Translational Research in FLASH Radiotherapy—From Radiobiological Mechanisms to In Vivo Results
Abstract
:1. Introduction
2. Radiobiological Rationale
3. Methods of FLASH Delivery and Clinical Translational Challenges
4. Experimental Medicine in FLASH Radiotherapy
4.1. In Vitro Results with FLASH Radiotherapy
4.2. In Vivo Results with FLASH Radiotherapy
4.2.1. Photon and Electron Beam FLASH Radiotherapy
4.2.2. Proton Beam FLASH Radiotherapy
4.3. Clinical Results with FLASH Radiotherapy
5. Clinical Advantages of FLASH Radiotherapy Derived from Current Evidence
- Patients with radioresistant tumours, in need for dose escalation: glioblastomas (brain, in general), pancreas, head and neck;
- Patients with recurrent tumours in need of reirradiation with normal tissue sparing; and
- Patients with higher normal tissue radiosensitivity.
6. Conclusions and Future Developments
- The evaluation of the effect of fractionated FLASH regimens [1].
- Acute normal tissue reactions seem to be diminished by the FLASH effect however, more conclusive results are needed on late toxicities and possible long-term sequelae.
- FLASH should be implemented clinically with caution in the absence of full understanding of biological mechanisms driving the radiotherapy response under FLASH conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lühr, A.; Von Neubeck, C.; Pawelke, J.; Seidlitz, A.; Peitzsch, C.; Bentzen, S.M.; Bortfeld, T.; Debus, J.; Deutsch, E.; Langendijk, J.A.; et al. Radiobiology of Proton Therapy: Results of an international expert workshop. Radiother. Oncol. 2018, 128, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Marcu, L.; Bezak, E.; Allen, B.J. Global comparison of targeted alpha vs targeted beta therapy for cancer: In Vitro, in vivo and clinical trials. Crit. Rev. Oncol. Hematol. 2018, 123, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Favaudon, V.; Caplier, L.; Monceau, V.; Pouzoulet, F.; Sayarath, M.; Fouillade, C.; Poupon, M.-F.; Brito, I.; Hupé, P.; Bourhis, J.; et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 2014, 6, 245ra93. [Google Scholar] [CrossRef]
- Durante, M.; Bräuer-Krisch, E.; Hill, M. Faster and safer? FLASH ultra-high dose rate in radiotherapy. Br. J. Radiol. 2018, 91, 20170628. [Google Scholar] [CrossRef] [PubMed]
- Fernet, V.; Ponette, E.; Deniaud-Alexandre, J.; Ménissier De-Murcia, G.; De Murcia, N.; Giocanti, F.; Megnin-Chanet, V.; Favaudon, M. Poly (ADP-ribose) polymerase, a major determinant of early cell response to ionizing radiation. Int. J. Radiat. Biol. 2000, 76, 1621–1629. [Google Scholar] [PubMed]
- Buonanno, M.; Grilj, V.; Brenner, D.J. Biological effects in normal cells exposed to FLASH dose rate protons. Radiother. Oncol. 2019, 139, 51–55. [Google Scholar] [CrossRef]
- Wilson, P.; Jones, B.; Yokoi, T.; Hill, M.; Vojnovic, B. Revisiting the ultra-high dose rate effect: Implications for charged particle radiotherapy using protons and light ions. Br. J. Radiol. 2012, 85, e933–e939. [Google Scholar] [CrossRef] [Green Version]
- Adrian, G.; Konradsson, E.; Lempart, M.; Bäck, S.; Ceberg, C.; Petersson, K. The FLASH effect depends on oxygen concentration. Br. J. Radiol. 2020, 93, 20190702. [Google Scholar] [CrossRef]
- Abolfath, R.; Grosshans, D.; Mohan, R. Oxygen depletion in FLASH ultra-high-dose-rate radiotherapy: A molecular dynamics simulation. Med. Phys. 2020, 47, 6551–6561. [Google Scholar] [CrossRef]
- Petersson, K.; Adrian, G.; Butterworth, K.; McMahon, S.J. A Quantitative Analysis of the Role of Oxygen Tension in FLASH Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, T.; Kitamura, H.; Hojo, S.; Konishi, T.; Kodaira, S. Significant changes in yields of 7-hydroxy-coumarin-3-carboxylic acid produced under FLASH radiotherapy conditions. RSC Adv. 2020, 10, 38709–38714. [Google Scholar] [CrossRef]
- Jay-Gerin, J.-P. Ultra-high dose-rate (FLASH) radiotherapy: Generation of early, transient, strongly acidic spikes in the irradiated tumor environment. Cancer Radiothér. 2020, 24, 332–334. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.-Y.; Gu, A.; Wang, W.; Oleinick, N.L.; Machtay, M.; (Spring) Kong, F.-M. Ultra-high dose rate effect on circulating immune cells: A potential mechanism for FLASH effect? Radiother. Oncol. 2020, 149, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Labarbe, R.; Hotoiu, L.; Barbier, J.; Favaudon, V. A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main determinant of the FLASH effect. Radiother. Oncol. 2020, 153, 303–310. [Google Scholar] [CrossRef]
- Zhu, Y.; Dean, A.E.; Horikoshi, N.; Heer, C.; Spitz, D.R.; Gius, D. Emerging evidence for targeting mitochondrial metabolic dysfunction in cancer therapy. J. Clin. Investig. 2018, 128, 3682–3691. [Google Scholar] [CrossRef]
- Spitz, D.R.; Buettner, G.R.; Petronek, M.S.; St-Aubin, J.J.; Flynn, R.T.; Waldron, T.J.; Limoli, C.L. An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses. Radiother. Oncol. 2019, 139, 23–27. [Google Scholar] [CrossRef]
- Vozenin, M.-C.; Hendry, J.H.; Limoli, C.L. Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken. Clin. Oncol. 2019, 31, 407–415. [Google Scholar] [CrossRef]
- Harrington, K.J. Ultrahigh Dose-rate Radiotherapy: Next Steps for FLASH-RT. Clin. Cancer Res. 2019, 25, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Jaccard, M.; Durán, M.T.; Petersson, K.; Germond, J.-F.; Liger, P.; Vozenin, M.-C.; Bourhis, J.; Bochud, F.; Bailat, C. High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use. Med. Phys. 2018, 45, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Schüler Emil, P.; Trovati Stefania, P.; King Gregory, P.; Lartey Frederick, P.; Rafat Marjan, P.; Villegas, M.; Praxel, A.J.; Loo, B.W., Jr.; Maxim, P.G. Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator. Int. J. Radiat. Oncol. Biol. Phys. 2016, 97, 195–203. [Google Scholar] [CrossRef]
- Lempart, M.; Blad, B.; Adrian, G.; Bäck, S.; Knöös, T.; Ceberg, C.; Petersson, K. Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation. Radiother. Oncol. 2019, 139, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Montay-Gruel, P.; Bouchet, A.; Jaccard, M.; Patin, D.; Serduc, R.; Aim, W.; Petersson, K.; Petit, B.; Bailat, C.; Bourhis, J.; et al. X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiother. Oncol. 2018, 129, 582–588. [Google Scholar] [CrossRef]
- Smyth, L.M.L.; Donoghue, J.F.; Ventura, J.A.; Livingstone, J.; Bailey, T.; Day, L.R.J.; Crosbie, J.C.; Rogers, P.A.W. Comparative toxicity of synchrotron and conventional radiation therapy based on total and partial body irradiation in a murine model. Sci. Rep. 2018, 8, 12044. [Google Scholar] [CrossRef] [PubMed]
- Beyreuther, E.; Brand, M.; Hans, S.; Hideghéty, K.; Karsch, L.; Leßmann, E.; Schürer, M.; Szabó, E.R.; Pawelke, J. Feasibility of proton FLASH effect tested by zebrafish embryo irradiation. Radiother. Oncol. 2019, 139, 46–50. [Google Scholar] [CrossRef]
- Patriarca, A.; Fouillade, C.; Auger, M.; Martin, F.; Pouzoulet, F.; Nauraye, C.; Heinrich, S.; Favaudon, V.; Meyroneinc, S.; Dendale, R.; et al. Experimental Set-up for FLASH Proton Irradiation of Small Animals Using a Clinical System. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Girdhani, S.; Abel, E.; Katsis, A.; Rodriquez, A.; Senapati, S.; KuVillanueva, A.; Jackson, I.L.; Eley, J.; Vujaskovic, Z.; Parry, R. Abstract LB-280: FLASH: A novel paradigm changing tumor irradiation platform that enhances therapeutic ratio by reducing normal tissue toxicity and activating immune pathways. Cancer Res. 2019, 79. [Google Scholar] [CrossRef]
- Diffenderfer, E.; Verginadis, I.; Kim, M.; Shoniyozov, K.; Velalopoulou, A.; Goia, D.; Putt, M.; Hagan, S.; Avery, S.; Teo, K.; et al. Design, Implementation, and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Van Marlen, P.; Dahele, M.; Folkerts, M.; Abel, E.; Slotman, B.J.; Verbakel, W.F.A.R. Bringing FLASH to the Clinic: Treatment Planning Considerations for Ultrahigh Dose-Rate Proton Beams. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Lin, B.; Lin, Y.; Fu, S.; Langen, K.; Liu, T.; Bradley, J. Simultaneous dose and dose rate optimization (SDDRO) for FLASH proton therapy. Med. Phys. 2020, 47, 6388–6395. [Google Scholar] [CrossRef]
- Bazalova-Carter, M.; Qu, B.; Palma, B.; Hårdemark, B.; Hynning, E.; Jensen, C.; Maxim, P.G.; Loo, B.W., Jr. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans. Med. Phys. 2015, 42, 2615–2625. [Google Scholar] [CrossRef]
- Schüler, E.; Eriksson, K.; Hynning, E.; Hancock, S.L.; Hiniker, S.M.; Bazalova-Carter, M.; Wong, T.; Le, Q.-T.; Loo, B.W., Jr.; Maxim, P.G. Very high-energy electron (VHEE) beams in radiation therapy; Treatment plan comparison between VHEE, VMAT, and PPBS. Med. Phys. 2017, 44, 2544–2555. [Google Scholar] [CrossRef]
- Maxim, P.G.; Tantawi, S.G.; Loo, B.W., Jr. PHASER: A platform for clinical translation of FLASH cancer radiotherapy. Radiother. Oncol. 2019, 139, 28–33. [Google Scholar] [CrossRef]
- Karsch, L.; Beyreuther, E.; Enghardt, W.; Gotz, M.; Masood, U.; Schramm, U.; Zeil, K.; Pawelke, J. Towards ion beam therapy based on laser plasma accelerators. Acta Oncol. 2017, 56, 1359–1366. [Google Scholar] [CrossRef]
- Van de Water, S.; Safai, S.; Schippers, J.M.; Weber, D.C.; Lomax, A.J. Towards FLASH proton therapy: The impact of treatment planning and machine characteristics on achievable dose rates. Acta Oncol. 2019, 58, 1463–1469. [Google Scholar] [CrossRef]
- Petersson, K.; Jaccard, M.; Germond, J.-F.; Buchillier, T.; Bochud, F.; Bourhis, J.; Vozenin, M.-C.; Bailat, C. High dose-per-pulse electron beam dosimetry—A model to correct for the ion recombination in the Advanced Markus ionization chamber. Med. Phys. 2017, 44, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- McManus, M.; Romano, F.; Lee, N.D.; Farabolini, W.; Gilardi, A.; Royle, G.; Palmans, H.; Subiel, A. The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams. Sci. Rep. 2020, 10, 9089. [Google Scholar] [CrossRef] [PubMed]
- Jorge, P.G.; Jaccard, M.; Petersson, K.; Gondré, M.; Durán, M.T.; Desorgher, L.; Germond, J.-F.; Liger, P.; Vozenin, M.-C.; Bourhis, J.; et al. Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate. Radiother. Oncol. 2019, 139, 34–39. [Google Scholar] [CrossRef]
- Vignati, A.; Giordanengo, S.; Fausti, F.; Martì Villarreal, O.A.; Mas Milian, F.; Mazza, G.; Shakarami, Z.; Cirio, R.; Monaco, V.; Sacchi, R. Beam Monitors for Tomorrow: The Challenges of Electron and Photon FLASH RT. Front. Phys. 2020, 8, 375. [Google Scholar] [CrossRef]
- Oraiqat, I.; Zhang, W.; Litzenberg, D.; Lam, K.; Ba Sunbul, N.; Moran, J.; Cuneo, K.; Carson, P.; Wang, X.; El Naqa, I. An ionizing radiation acoustic imaging (iRAI) technique for real-time dosimetric measurements for FLASH radiotherapy. Med. Phys. 2020, 47, 5090–5101. [Google Scholar] [CrossRef]
- Favaudon, V.; Lentz, J.-M.; Heinrich, S.; Patriarca, A.; De Marzi, L.; Fouillade, C.; Dutreix, M. Time-resolved dosimetry of pulsed electron beams in very high dose-rate, FLASH irradiation for radiotherapy preclinical studies. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2019, 944, 162537. [Google Scholar] [CrossRef]
- Beddok, A.; Fouillade, C.; Quelennec, E.; Favaudon, V. In Vitro study of FLASH vs. conventional dose-rate irradiation: Cell viability and DNA damage repair. Radiother. Oncol. 2017, 123, S9–S10. [Google Scholar] [CrossRef]
- Auer, S.; Hable, V.; Greubel, C.; Drexler, G.A.; Schmid, T.E.; Belka, C.; Dollinger, G.; Friedl, A.A. Survival of tumor cells after proton irradiation with ultra-high dose rates. Radiat. Oncol. 2011, 6, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zlobinskaya, O.; Siebenwirth, C.; Greubel, C.; Hable, V.; Hertenberger, R.; Humble, N.; Reinhardt, S.; Michalski, D.; Röper, B.; Multhoff, G.; et al. The Effects of Ultra-High Dose Rate Proton Irradiation on Growth Delay in the Treatment of Human Tumor Xenografts in Nude Mice. Radiat. Res. 2014, 181, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Fouillade, C.; Curras-Alonso, S.; Giuranno, L.; Quelennec, E.; Heinrich, S.; Bonnet-Boissinot, S.; Beddok, A.; Leboucher, S.; Karakurt, H.U.; Bohec, M.; et al. FLASH Irradiation Spares Lung Progenitor Cells and Limits the Incidence of Radio-induced Senescence. Clin. Cancer Res. 2020, 26, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Favaudon, V.; Fouillade, C.; Vozenin, M.-C. Ultrahigh dose rate, “flash” irradiation minimizes the side-effects of radiotherapy. Cancer Radiothér. 2015, 19, 526–531. [Google Scholar] [CrossRef]
- Chabi, S.; Van To, T.H.; Leavitt, R.; Poglio, S.; Jorge, P.G.; Jaccard, M.; Petersson, K.; Petit, B.; Roméo, P.-H.; Pflumio, F.; et al. Ultra-high-dose-rate FLASH and Conventional-Dose-Rate Irradiation Differentially Affect Human Acute Lymphoblastic Leukemia and Normal Hematopoiesis. Int. J. Radiat. Oncol. Biol. Phys. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Montay-Gruel, P.; Petersson, K.; Jaccard, M.; Boivin, G.; Germond, J.-F.; Petit, B.; Doenlen, R.; Favaudon, V.; Bochud, F.; Bailat, C.; et al. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother. Oncol. 2017, 124, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.A.; Lartey, F.M.; Schüler, E.; Rafat, M.; King, G.; Kim, A.; Ko, R.; Semaan, S.; Gonzalez, S.; Jenkins, M.; et al. Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiother. Oncol. 2019, 139, 4–10. [Google Scholar] [CrossRef]
- Alaghband, Y.; Cheeks, S.N.; Allen, B.D.; Montay-Gruel, P.; Doan, N.-L.; Petit, B.; Jorge, P.G.; Giedzinski, E.; Acharya, M.M.; Vozenin, M.-C.; et al. Neuroprotection of Radiosensitive Juvenile Mice by Ultra-High Dose Rate FLASH Irradiation. Cancers 2020, 12, 1671. [Google Scholar] [CrossRef]
- Montay-Gruel, P.; Acharya, M.M.; Petersson, K.; Alikhani, L.; Yakkala, C.; Allen, B.D.; Ollivier, J.; Petit, B.; Jorge, P.G.; Syage, A.R.; et al. Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proc. Natl. Acad. Sci. USA 2019, 116, 10943–10951. [Google Scholar] [CrossRef] [Green Version]
- Loo, B.W.; Schuler, E.; Lartey, F.M.; Rafat, M.; King, G.J.; Trovati, S.; Koong, A.C.; Maxim, P.G. Delivery of Ultra-Rapid Flash Radiation Therapy and Demonstration of Normal Tissue Sparing After Abdominal Irradiation of Mice. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, E16. [Google Scholar] [CrossRef] [Green Version]
- Levy, K.; Natarajan, S.; Wang, J.; Chow, S.; Eggold, J.T.; Loo, P.E.; Manjappa, R.; Melemenidis, S.; Lartey, F.M.; Schüler, E.; et al. Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci. Rep. 2020, 10, 21600. [Google Scholar] [CrossRef] [PubMed]
- Vozenin, M.-C.; De Fornel, P.; Petersson, K.; Favaudon, V.; Jaccard, M.; Germond, J.-F.; Petit, B.; Burki, M.; Ferrand, G.; Patin, D.; et al. The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Cat-cancer Patients. Clin. Cancer Res. 2019, 25, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesulu, B.P.; Sharma, A.; Pollard-Larkin, J.M.; Sadagopan, R.; Symons, J.; Neri, S.; Singh, P.K.; Tailor, R.; Lin, S.H.; Krishnan, S. Ultra high dose rate (35 Gy/sec) radiation does not spare the normal tissue in cardiac and splenic models of lymphopenia and gastrointestinal syndrome. Sci. Rep. 2019, 9, 17180. [Google Scholar] [CrossRef]
- Bourhis, J.; Sozzi, W.J.; Jorge, P.G.; Gaide, O.; Bailat, C.; Duclos, F.; Patin, D.; Ozsahin, M.; Bochud, F.; Germond, J.-F.; et al. Treatment of a first patient with FLASH-radiotherapy. Radiother. Oncol. 2019, 139, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Bourhis, J.; Montay-Gruel, P.; Gonçalves Jorge, P.; Bailat, C.; Petit, B.; Ollivier, J.; Jeanneret-Sozzi, W.; Ozsahin, M.; Bochud, F.; Moeckli, R.; et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother. Oncol. 2019, 139, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Griffin, R.J.; Ahmed, M.M.; Amendola, B.; Belyakov, O.; Bentzen, S.M.; Butterworth, K.T. Understanding High-Dose, Ultra-High Dose Rate, and Spatially Fractionated Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 766–778. [Google Scholar] [CrossRef]
Experimental LINAC | Jaccard et al. (2018) [19] | Oriatron eRT6 built by PMB-Alcen | Prototype high dose-per-pulse LINAC. 6 MeV electron beam with variable dose rate (up to ~200 Gy/s at an SSD of 1 m); sometimes stated as producing a 5.6 MeV electron beam because of its softer spectrum compared to a clinical 6 MeV LINAC which uses filters and applicators. Output stability SD < 1%, but non-negligible day-to-day variations of the beam output. |
Modified clinical LINACs | Schuler et al. 2016 [20] | Varian 21EX, (Varian Medical Systems, Palo Alto, CA, USA) | Average dose rates of 74 Gy/s were achieved in clinical mode at ion chamber position (9 MeV electrons). Dose rate after tuning exceeded 900 Gy/s, with technical assistance from the LINAC manufacturer. 220 Gy/s at 1-cm depth for a > 4-cm field size with 90% homogeneity throughout a 2-cm-thick volume. |
Lempart 2019 [21] | ELEKTA Precise (Elekta AB, Stockholm, Sweden) | Dose rate of >30 Gy/s and >300 Gy/s achieved at crosshair foil and wedge positions, respectively. By moving scattering foil dose rate increased to >120 Gy/s and >1000 Gy/s. 5% flatness at the crosshair position for 20 × 20 and 10 × 10 cm2 areas, with and without both scattering foils in the beam. 10% flatness at the wedge position. | |
Synchrotron | Montay-Gruel 2018 [22] | ID17 Biomedical Beamline of the ESRF (Grenoble, France). | Synchrotron X-ray, broad beam (flat beam of 50 µm). Mean energy 102 keV, mean dose rate of 37 Gy/s. |
Smyth 2018 [23] | Imaging and Medical Beamline (IMBL), Australian Synchrotron | Mean X-ray energy 124 keV, dose rate 37–41 Gy/s for SBBR (synchrotron broad-beam radiation). | |
Clinical accelerator | Patriarca 2018 [25] | 230 MeV proton cyclotron (IBA, Belgium) | Dose rates exceeding 40 Gy/s at energies between 138 and 198 MeV were obtained. Used passive scattering setup, field size 12 × 12 mm2. |
Diffender et al. 2020 [27] | 230 MeV proton cyclotron (IBA, Belgium) | Produced a passively scattered beam with a field size of 10 × 20 mm2. Dose rate increases with proton beam energy, up to over 250 Gy/s for the maximum proton energy. |
Study [ref] | Organ/Tumour Evaluated | Radiation Quality and Delivery Parameters | Normal Tissue Effects/Tumour Control |
---|---|---|---|
FLASH vs. CRT to evaluate differential cellular response in normal and tumour tissue (Favaudon et al. 2014, 2015) [3,45] | Lung (mice) | FLASH dose rate: >40 Gy/s CRT dose rate: <0.03 Gy/s (15 Gy) | No complications with FLASH below 20 Gy at 36-weeks follow-up. Better normal tissue protection than CRT and comparable tumour control. |
Electron FLASH with LINAC/Oriatron (Montay-Gruel et al. 2017, Montay-Gruel et al. 2019) [19,47,50] | Whole brain (mice) | Pulsed-electron beam FLASH to deliver 10 Gy with dose rates >100 Gy/s CRT dose rate: 0.1 Gy/s | Memory and neurogenesis preservation in the hippocampus after FLASH; Electron FLASH is superior at brain function preservation to conventional delivery. CRT led to permanent alterations in neurocognitive end points 6 months post treatment, while FLASH did not cause neuroinflammation, learning/memory deficits. |
Electron FLASH study with Oriatron LINAC on juvenile mice brains (Alaghband et al. 2020) [49] | Whole brain (juvenile mice) | Whole brain dose of 8 Gy delivered at a rate of 0.077 Gy/s for the conventional treatment and 4.4 ×106 Gy/s for the FLASH treatment. | FLASH therapy was found to preserve the neurogenic niche, neurogenesis in the hippocampus and normal growth hormone levels post irradiation which were all degraded by CRT. FLASH was also found to result in normal or near normal results in learning, memory and socialisation tests at 4 months post treatment, while CRT caused major deficits. |
X-ray FLASH with synchrotron generated radiation (Montay-Gruel et al. 2018) [22] | Whole brain (mice) | Synchrotron X-rays: 37 Gy/s (12,000 Gy/s dose rate in the slice) | No memory deficit (preservation of spatial memory); reduced impairment of hippocampal cell division; induction of less reactive astrogliosis. |
LINAC-based electron beam delivery of FLASH vs. CRT (Simmons et al. 2019) [48] | Whole brain (mice) | Single dose of 30 Gy high energy electrons (16 and 20 MeV). FLASH dose rate: 200 Gy/s for 20 MeV or 300 Gy/s for 16 MeV CRT dose rate: 0.13 Gy/s (for both energies) | FLASH showed reduced pro-inflammatory cytokines and less loss of dendritic spine density in the hippocampus, also reduced cognitive impairment and neurodegeneration compared to conventional therapy. |
Electron FLASH study on treatment of Leukemia with Oriatron LINAC (Chabi et al. 2020) [46] | Total body irradiation (mice) | Whole body dose of 4 Gy delivered at a rate of <0.072 Gy/s for the conventional treatment and 200 Gy/s for the FLASH treatment | FLASH therapy was found to result in greater killing off Leukemia cells as well as longer remission delays and survival than CRT. FLASH therapy was found to preserve partial hematopoietic stem/progenitor cell function which was completely destroyed by CRT. |
Proton FLASH vs. conventional 6 MV photons to evaluate tumour growth delay (Zlobinskaya et al. 2014) [43] | Hypopharyngeal squamous cell carcinoma (FaDu-inoculated mice) | FLASH dose: around 20 Gy with 109 Gy/s CRT dose: 10–40 Gy delivered over 67 s to 268 s | Tumour growth delay (TGD) with photons: After 10 Gy: 12 ± 3 days After 20 Gy: 31 ± 7 days After 30 Gy: 58 ± 7 days 40 Gy resulted in complete local control at 120-day follow-up. TGD with protons: Pulsed: 34 ± 6 days Continuous: 35 ± 6 days. |
Proton FLASH delivery with clinical device translatable to humans (Girdhani et al. 2019) [26] | Lung (mice) | FLASH dose rate protons: 40 Gy/s Single dose delivery of 15, 17.5 and 20 Gy Conventional proton therapy dose rate: 1 Gy/s | Targeted clinical endpoint: lung fibrosis. FLASH led to 30% reduction in lung fibrosis, lower incidence of skin dermatitis, better overall survival. |
FLASH vs. CRT for total abdomen irradiation–normal tissue study (Loo et al. 2017) [51] | Whole abdomen (mice) | LINAC-based FLASH 10–22 Gy FLASH dose rate: 70–210 Gy/s CRT dose rate: 0.05 Gy/s | Survival after 20 days post irradiation with 13–19 Gy: CRT: 29% (LD50 = 14.7 Gy) FLASH: 90% (LD50 = 17.5 Gy) p < 0.001 |
Safety and efficacy of FLASH in the treatment of widespread ovarian cancer peritoneal metastases (Levy et al. 2020) [52] | Whole abdomen (mice) | LINAC-based FLASH 16 MeV with a 16 MeV scattering foil Average dose rate: 216 Gy/s at 2 Gy/pulse. | Compared to CRT, FLASH reduces early DNA damage and cell death in intestinal crypt cells, inducing higher crypt regeneration; FLASH preserves intestinal function and reduces intestinal injury caused by radiation. Tumour efficacy of FLASH was similar to CRT. |
Proton FLASH delivery using modified clinical cyclotron (Diffenderfer et al. 2020) [27] | Whole abdomen/Partial abdomen and flank tumour (mice) | FLASH Proton dose rate of 78 Gy/s compared with conventional rate of 0.9 Gy/s for doses of 15 Gy for whole abdomen and 12 and 18 Gy for partial abdomen irradiations | Proton FLASH therapy increased intestinal crypt regeneration at 3.5 days post irradiation compared to conventional proton therapy as well as resulting in only minimal fibrosis. No difference in tumour volume growth post irradiation was observed between FLASH and conventional proton therapy. |
Synchrotron radiation (MRT, SBBR) vs. CRT (Smyth et al. 2018) [23] | Partial body/Whole body (mice) | SBBR dose rate: 37–41 Gy/s MRT dose rate: 276–319 Gy/s (in-beam) CRT dose rate: 0.05–0.06 Gy/s | No clear evidence of improved normal tissue sparing from SBBR vs. CRT. Long-term growth impairment with MRT irradiation. TD50 values for TBI: 6.9 Gy (CRT), 6.7 Gy (SBBR), 120 Gy (MRT-peak), 3.8 Gy (MRT-valley). TD50 values for head PBI: 12.3 Gy (CRT), 13.1 Gy (SBBR), 268 Gy (MRT-peak), 7.2 Gy (MRT-valley). |
Electron FLASH on large mammals to evaluate possible clinical transfer (Vozenin et al. 2019) [53] | Skin (pig) Nose skin (squamous cell carcinoma) (cats) | Kinetron/Oriatron electron radiation Pig: FLASH dose rate: 300 Gy/s CRT dose rate: 5 Gy/min Cats: All treated with a single-dose FLASH: 25–41 Gy (dose escalation trial) | Pig: Acute toxicity as transient depilation 3 weeks post-treatment with FLASH. Hair follicles preserved with FLASH and permanently destroyed with CRT. CRT induced severe late skin fibro necrosis. Cats: permanent depilation within the treated area, no late toxicities, no damage to smelling or nutrition functions. 100% complete response at 6 months; 50% disease free at 18 months post-FLASH. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcu, L.G.; Bezak, E.; Peukert, D.D.; Wilson, P. Translational Research in FLASH Radiotherapy—From Radiobiological Mechanisms to In Vivo Results. Biomedicines 2021, 9, 181. https://doi.org/10.3390/biomedicines9020181
Marcu LG, Bezak E, Peukert DD, Wilson P. Translational Research in FLASH Radiotherapy—From Radiobiological Mechanisms to In Vivo Results. Biomedicines. 2021; 9(2):181. https://doi.org/10.3390/biomedicines9020181
Chicago/Turabian StyleMarcu, Loredana G., Eva Bezak, Dylan D. Peukert, and Puthenparampil Wilson. 2021. "Translational Research in FLASH Radiotherapy—From Radiobiological Mechanisms to In Vivo Results" Biomedicines 9, no. 2: 181. https://doi.org/10.3390/biomedicines9020181
APA StyleMarcu, L. G., Bezak, E., Peukert, D. D., & Wilson, P. (2021). Translational Research in FLASH Radiotherapy—From Radiobiological Mechanisms to In Vivo Results. Biomedicines, 9(2), 181. https://doi.org/10.3390/biomedicines9020181