Hyperpolarized 13C Spectroscopy with Simple Slice-and-Frequency-Selective Excitation
Abstract
:1. Introduction
2. Experimental Section
2.1. Subjects and Tumors
2.2. Imaging System
2.3. Proton Imaging and 13C Pre-Scan Adjustments
2.4. Polarization
2.5. Slice-Selective 13C Spectroscopy
2.6. Spectral Analysis
- Flexible: free peak frequencies, free peak widths, free zeroth order phase, and free begin time (1st order phase);
- Lightly constrained: fixed peak frequencies (8.41, 2.37, and 3.97 ppm relative to the 13C reference frequency), free lactate peak width, alanine and pyruvate peak widths fixed to that of lactate in each frame, free zeroth order phase, and free begin time;
- Moderately constrained: fixed frequencies (as in model 2), fixed peak line widths (54 Hz, based on the lightly constrained lactate peak width results in frames with the largest lactate signal), free zeroth order phase, and free begin time;
- Highly constrained: fixed frequencies (as in model 2), fixed peak widths (as in model 3), fixed zeroth order phase and begin time (50.1° and 9.8 ms, based on separate fit to sum of 69 frames covering the peak with the same model except those two parameters free).
3. Results
3.1. Frequency Calibration
3.2. Broad Bandwidth Spectra
3.3. Spectral Fitting
3.4. Narrow Bandwidth Spectra
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Topping, G.J.; Hundshammer, C.; Nagel, L.; Grashei, M.; Aigner, M.; Skinner, J.G.; Schulte, R.F.; Schilling, F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. Magma Magn. Reson. Mater. Phys. Biol. Med. 2020, 33, 221–256. [Google Scholar] [CrossRef] [Green Version]
- Gordon, J.W.; Chen, H.-Y.; Dwork, N.; Tang, S.; Larson, P. Fast Imaging for Hyperpolarized MR Metabolic Imaging. J. Magn. Reson. Imaging 2020. [Google Scholar] [CrossRef]
- Gordon, J.W.; Larson, P.E. Pulse Sequences for Hyperpolarized MRS. eMagRes 2016, 5, 1229–1246. [Google Scholar]
- Wiesinger, F.; Weidl, E.; Menzel, M.I.; Janich, M.A.; Khegai, O.; Glaser, S.J.; Haase, A.; Schwaiger, M.; Schulte, R.F. IDEAL spiral CSI for dynamic metabolic MR imaging of hyperpolarized [1-13C]pyruvate. Magn. Reson. Med. 2012, 68, 8–16. [Google Scholar] [CrossRef]
- Hansen, A.E.; Gutte, H.; Holst, P.; Johannesen, H.H.; Rahbek, S.; Clemmensen, A.E.; Ardenkjaer-Larsen, J.H.; Schøier, C.; Ardenkjaer-Larsen, J.; Klausen, T.L.; et al. Combined hyperpolarized 13 C-pyruvate MRS and 18 F-FDG PET (hyperPET) estimates of glycolysis in canine cancer patients. Eur. J. Radiol. 2018, 103, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Hyacinthe, J.N.; Buscemi, L.; Lê, T.P.; Lepore, M.; Hirt, L.; Mishkovsky, M. Evaluating the potential of hyperpolarised [1-(13)C] L-lactate as a neuroprotectant metabolic biosensor for stroke. Sci. Rep. 2020, 10, 5507. [Google Scholar] [CrossRef]
- Gallagher, F.A.; Woitek, R.; McLean, M.A.; Gill, A.B.; Garcia, R.M.; Provenzano, E.; Riemer, F.; Kaggie, J.; Chhabra, A.; Ursprung, S.; et al. Imaging breast cancer using hyperpolarized carbon-13 MRI. Proc. Natl. Acad. Sci. USA 2020, 117, 2092–2098. [Google Scholar] [CrossRef] [Green Version]
- Grist, J.T.; McLean, M.A.; Riemer, F.; Schulte, R.F.; Deen, S.S.; Zaccagna, F.; Woiteka, R.; Daniels, C.J.; Kaggie, J.D.; Matys, T.; et al. Quantifying normal human brain metabolism using hyperpolarized [1-(13)C]pyruvate and magnetic resonance imaging. Neuroimage 2019, 189, 171–179. [Google Scholar] [CrossRef]
- Guglielmetti, C.; Najac, C.; Didonna, A.; Van Der Linden, A.; Ronen, S.M.; Chaumeil, M.M. Hyperpolarized 13C MR metabolic imaging can detect neuroinflammation in vivo in a multiple sclerosis murine model. Proc. Natl. Acad. Sci. USA 2017, 114, E6982–E6991. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.J.; Husson, Z.M.; Hu, D.E.; Callejo, G.; Brindle, K.M.; Smith, E.S.J. Increased hyperpolarized [1-(13) C] lactate production in a model of joint inflammation is not accompanied by tissue acidosis as assessed using hyperpolarized (13) C-labelled bicarbonate. NMR Biomed. 2018, 31, e3892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Page, L.M.; Guglielmetti, C.; Najac, C.F.; Tiret, B.; Chaumeil, M.M. Hyperpolarized 13 C magnetic resonance spectroscopy detects toxin-induced neuroinflammation in mice. NMR Biomed. 2019, 32, e4164. [Google Scholar] [CrossRef] [Green Version]
- Certo, M.; Marone, G.; De Paulis, A.; Mauro, C.; Pucino, V. Lactate: Fueling the fire starter. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1474. [Google Scholar] [CrossRef] [Green Version]
- Day, S.E.; Kettunen, M.I.; Gallagher, F.A.; Hu, D.E.; Lerche, M.; Wolber, J.; Golman, K.; Ardenkjaer-Larsen, J.H.; Brindle, K.M. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 2007, 13, 1382–1387. [Google Scholar] [CrossRef]
- RajeshKumar, N.V.; Dutta, P.; Yabuuchi, S.; De Wilde, R.F.; Martinez, G.V.; Le, A.; Kamphorst, J.J.; Rabinowitz, J.D.; Jain, S.K.; Hidalgo, M.; et al. Therapeutic Targeting of the Warburg Effect in Pancreatic Cancer Relies on an Absence of p53 Function. Cancer Res. 2015, 75, 3355–3364. [Google Scholar] [CrossRef] [Green Version]
- Wespi, P.; Steinhauser, J.; Kwiatkowski, G.; Kozerke, S. Overestimation of cardiac lactate production caused by liver metabolism of hyperpolarized [1- 13 C ]pyruvate. Magn. Reson. Med. 2018, 80, 1882–1890. [Google Scholar] [CrossRef]
- Dutta, P.; Perez, M.R.; Lee, J.; Kang, Y.; Pratt, M.; Salzillo, T.; Weygand, J.; Zacharias, N.M.; Gammon, S.T.; Koay, E.J.; et al. Combining Hyperpolarized Real-Time Metabolic Imaging and NMR Spectroscopy to Identify Metabolic Biomarkers in Pancreatic Cancer. J. Proteome Res. 2019, 18, 2826–2834. [Google Scholar] [CrossRef]
- Gallagher, F.A.; Kettunen, M.I.; Day, S.E.; Hu, D.-E.; Ardenkjaer-Larsen, J.H.; Zandt, R.; Jensen, P.R.; Karlsson, M.; Golman, K.; Lerche, M.H.; et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 2008, 453, 940–943. [Google Scholar] [CrossRef]
- Xing, Y.; Reed, G.D.; Pauly, J.M.; Kerr, A.B.; Larson, P. Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates. J. Magn. Reson. 2013, 234, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Merritt, M.E.; Harrison, C.; Storey, C.J.; Sherry, A.D.; Malloy, C.R. Inhibition of carbohydrate oxidation during the first minute of reperfusion after brief ischemia: NMR detection of hyperpolarized13CO2and H13CO3−. Magn. Reson. Med. 2008, 60, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
- Park, J.M.; Josan, S.; Grafendorfer, T.; Yen, Y.F.; Hurd, R.E.; Spielman, D.M.; Mayer, D. Measuring mitochondrial metabolism in rat brain in vivo using MR Spectroscopy of hyperpolarized [2-(1)(3)C]pyruvate. NMR Biomed. 2013, 26, 1197–1203. [Google Scholar] [CrossRef] [Green Version]
- Josan, S.; Hurd, R.E.; Park, J.M.; Yen, Y.-F.; Watkins, R.D.; Pfefferbaum, A.; Spielman, D.M.; Mayer, D. Dynamic metabolic imaging of hyperpolarized [2-13 C]pyruvate using spiral chemical shift imaging with alternating spectral band excitation. Magn. Reson. Med. 2014, 71, 2051–2058. [Google Scholar] [CrossRef] [Green Version]
- Josan, S.; Park, J.M.; Hurd, R.; Yen, Y.-F.; Pfefferbaum, A.; Spielman, D.; Mayer, D. In vivo investigation of cardiac metabolism in the rat using MRS of hyperpolarized [1-13 C] and [2-13 C]pyruvate. NMR Biomed. 2013, 26, 1680–1687. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-Y.; Aggarwal, R.; Bok, R.A.; Ohliger, M.A.; Zhu, Z.; Lee, P.; Gordon, J.W.; Van Criekinge, M.; Carvajal, L.; Slater, J.B.; et al. Hyperpolarized 13C-pyruvate MRI detects real-time metabolic flux in prostate cancer metastases to bone and liver: A clinical feasibility study. Prostate Cancer Prostatic Dis. 2020, 23, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Kettunen, M.I.; Hu, D.-E.; Witney, T.H.; McLaughlin, R.; Gallagher, F.A.; Bohndiek, S.E.; Day, S.E.; Brindle, K.M. Magnetization transfer measurements of exchange between hyperpolarized [1-13C]pyruvate and [1-13C]lactate in a murine lymphoma. Magn. Reson. Med. 2010, 63, 872–880. [Google Scholar] [CrossRef]
- von Morze, C.; Sukumar, S.; Reed, G.D.; Larson, P.E.; Bok, R.A.; Kurhanewicz, J.; Vigneron, D.B. Frequency-specific SSFP for hyperpolarized (1)(3)C metabolic imaging at 14.1 T. Magn. Reson. Imaging 2013, 31, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Lee, J.; Joe, E.; Lee, H.; Choi, Y.S.; Park, J.M.; Spielman, D.; Song, H.-T.; Kim, D.-H. Metabolite-selective hyperpolarized 13C imaging using extended chemical shift displacement at 9.4 T. Magn. Reson. Imaging 2016, 34, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Grist, J.T.; Hansen, E.S.; Sánchez-Heredia, J.D.; McLean, M.A.; Tougaard, R.S.; Riemer, F.; Schulte, R.F.; Kaggie, J.D.; Ardenkjaer-Larsen, J.H.; Laustsen, C.; et al. Creating a clinical platform for carbon-13 studies using the sodium-23 and proton resonances. Magn. Reson. Med. 2020, 84, 1817–1827. [Google Scholar] [CrossRef] [Green Version]
- Hansen, A.E.; Andersen, F.L.; Henriksen, S.T.; Vignaud, A.; Ardenkjaer-Larsen, J.H.; Højgaard, L.; Klausen, T.L. Simultaneous PET/MRI with (13)C magnetic resonance spectroscopic imaging (hyperPET): Phantom-based evaluation of PET quantification. EJNMMI Phys. 2016, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Hackett, E.P.; Kovacs, Z.; Malloy, C.R.; Park, J.M. Assessment of hepatic pyruvate carboxylase activity using hyperpolarized [1-(13) C]-l-lactate. Magn. Reson. Med. 2021, 85, 1175–1182. [Google Scholar] [CrossRef]
- Chen, A.P.; Kurhanewicz, J.; Bok, R.; Xu, D.; Joun, D.; Zhang, V.; Nelson, S.J.; Hurd, R.E.; Vigneron, D.B. Feasibility of using hyperpolarized [1-13C]lactate as a substrate for in vivo metabolic 13C MRSI studies. Magn. Reson. Imaging 2008, 26, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Park, J.M.; Josan, S.; Mayer, D.; Hurd, R.E.; Chung, Y.; Bendahan, D.; Spielman, D.M.; Jue, T. Hyperpolarized 13C NMR observation of lactate kinetics in skeletal muscle. J. Exp. Biol. 2015, 218, 3308–3318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhammea, L.; Boogaart, A.V.D.; Van Huffel, S. Improved Method for Accurate and Efficient Quantification of MRS Data with Use of Prior Knowledge. J. Magn. Reson. 1997, 129, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naressi, A.; Couturier, C.; Devos, J.M.; Janssen, M.; Mangeat, C.; De Beer, R.; Graveron-Demilly, D. Java-based graphical user interface for the MRUI quantitation package. MAGMA 2001, 12, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Stefan, D.C.F.D.; Andrasescu, A.; Popa, E.; Lazariev, A.; Vescovo, E.; Strbak, O.; Williams, S.; Starcuk, Z.; Cabanas, M.; van Or-mondt, D.; et al. Quantitation of magnetic resonance spectroscopy signals: The jMRUI software package. Meas. Sci. Technol. 2009, 20, 104035. [Google Scholar] [CrossRef]
- Miller, J.J.; Lau, A.Z.; Teh, I.; Schneider, J.E.; Kinchesh, P.; Smart, S.; Ball, V.; Sibson, N.R.; Tyler, D.J. Robust and high resolution hyperpolarized metabolic imaging of the rat heart at 7 T with 3D spectral-spatial EPI. Magn. Reson. Med. 2016, 75, 1515–1524. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.H.; Pauly, J.M.; Macovskiand, A.; Nishimura, D.G. Simultaneous spatial and spectral selective excitation. Magn. Reson. Med. 1990, 15, 287–304. [Google Scholar] [CrossRef]
- Cunningham, C.H.; Chen, A.P.; Lustig, M.; Hargreaves, B.A.; Lupo, J.; Xu, D.; Kurhanewicz, J.; Hurd, R.E.; Pauly, J.M.; Nelson, S.J.; et al. Pulse sequence for dynamic volumetric imaging of hyperpolarized metabolic products. J. Magn. Reson. 2008, 193, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Stender, S.; Zaha, V.G.; Malloy, C.R.; Sudderth, J.; DeBerardinis, R.J.; Park, J.M. Assessment of Rapid Hepatic Glycogen Synthesis in Humans Using Dynamic 13 C Magnetic Resonance Spectroscopy. Hepatol. Commun. 2020, 4, 425–433. [Google Scholar] [CrossRef]
- Miller, J.J.J.; Grist, J.T.; Serres, S.; Larkin, J.R.; Lau, A.Z.; Ray, K.; Fisher, K.R.; Hansen, E.; Tougaard, R.S.; Nielsen, P.M.; et al. 13C Pyruvate Transport Across the Blood-Brain Barrier in Preclinical Hyperpolarised MRI. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Moon, C.M.; Kim, Y.-H.; Ahn, Y.; Jeong, M.H.; Jeong, J.-W. Metabolic alterations in acute myocardial ischemia-reperfusion injury and necrosis using in vivo hyperpolarized [1-(13)C] pyruvate MR spectroscopy. Sci. Rep. 2019, 9, 18427. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, B.W.; Kettunen, M.I.; Hu, D.E.; Brindle, K.M. Probing lactate dehydrogenase activity in tumors by measuring hydrogen/deuterium exchange in hyperpolarized l-[1-(13)C,U-(2)H]lactate. J. Am. Chem. Soc. 2012, 134, 4969–4977. [Google Scholar] [CrossRef] [PubMed]
- Faubert, B.; Li, K.Y.; Cai, L.; Hensley, C.T.; Kim, J.; Zacharias, L.G.; Yang, C.; Brandon, F.; Doucette, S.; Burguete, D.; et al. Lactate Metabolism in Human Lung Tumors. Cell 2017, 171, 358–371.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeder, M.A.; Swietach, P.; Atherton, H.J.; Gallagher, F.A.; Lee, P.; Radda, G.K.; Clarke, K.; Tyler, D.J. Measuring intracellular pH in the heart using hyperpolarized carbon dioxide and bicarbonate: A 13C and 31P magnetic resonance spectroscopy study. Cardiovasc. Res. 2009, 86, 82–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzien, P.; Kettunen, M.I.; Marco-Rius, I.; Serrao, E.M.; Rodrigues, T.B.; Larkin, T.J.; Timm, K.N.; Brindle, K.M. (13) C magnetic resonance spectroscopic imaging of hyperpolarized [1-(13) C, U-(2) H5] ethanol oxidation can be used to assess aldehyde dehydrogenase activity in vivo. Magn. Reson. Med. 2015, 73, 1733–1740. [Google Scholar] [CrossRef]
- Milshteyn, E.; Von Morze, C.; Gordon, J.; Zhu, Z.; Larson, P.; Vigneron, D.B. High spatiotemporal resolution bSSFP imaging of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate with spectral suppression of alanine and pyruvate-hydrate. Magn. Reson. Med. 2018, 80, 1048–1060. [Google Scholar] [CrossRef]
AMARES Lightly Constrained | AMARES Moderately Constrained | AMARES Highly Constrained | Magnitude Spectrum Broad BW | Magnitude Spectrum Narrow BW | |
---|---|---|---|---|---|
Ala/Lac | 0.021 | 0.020 | 0.027 | 0.058 | N/A |
Pyr/Lac | 0.035 | 0.037 | 0.040 | 0.035 | 0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topping, G.J.; Heid, I.; Trajkovic-Arsic, M.; Kritzner, L.; Grashei, M.; Hundshammer, C.; Aigner, M.; Skinner, J.G.; Braren, R.; Schilling, F. Hyperpolarized 13C Spectroscopy with Simple Slice-and-Frequency-Selective Excitation. Biomedicines 2021, 9, 121. https://doi.org/10.3390/biomedicines9020121
Topping GJ, Heid I, Trajkovic-Arsic M, Kritzner L, Grashei M, Hundshammer C, Aigner M, Skinner JG, Braren R, Schilling F. Hyperpolarized 13C Spectroscopy with Simple Slice-and-Frequency-Selective Excitation. Biomedicines. 2021; 9(2):121. https://doi.org/10.3390/biomedicines9020121
Chicago/Turabian StyleTopping, Geoffrey J., Irina Heid, Marija Trajkovic-Arsic, Lukas Kritzner, Martin Grashei, Christian Hundshammer, Maximilian Aigner, Jason G. Skinner, Rickmer Braren, and Franz Schilling. 2021. "Hyperpolarized 13C Spectroscopy with Simple Slice-and-Frequency-Selective Excitation" Biomedicines 9, no. 2: 121. https://doi.org/10.3390/biomedicines9020121
APA StyleTopping, G. J., Heid, I., Trajkovic-Arsic, M., Kritzner, L., Grashei, M., Hundshammer, C., Aigner, M., Skinner, J. G., Braren, R., & Schilling, F. (2021). Hyperpolarized 13C Spectroscopy with Simple Slice-and-Frequency-Selective Excitation. Biomedicines, 9(2), 121. https://doi.org/10.3390/biomedicines9020121