 2019 | CRC | 117 | Serum | — | The concentrations of sPD-1 both pre- and post-CRT were not associated with DFS. |
11 | Chang B, et al., 2019 | HCC | 120 | Serum | — | The level of sPD-L1 positively correlated with the level of sPD-1. The high level of sPD-1 correlated with a favorable OS, as well as a trend toward prolonged DFS. |
12 | Kruger S, et al., 2017 | PDAC | 41 | Serum | — | The close correlation was observed between levels of sPD-1 and sPD-L1. To compare OS in patients with high vs. low sPD-1 and sPD-L1 serum levels, both sPD-1 and sPD-L1 levels did not indicate an adverse outcome. |
13 | Sorensen SF, et al., 2016 | NSCLC | 38 | Serum | — | The serum concentration of sPD-1 was found to be significantly higher at disease progression as compared to pre-treatment. An increase in sPD-1 during treatment was associated with prolonged progression-free survival and overall survival. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohkuma, R.; Ieguchi, K.; Watanabe, M.; Takayanagi, D.; Goshima, T.; Onoue, R.; Hamada, K.; Kubota, Y.; Horiike, A.; Ishiguro, T.; et al. Increased Plasma Soluble PD-1 Concentration Correlates with Disease Progression in Patients with Cancer Treated with Anti-PD-1 Antibodies. Biomedicines 2021, 9, 1929. https://doi.org/10.3390/biomedicines9121929
Ohkuma R, Ieguchi K, Watanabe M, Takayanagi D, Goshima T, Onoue R, Hamada K, Kubota Y, Horiike A, Ishiguro T, et al. Increased Plasma Soluble PD-1 Concentration Correlates with Disease Progression in Patients with Cancer Treated with Anti-PD-1 Antibodies. Biomedicines. 2021; 9(12):1929. https://doi.org/10.3390/biomedicines9121929
Chicago/Turabian StyleOhkuma, Ryotaro, Katsuaki Ieguchi, Makoto Watanabe, Daisuke Takayanagi, Tsubasa Goshima, Rie Onoue, Kazuyuki Hamada, Yutaro Kubota, Atsushi Horiike, Tomoyuki Ishiguro, and et al. 2021. "Increased Plasma Soluble PD-1 Concentration Correlates with Disease Progression in Patients with Cancer Treated with Anti-PD-1 Antibodies" Biomedicines 9, no. 12: 1929. https://doi.org/10.3390/biomedicines9121929
APA StyleOhkuma, R., Ieguchi, K., Watanabe, M., Takayanagi, D., Goshima, T., Onoue, R., Hamada, K., Kubota, Y., Horiike, A., Ishiguro, T., Hirasawa, Y., Ariizumi, H., Tsurutani, J., Yoshimura, K., Tsuji, M., Kiuchi, Y., Kobayashi, S., Tsunoda, T., & Wada, S. (2021). Increased Plasma Soluble PD-1 Concentration Correlates with Disease Progression in Patients with Cancer Treated with Anti-PD-1 Antibodies. Biomedicines, 9(12), 1929. https://doi.org/10.3390/biomedicines9121929