11C- and 18F-Radiotracers for In Vivo Imaging of the Dopamine System: Past, Present and Future
Abstract
:1. Introduction
2. In Vivo PET Radiotracers: General Considerations
3. Dopamine and PET Imaging in the Brain: The Big Picture
4. Dopamine Biosynthesis
4.1. β-[11C]-L-DOPA, 6-[18F]Fluoro-L-DOPA, and [18F]Fluorotyrosines
4.2. Future of AADC Radiotracers
5. Dopamine Receptors
5.1. Dopamine D2/D3 Receptor Radioligands
5.2. D1 Receptor Radioligands
5.3. D4 and D5 Receptor Radioligands
5.4. Imaging of Dopamine Receptors: Current and Future Applications
6. Neuronal Membrane Dopamine Transporters (DAT)
Imaging of the DAT: Current and Future Applications
7. Vesicular Monoamine Transporters (VMAT2)
8. Monoamine Oxidases (MAO): Inhibitors and Substrates
9. Putting It All Together: Multitracer Studies?
10. Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Swallow, S. Fluorine in Medicinal Chemistry. Prog. Med. Chem. 2015, 54, 65–133. [Google Scholar] [CrossRef]
- Pike, V.W. PET radiotracers: Crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol. Sci. 2009, 30, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Xu, J.; Cairns, N.J.; Perlmutter, J.S.; Mach, R.H. Dopamine D1, D2, D3 Receptors, Vesicular Monoamine Transporter Type-2 (VMAT2) and Dopamine Transporter (DAT) Densities in Aged Human Brain. PLoS ONE 2012, 7, e49483. [Google Scholar] [CrossRef] [Green Version]
- Firnau, G.; Garnett, E.; Chirakal, R.; Sood, S.; Nahmias, C.; Schrobilgen, G. [18F]Fluoro-l-dopa for the in vivo study of intracerebral dopamine. Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot. 1986, 37, 669–675. [Google Scholar] [CrossRef]
- Yee, R.E.; Cheng, D.W.; Huang, S.-C.; Namavari, M.; Satyamurthy, N.; Barrio, J.R. Blood-brain barrier and neuronal mem-brane transport of 6-[18F]fluoro-L-DOPA. Biochem. Pharmacol. 2001, 62, 1409–1415. [Google Scholar] [CrossRef]
- Sossi, V.; Doudet, D.J.; Holden, J.E. A Reversible Tracer Analysis Approach to the Study of Effective Dopamine Turnover. Br. J. Pharmacol. 2001, 21, 469–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endres, C.J.; Swaminathan, S.; DeJesus, O.T.; Sievert, M.; Ruoho, A.E.; Murali, D.; Rommelfanger, S.G.; Holden, J.E. Affinities of dopamine analogs for monoamine granular and plasma membrane transporters: Implications for PET dopamine studies. Life Sci. 1997, 60, 2399–2406. [Google Scholar] [CrossRef]
- Becker, G.; Bahri, M.A.; Michel, A.; Hustadt, F.; Garraux, G.; Luxen, A.; Lemaire, C.F.; Plenevaux, A. Comparative assessment of 6-[18F]fluoro-L -m-tyrosine and 6-[18F]fluoro-L -dopa to evaluate dopaminergic presynaptic integrity in a Parkinson’s disease rat model. J. Neurochem. 2017, 141, 626–635. [Google Scholar] [CrossRef] [Green Version]
- Doudet, D.J.; Chan, G.L.-Y.; Jivan, S.; DeJesus, O.T.; McGeer, E.G.; English, C.; Ruth, T.J.; Holden, J.E. Evaluation of Dopaminergic Presynaptic Integrity: 6-[18F]Fluoro-L-Dopa Versus 6-[18F]Fluoro-L-m-Tyrosine. Br. J. Pharmacol. 1999, 19, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, C.; Holden, J.; Christian, B.; Harding, S.; Nickles, R.J.; Johnson, S.C. A within-subject comparison of 6-[18F]Fluoro-m-Tyrosine (FMT) and 6-[18F]Fluoro-l-DOPA (FDOPA) in Parkinson disease (PD). NeuroImage 2010, 52, S75. [Google Scholar] [CrossRef]
- Li, C.T.; Palotti, M.; Holden, J.E.; Oh, J.; Okonkwo, O.; Christian, B.T.; Bendlin, B.B.; Buyan-Dent, L.; Harding, S.J.; Stone, C.K.; et al. A dual-tracer study of extrastriatal 6-[18F]fluoro-m-tyrosine and 6-[18F]-fluoro-L-dopa uptake in Parkinson’s disease. Synapse 2014, 68, 325–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanazawa, M.; Ohba, H.; Harada, N.; Kakiuchi, T.; Muramatsu, S.-I.; Tsukada, H. Evaluation of 6-11C-Methyl-m-Tyrosine as a PET Probe for Presynaptic Dopaminergic Activity: A Comparison PET Study with -11C-L-DOPA and 18F-FDOPA in Parkinson Disease Monkeys. J. Nucl. Med. 2015, 57, 303–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Lao-Kaim, N.P.; Roussakis, A.A.; Marti’n-Bastida, A.; Valle-Guzman, N.; Paul, G.; Loane, C.; Widner, H.; Politis, M.; Foltynie, T.; et al. 11C-PE2I and18F-Dopa PET for assessing progression rate in Parkinson’s: A longitudinal study. Mov. Disord. 2017, 33, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Morbelli, S.; Esposito, G.; Arbizu, J.; Barthel, H.; Boellaard, R.; Bohnen, N.I.; Brooks, D.J.; Darcourt, J.; Dickson, J.C.; Douglas, D.; et al. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1885–1912. [Google Scholar] [CrossRef] [PubMed]
- Galldiks, N.; Lohmann, P.; Albert, N.L.; Tonn, J.C.; Langen, K.-J. Current status of PET imaging in neuro-oncology. Neuro-Oncol. Adv. 2019, 1, vdz010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zischler, J.; Kolks, N.; Modemann, D.; Neumaier, B.; Zlatopolskiy, B.D. Alcohol-Enhanced Cu-Mediated Radiofluorination. Chem. A Eur. J. 2017, 23, 3251–3256. [Google Scholar] [CrossRef]
- Preshlock, S.; Calderwood, S.; Verhoog, S.; Tredwell, M.; Huiban, M.; Hienzsch, A.; Gruber, S.; Wilson, T.C.; Taylor, N.J.; Cailly, T.; et al. Enhanced copper-mediated 18F-fluorination of aryl boronic esters provides eight radiotracers for PET applications. Chem. Commun. 2016, 52, 8361–8364. [Google Scholar] [CrossRef]
- Mossine, A.V.; Tanzey, S.S.; Brooks, A.F.; Makaravage, K.J.; Ichiishi, N.; Miller, J.M.; Henderson, B.D.; Erhard, T.; Bruetting, C.; Skaddan, M.B.; et al. Synthesis of high-molar-activity [18F]6-fluoro-l-DOPA suitable for human use via Cu-mediated fluorination of a BPin precursor. Nat. Protoc. 2020, 15, 1742–1759. [Google Scholar] [CrossRef] [Green Version]
- Wagner, H.; Burns, H.; Dannals, R.; Wong, D.; Långström, B.; Duelfer, T.; Frost, J.; Ravert, H.; Links, J.; Rosenbloom, S.; et al. Imaging dopamine receptors in the human brain by positron tomography. Science 1983, 221, 1264–1266. [Google Scholar] [CrossRef]
- Mintun, M.A.; Raichle, M.E.; Kilbourn, M.R.; Wooten, G.F.; Welch, M.J. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann. Neurol. 1984, 15, 217–227. [Google Scholar] [CrossRef]
- Hooker, J.M.; Carson, R.E. Human Positron Emission Tomography Neuroimaging. Annu. Rev. Biomed. Eng. 2019, 21, 551–581. [Google Scholar] [CrossRef] [PubMed]
- Ceccarini, J.; Liu, H.; Van Laere, K.; Morris, E.D.; Sander, C.Y. Methods for Quantifying Neurotransmitter Dynamics in the Living Brain with PET Imaging. Front. Physiol. 2020, 11, 792. [Google Scholar] [CrossRef] [PubMed]
- Tewson, T.; Raichle, M.; Welch, M. Preliminary studies with [18F]haloperidol: A radioligand for in vivo studies of the dopamine receptors. Brain Res. 1980, 192, 291–295. [Google Scholar] [CrossRef]
- Laduron, P.M.; Janssen, P.; Leysen, J.E. Spiperone: A ligand of choice for neuroleptic receptors. Biochem. Pharmacol. 1978, 27, 317–321. [Google Scholar] [CrossRef]
- Prante, O.; Maschauer, S.; Banerjee, A. Radioligands for the dopamine receptor subtypes. J. Label. Compd. Radiopharm. 2013, 56, 130–148. [Google Scholar] [CrossRef]
- Criswell, S.R.; Warden, M.N.; Nielsen, S.S.; Perlmutter, J.S.; Moerlein, S.; Sheppard, L.; Lenox-Krug, J.; Checkoway, H.; Racette, B.A. Selective D2 receptor PET in manganese-exposed workers. Neurology 2018, 91, e1022–e1030. [Google Scholar] [CrossRef]
- Paulis, T. The Discovery of Epidepride and Its Analogs as High-Affinity Radioligands for Imaging Extrastriatal Dopamine D2 Receptors in Human Brain. Curr. Pharm. Des. 2003, 9, 673–696. [Google Scholar] [CrossRef]
- Narendran, R.; Slifstein, M.; Guillin, O.; Hwang, Y.; Hwang, D.-R.; Scher, E.; Reeder, S.; Rabiner, E.; Laruelle, M. Dopamine (D2/3) receptor agonist positron emission tomography radiotracer [11C]-(+)-PHNO is a D3 receptor preferring agonist in vivo. Synapse 2006, 60, 485–495. [Google Scholar] [CrossRef]
- Gallezot, J.-D.; Beaver, J.D.; Gunn, R.N.; Nabulsi, N.; Weinzimmer, D.; Singhal, T.; Slifstein, M.; Fowles, K.; Ding, Y.-S.; Huang, Y.; et al. Affinity and selectivity of [11C]-(+)-PHNO for the D3 and D2 receptors in the rhesus monkey brain in vivo. Synapse 2012, 66, 489–500. [Google Scholar] [CrossRef]
- Narendran, R.; Hwang, D.-R.; Slifstein, M.; Talbot, P.S.; Erritzoe, D.; Huang, Y.; Cooper, T.B.; Martinez, D.; Kegeles, L.S.; Abi-Dargham, A.; et al. In vivo vulnerability to competition by endogenous dopamine: Comparison of the D2 receptor agonist radiotracer (-)-N-[11C]propyl-norapomorphine ([11C]NPA) with the D2 receptor antagonist radiotracer [11C]-raclopride. Synapse 2004, 52, 188–208. [Google Scholar] [CrossRef]
- Narendran, R.; Mason, N.S.; Laymon, C.M.; Lopresti, B.J.; Valesquez, N.D.; May, M.A.; Kendro, S.; Martinez, D.; Mathis, C.A.; Frankle, W.G. A comparative evaluation of the dopamine D(2/3) agonist radiotracer [11C](-)-N-propyl-norapomorphine and antagonist [11C]raclopride to measure amphetamine-induced dopamine release in the human striatum. J. Pharmacol. Exp. Ther. 2010, 333, 533–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervenka, S. PET radioligands for the dopamine D1-receptor: Application in psychiatric disorders. Neurosci. Lett. 2019, 691, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Willmann, M.; Ermert, J.; Prante, O.; Hübner, H.; Gmeiner, P.; Neumaier, B. Radiosynthesis and evaluation of 18F-labeled dopamine D4-receptor ligands. Nucl. Med. Biol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kügler, F.; Sihver, W.; Ermert, J.; Hübner, H.; Gmeiner, P.; Prante, O.; Coenen, H.H. Evaluation of18F-Labeled Benzodioxine Piperazine-Based Dopamine D4Receptor Ligands: Lipophilicity as a Determinate of Nonspecific Binding. J. Med. Chem. 2011, 54, 8343–8352. [Google Scholar] [CrossRef]
- Young, P.N.E.; Estrellas, M.; Coomans, M.; Beaumont, H.; Maass, A.; Venkataraman, A.V.; Lissman, R.; Jimenez, D.; Betts, M.J.; McGlinchey, E.; et al. Imaging markers in neurodegeneration: Current and future practices. Alzheimer’s Res. Ther. 2020, 12, 1–7. [Google Scholar] [CrossRef]
- Strafella, A.P.; Bohnen, N.I.; Perlmutter, J.S.; Eidelberg, D.; Pavese, N.; Van Eimeren, T.; Piccini, P.; Politis, M.; Thobois, S.; Ceravolo, R.; et al. Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: New imaging frontiers. Mov. Disord. 2017, 32, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Maiti, B.; Perlmutter, J.S. PET Imaging in Movement Disorders. Semin. Nucl. Med. 2018, 48, 513–524. [Google Scholar] [CrossRef]
- Hellwig, S.; Domschke, K. Update on PET imaging biomarkers in the diagnosis of neuropsychiatric disorders. Curr. Opin. Neurol. 2019, 32, 539–547. [Google Scholar] [CrossRef]
- Volkow, N.D.; Fowler, J.S.; Baler, W.R.; Telang, F. Imaging dopamine’s role in drug abuse and addiction. Neuropsychopharmacology 2009, 56 (Suppl. 1), 3–8. [Google Scholar]
- Sai, J.K.K.S.; Hurley, R.A.; Dodda, M.; Taber, K.H.; Sai, K.K.S. Positron Emission Tomography: Updates on Imaging of Addiction. J. Neuropsychiatry Clin. Neurosci. 2019, 31, A6-288. [Google Scholar] [CrossRef] [Green Version]
- Innis, R.B.; Cunningham, V.J.; Delforge, J.; Fujita, M.; Gjedde, A.; Gunn, R.N.; Holden, J.; Houle, S.; Huang, S.-C.; Ichise, M.; et al. Consensus Nomenclature for in vivo Imaging of Reversibly Binding Radioligands. Br. J. Pharmacol. 2007, 27, 1533–1539. [Google Scholar] [CrossRef] [Green Version]
- Farde, L.; Pauli, S.; Halldin, C. Variability in D2-dopamine receptor density and affinity: A PET study with [11C]raclopride in man. Synapse 1995, 20, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Farde, L.; Plavén-Sigray, P.; Borg, J.; Cervenka, S. Brain neuroreceptor density and personality traits: Towards dimensional biomarkers for psychiatric disorders. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170156. [Google Scholar] [CrossRef] [PubMed]
- Laruelle, M. Imaging Synaptic Neurotransmission with in Vivo Binding Competition Techniques: A Critical Review. Br. J. Pharmacol. 2000, 20, 423–451. [Google Scholar] [CrossRef] [Green Version]
- Girgis, R.R.; Slifstein, M.; Brucato, G.; Kegeles, L.S.; Colibazzi, T.; Lieberman, J.A.; Abi-Dargham, A. Imaging synaptic dopamine availability in individuals at clinical high-risk for psychosis: A [11C]-(+)-PHNO PET with methylphenidate challenge study. Mol. Psychiatry 2020, 1–10. [Google Scholar] [CrossRef]
- Koepp, M.J.; Gunn, R.N.; Lawrence, A.D.; Cunningham, V.J.; Dagher, A.; Jones, T.; Brooks, D.J.; Bench, C.J.; Grasby, P.M. Evidence for striatal dopamine release during a video game. Nat. Cell Biol. 1998, 393, 266–268. [Google Scholar] [CrossRef]
- Verhoeff, N.P.L.G.; Tauscher, J.; Jones, C.; Hussey, D.; Lee, M.; Papatheodorou, G.; Wilson, A.A.; Houle, S.; Kapur, S. Dopamine depletion results in increased neostriatal D2 receptor binding in humans. Mol. Psychiatry 2002, 7, 233. [Google Scholar] [CrossRef] [Green Version]
- Chugani, D.C.; Ackermann, R.F.; Phelps, M.E. In vivo [3H]spiperone binding: Evidence for accumulation in corpus stria-tum by agonist-mediated receptor internalization. J. Cer. Blood Flow Metab. 1988, 8, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Farde, L.; Nordström, A.-L.; Wiesel, F.-A.; Pauli, S.; Halldin, C.; Sedvall, G. Positron Emission Tomographic Analysis of Central D1 and D2 Dopamine Receptor Occupancy in Patients Treated with Classical Neuroleptics and Clozapine. Arch. Gen. Psychiatry 1992, 49, 538–544. [Google Scholar] [CrossRef]
- Uppoor, R.S.; Mummaneni, P.; Cooper, E.; Pien, H.H.; Sorensen, A.G.; Collins, J.; Mehta, M.U.; Yasuda, S.U. The use of im-aging in the early development of neuropharmacological drugs: A survey of approved NDAs. Clin. Pharmacol. Ther. 2008, 84, 69–74. [Google Scholar] [CrossRef]
- Mach, R.H.; Luedtke, R.R. Challenges in the development of dopamine D2- and D3-selective radiotracers for PET imaging studies. J. Label. Compd. Radiopharm. 2018, 61, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Vangveravong, S.; Zhang, Z.; Taylor, M.; Bearden, M.; Xu, J.; Cui, J.; Wang, W.; Luedtke, R.R.; Mach, R.H. Synthesis and characterization of selective dopamine D2 receptor ligands using aripiprazole as the lead compound. Bioorg. Med. Chem. 2011, 19, 3502–3511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, M.N.; Shao, X.; Desmond, T.J.; Forrest, T.J.; Arteaga, J.; Stauff, J.; Scott, P.J. Synthesis and pre-clinical evaluation of a potential radiotracer for PET imaging of the dopamine D3 receptor. MedChemComm 2018, 9, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, J.J.; Van De Giessen, E.; Rosengard, R.J.; Xu, X.; Ojeil, N.; Brucato, G.; Gil, R.B.; Kegeles, L.S.; Laruelle, M.; Slifstein, M.; et al. PET imaging of dopamine-D2 receptor internalization in schizophrenia. Mol. Psychiatry 2017, 23, 1506–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colom, M.; Vidal, B.; Zimmer, L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front. Mol. Neurosci. 2019, 12, 255. [Google Scholar] [CrossRef]
- Skinbjerg, M.; Sibley, D.R.; Javitch, J.A.; Abi-Dargham, A. Imaging the high-affinity state of the dopamine D2 receptor in vivo: Fact or fiction? Biochem. Pharmacol. 2012, 83, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Shalgunov, V.; van Waarde, A.; Booij, J.; Michel, M.M.; Dierckx, R.A.J.O.; Elsinga, P.H. Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomog-raphy imaging. Med. Res. Rev. 2019, 39, 1014–1052. [Google Scholar] [CrossRef]
- Fowler, J.S.; Volkow, N.D.; Wang, G.-J.; Gatley, S.J.; Logan, J. [(11)]Cocaine: PET studies of cocaine pharmacokinetics, dopamine transporter availability and dopamine transporter occupancy. Nucl. Med. Biol. 2001, 28, 561–572. [Google Scholar] [CrossRef]
- Riss, P.J.; Stockhofe, K.; Roesch, F. Tropane-derived 11 C-labelled and 18 F-labelled DAT ligands. J. Label. Compd. Radiopharm. 2013, 56, 149–158. [Google Scholar] [CrossRef]
- Kerstens, V.S.; Fazio, P.; Sundgren, M.; Matheson, G.J.; Franzén, E.; Halldin, C.; Cervenka, S.; Svenningsson, P.; Varrone, A. Reliability of dopamine transporter PET measurements with [18F]FE-PE2I in patients with Parkinson’s disease. EJNMMI Res. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Kerstens, V.S.; Varrone, A. Dopamine transporter imaging in neurodegenerative movement disorders: PET vs. SPECT. Clin. Transl. Imaging 2020, 8, 1–8. [Google Scholar] [CrossRef]
- Volkow, N.D.; Ding, Y.S.; Fowler, J.S.; Wang, G.-J.; Logan, J.; Gatley, S.J.; Schlyer, D.J.; Pappas, N. A new PET ligand for the dopamine transporter: Studies in the human brain. J. Nucl. Med. 1995, 36, 2162–2168. [Google Scholar] [PubMed]
- Kilbourn, M.R.; Koeppe, R.A. Classics in Neuroimaging: Radioligands for the Vesicular Monoamine Transporter 2. ACS Chem. Neurosci. 2018, 10, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilbourn, M.R. Radioligands for Imaging Vesicular Monoamine Transporters. In PET and SPECT Studies of Neurobiological Systems, 2nd ed.; Dieckx, R.A., Otte, A., De Vreis, E.F.J., van Waarde, A., Lammertsma, A.A., Eds.; Springer: Berlin, Germany, 2020; Chapter 37; p. 1091. [Google Scholar] [CrossRef]
- Kilbourn, M.R.; Butch, E.R.; Desmond, T.J.; Sherman, P.; Harris, P.E.; Frey, K.A. In vivo [11C]dihydrotetrabenazine binding in rat striatum: Sensitivity to dopamine concentrations. Nucl. Med. Biol. 2010, 37, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Fuente-Fernández, R.; Furtado, S.; Guttman, M.; Furukawa, Y.; Lee, C.S.; Calne, D.; Ruth, T.J.; Stoessl, A.J. VMAT2 binding is elevated in dopa-responsive dystonia: Visualizing empty vesicles by PET. Synapse 2003, 49, 20–28. [Google Scholar] [CrossRef]
- Provencher, B.A.; Eshleman, A.J.; Johnson, R.A.; Shi, X.; Kryatova, O.; Nelson, J.; Tian, J.; Gonzalez, M.; Meltzer, P.C.; Janowsky, A. Synthesis and Discovery of Arylpiperidinylquinazolines: New Inhibitors of the Vesicular Monoamine Transporter. J. Med. Chem. 2018, 61, 9121–9131. [Google Scholar] [CrossRef]
- Kersemans, K.; Van Laeken, N.; De Vos, F. Radiochemistry devoted to the production of monoamine oxidase (MAO-A and MAO-B) ligands for brain imaging with positron emission tomography. J. Label. Compd. Radiopharm. 2013, 56, 78–88. [Google Scholar] [CrossRef]
- Narayanaswami, V.; Drake, L.R.; Brooks, A.F.; Meyer, J.H.; Houle, S.; Kilbourn, M.R.; Scott, P.J.; Vasdev, N. Classics in Neuroimaging: Development of PET Tracers for Imaging Monoamine Oxidases. ACS Chem. Neurosci. 2019, 10, 1867–1871. [Google Scholar] [CrossRef] [Green Version]
- Fowler, J.S.; Logan, J.; Volkow, N.D.; Wang, G.-J. Translational Neuroimaging: Positron Emission Tomography Studies of Monoamine Oxidase. Mol. Imaging Biol. 2005, 7, 377–387. [Google Scholar] [CrossRef]
- Nandhagopal, R.; Kuramoto, L.; Schulzer, M.; Mak, E.; Cragg, J.; Lee, C.S.; McKenzie, J.; McCormick, S.; Samii, A.; Troiano, A.; et al. Longitudinal progression of sporadic Parkinson’s disease: A multi-tracer positron emission tomography study. Brain 2009, 132, 2970–2979. [Google Scholar] [CrossRef]
- De La Fuente-Fernández, R.; Lim, A.S.P.; Sossi, V.; Adam, M.J.; Ruth, T.J.; Calne, D.B.; Stoessl, A.J.; Lee, C.S. Age and severity of nigrostriatal damage at onset of Parkinson’s disease. Synapse 2002, 47, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Sossi, V.; De La Fuente-Fernández, R.; Dm, R.N.; Schulzer, M.; McKenzie, J.; Ruth, T.J.; Aasly, J.O.; Farrer, M.J.; Wszolek, Z.K.; Stoessl, J.A. Dopamine turnover increases in asymptomatic LRRK2 mutations carriers. Mov. Disord. 2010, 25, 2717–2723. [Google Scholar] [CrossRef] [PubMed]
- Nandhagopal, R.; Kuramoto, L.; Schulzer, M.; Mak, E.; Cragg, J.; McKenzie, J.; McCormick, S.; Ruth, T.J.; Sossi, V.; De La Fuente-Fernandez, R.; et al. Longitudinal evolution of compensatory changes in striatal dopamine processing in Parkinson’s disease. Brain 2011, 134, 3290–3298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tyrosine Hydroxylase—No In Vivo Radiotracers Available | |
---|---|
Aromatic Amino Acid Decarboxylase (AADC) | |
β-[11C]DOPA | 6-[18F]Fluoro-m-tyrosine (FMT) |
6-[18F]Fluorodopa (FDOPA) | 6-[11C]methyl-m-tyrosine |
D1 Dopamine Receptors | |
[11C]SCH 23390 | [11C]NNC-112 |
D2/D3 Dopamine receptors | |
N-[11C]Methylspiperone | [11C]n-Propylapomorphine (NPA) |
[11C]Raclopride | [11C]PHNO |
[18F]Fallypride | [11C]FLB 457 |
Neuronal Membrane Dopamine Transporter (DAT) | |
[11C]CFT, [18F]CFT | [18F]PE2I |
[11C]Methylphenidate | [18F]FE-PE2I |
Vesicular Monoamine Transporter type 2 (VMAT2) | |
[11C]Dihydrotetrabenazine (DTBZ) | [18F]FluoropropylDTBZ (AV-133) |
Monoamine Oxidases (MAO) | |
[11C]deprenyl | [11C]harmine |
d6-[11C]deprenyl | [11C]befloxatone |
[11C]chlorgylline |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilbourn, M.R. 11C- and 18F-Radiotracers for In Vivo Imaging of the Dopamine System: Past, Present and Future. Biomedicines 2021, 9, 108. https://doi.org/10.3390/biomedicines9020108
Kilbourn MR. 11C- and 18F-Radiotracers for In Vivo Imaging of the Dopamine System: Past, Present and Future. Biomedicines. 2021; 9(2):108. https://doi.org/10.3390/biomedicines9020108
Chicago/Turabian StyleKilbourn, Michael R. 2021. "11C- and 18F-Radiotracers for In Vivo Imaging of the Dopamine System: Past, Present and Future" Biomedicines 9, no. 2: 108. https://doi.org/10.3390/biomedicines9020108
APA StyleKilbourn, M. R. (2021). 11C- and 18F-Radiotracers for In Vivo Imaging of the Dopamine System: Past, Present and Future. Biomedicines, 9(2), 108. https://doi.org/10.3390/biomedicines9020108