Getting to Know Endometriosis-Related Infertility Better: A Review on How Endometriosis Affects Oocyte Quality and Embryo Development
Abstract
:1. Introduction
2. Materials and Methods
3. Reactive Oxygen Species (ROS)
3.1. How Elevated Levels of ROS Are Established in Endometriosis
3.2. Mechanisms Indicating the Role of ROS in Cellular Damage
3.3. The Impact of ROS in Oocyte and Embryo Competence
4. Dysregulation of the Immune System
4.1. The Disruption of the Immune Balance in Endometriosis
4.2. The Impairment of the Reproductive Status Due to Affected Immunological Parameters
5. Meiotic Spindle Disruption and Extracellular Matrix Remodeling
5.1. How Endometriosis Affects the Cellular Kinetics and Chromosomal Integrity
5.2. Meiotic Spindle Disruption and Consequences on Oocyte and Embryo Competence
5.3. Extracellular Matrix Remodeling Affected by Endometriosis
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pantou, A.; Simopoulou, M.; Sfakianoudis, K.; Giannelou, P.; Rapani, A.; Maziotis, E.; Grigoriadis, S.; Tsioulou, P.; Syrkos, S.; Souretis, K.; et al. The Role of Laparoscopic Investigation in Enabling Natural Conception and Avoiding in Vitro Fertilization Overuse for Infertile Patients of Unidentified Aetiology and Recurrent Implantation Failure Following in Vitro Fertilization. J. Clin. Med. 2019, 8, 548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantou, A.; Sfakianoudis, K.; Maziotis, E.; Giannelou, P.; Grigoriadis, S.; Tsioulou, P.; Kokkali, G.; Koutsilieris, M.; Pantos, K.; Simopoulou, M. Couples with Mild Male Factor Infertility and at Least 3 Failed Previous IVF Attempts May Benefit from Laparoscopic Investigation Regarding Assisted Reproduction Outcome. Sci. Rep. 2020, 10, 2350. [Google Scholar] [CrossRef] [Green Version]
- Missmer, S.A.; Hankinson, S.E.; Spiegelman, D.; Barbieri, R.L.; Marshall, L.M.; Hunter, D.J. Incidence of Laparoscopically Confirmed Endometriosis by Demographic, Anthropometric, and Lifestyle Factors. Am. J. Epidemiol. 2004, 160, 784–796. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.A.; Templeton, A. Prevalence and Genesis of Endometriosis. Hum. Reprod. Oxf. Engl. 1991, 6, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Meuleman, C.; Vandenabeele, B.; Fieuws, S.; Spiessens, C.; Timmerman, D.; D’Hooghe, T. High Prevalence of Endometriosis in Infertile Women with Normal Ovulation and Normospermic Partners. Fertil. Steril. 2009, 92, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Máté, G.; Bernstein, L.R.; Török, A.L. Endometriosis Is a Cause of Infertility. Does Reactive Oxygen Damage to Gametes and Embryos Play a Key Role in the Pathogenesis of Infertility Caused by Endometriosis? Front. Endocrinol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Tanbo, T.; Fedorcsak, P. Endometriosis-Associated Infertility: Aspects of Pathophysiological Mechanisms and Treatment Options. Acta Obstet. Gynecol. Scand. 2017, 96, 659–667. [Google Scholar] [CrossRef]
- Simón, C.; Gutiérrez, A.; Vidal, A.; de los Santos, M.J.; Tarín, J.J.; Remohí, J.; Pellicer, A. Outcome of Patients with Endometriosis in Assisted Reproduction: Results from in-Vitro Fertilization and Oocyte Donation. Hum. Reprod. Oxf. Engl. 1994, 9, 725–729. [Google Scholar] [CrossRef]
- Sanchez, A.M.; Pagliardini, L.; Cermisoni, G.C.; Privitera, L.; Makieva, S.; Alteri, A.; Corti, L.; Rabellotti, E.; Candiani, M.; Viganò, P. Does Endometriosis Influence the Embryo Quality and/or Development? Insights from a Large Retrospective Matched Cohort Study. Diagnostics 2020, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Kim, S.K.; Lee, J.R.; Jee, B.C. Management of Endometriosis-Related Infertility: Considerations and Treatment Options. Clin. Exp. Reprod. Med. 2020, 47, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Guérin, P.; El Mouatassim, S.; Ménézo, Y. Oxidative Stress and Protection against Reactive Oxygen Species in the Pre-Implantation Embryo and Its Surroundings. Hum. Reprod. Update 2001, 7, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.F.P.; Samadder, A.N.; Agarwal, A.; Fernandes, L.F.C.; Abrão, M.S. Oxidative Stress Biomarkers in Patients with Endometriosis: Systematic Review. Arch. Gynecol. Obstet. 2012, 286, 1033–1040. [Google Scholar] [CrossRef]
- Ngô, C.; Chéreau, C.; Nicco, C.; Weill, B.; Chapron, C.; Batteux, F. Reactive Oxygen Species Controls Endometriosis Progression. Am. J. Pathol. 2009, 175, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Gupta, S.; Sharma, R.K. Role of Oxidative Stress in Female Reproduction. Reprod. Biol. Endocrinol. RBE 2005, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Gupta, S.; Sekhon, L.; Shah, R. Redox Considerations in Female Reproductive Function and Assisted Reproduction: From Molecular Mechanisms to Health Implications. Available online: https://pubmed.ncbi.nlm.nih.gov/18402550/ (accessed on 29 September 2020).
- Dennery, P.A. Effects of Oxidative Stress on Embryonic Development. Birth Defects Res. Part C Embryo Today Rev. 2007, 81, 155–162. [Google Scholar] [CrossRef]
- Scutiero, G.; Iannone, P.; Bernardi, G.; Bonaccorsi, G.; Spadaro, S.; Volta, C.A.; Greco, P.; Nappi, L. Oxidative Stress and Endometriosis: A Systematic Review of the Literature. Available online: https://www.hindawi.com/journals/omcl/2017/7265238/ (accessed on 29 September 2020).
- Gutteridge, J.M. Iron Promoters of the Fenton Reaction and Lipid Peroxidation Can Be Released from Haemoglobin by Peroxides. FEBS Lett. 1986, 201, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, M.; Mahjoub, S.; Esmaelzadeh, S.; Hajian, K.; Basirat, Z.; Ghasemi, M. Evaluation of Oxidative Stress in Endometriosis: A Case-Control Study. Casp. J. Intern. Med. 2015, 6, 25. [Google Scholar]
- Defrère, S.; Lousse, J.C.; Gonzalez-Ramos, R.; Colette, S.; Donnez, J.; Van Langendonckt, A. Potential Involvement of Iron in the Pathogenesis of Peritoneal Endometriosis. Available online: https://pubmed.ncbi.nlm.nih.gov/18508952/ (accessed on 14 October 2020).
- Hossain, M.Z.; Silva, J.; Fujita, M.; Silva, J. Differential Roles of Glutathione S-Transferases in Oxidative Stress Modulation. Available online: /paper/Differential-roles-of-glutathione-S-transferases-in-Hossain-Silva/665fec6b393f2fa11eb558817d15159b53260494 (accessed on 14 October 2020).
- Mashayekhi, S.; Salehi, Z.; Zahiri, Z.; Mirzajani, E.; Shahangian, S. Correlation between Serum and Peritoneal Fluid Glutathione S-Transferases T1 Concentration with Different Stages of Endometriosis. Middle East Fertil. Soc. J. 2018, 23, 23–26. [Google Scholar] [CrossRef]
- Tarín, J.J. Aetiology of Age-Associated Aneuploidy: A Mechanism Based on the “Free Radical Theory of Ageing”. Hum. Reprod. Oxf. Engl. 1995, 10, 1563–1565. [Google Scholar] [CrossRef]
- Berkowitz, S.A.; Wolff, J. Intrinsic Calcium Sensitivity of Tubulin Polymerization. The Contributions of Temperature, Tubulin Concentration, and Associated Proteins. J. Biol. Chem. 1981, 256, 11216–11223. [Google Scholar] [CrossRef]
- Esposito, L.A.; Melov, S.; Panov, A.; Cottrell, B.A.; Wallace, D.C. Mitochondrial Disease in Mouse Results in Increased Oxidative Stress. Proc. Natl. Acad. Sci. USA 1999, 96, 4820–4825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofuni, T.; Ishidate, M. Induction of Chromosomal Aberrations in Cultured Chinese Hamster Cells in a Superoxide-Generating System. Mutat. Res. 1984, 140, 27–31. [Google Scholar] [CrossRef]
- Halliwell, B. Free Radicals, Antioxidants, and Human Disease: Curiosity, Cause, or Consequence? Lancet Lond. Engl. 1994, 344, 721–724. [Google Scholar] [CrossRef]
- Szczepańska, M.; Koźlik, J.; Skrzypczak, J.; Mikołajczyk, M. Oxidative Stress May Be a Piece in the Endometriosis Puzzle. Fertil. Steril. 2003, 79, 1288–1293. [Google Scholar] [CrossRef]
- Harman, D. Aging: A Theory Based on Free Radical and Radiation Chemistry. J. Gerontol. 1956, 11, 298–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noda, Y.; Matsumoto, H.; Umaoka, Y.; Tatsumi, K.; Kishi, J.; Mori, T. Involvement of Superoxide Radicals in the Mouse Two-Cell Block. Mol. Reprod. Dev. 1991, 28, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Wells, P.G.; Bhuller, Y.; Chen, C.S.; Jeng, W.; Kasapinovic, S.; Kennedy, J.C.; Kim, P.M.; Laposa, R.R.; McCallum, G.P.; Nicol, C.J.; et al. Molecular and Biochemical Mechanisms in Teratogenesis Involving Reactive Oxygen Species. Toxicol. Appl. Pharmacol. 2005, 207, 354–366. [Google Scholar] [CrossRef]
- Agarwal, A.; Gupta, S.; Sikka, S. The Role of Free Radicals and Antioxidants in Reproduction. Curr. Opin. Obstet. Gynecol. 2006, 18, 325–332. [Google Scholar] [CrossRef]
- Bedaiwy, M.A.; Falcone, T.; Sharma, R.K.; Goldberg, J.M.; Attaran, M.; Nelson, D.R.; Agarwal, A. Prediction of Endometriosis with Serum and Peritoneal Fluid Markers: A Prospective Controlled Trial. Hum. Reprod. Oxf. Engl. 2002, 17, 426–431. [Google Scholar] [CrossRef] [Green Version]
- Lopes, S.; Jurisicova, A.; Sun, J.G.; Casper, R.F. Reactive Oxygen Species: Potential Cause for DNA Fragmentation in Human Spermatozoa. Hum. Reprod. Oxf. Engl. 1998, 13, 896–900. [Google Scholar] [CrossRef] [Green Version]
- Morales, H.; Tilquin, P.; Rees, J.F.; Massip, A.; Dessy, F.; Van Langendonckt, A. Pyruvate Prevents Peroxide-Induced Injury of in Vitro Preimplantation Bovine Embryos. Mol. Reprod. Dev. 1999, 52, 149–157. [Google Scholar] [CrossRef]
- Sharma, R.K.; Agarwal, A. Role of Reactive Oxygen Species in Gynecologic Diseases. Reprod. Med. Biol. 2004, 3, 177–199. [Google Scholar] [CrossRef] [PubMed]
- Mulgund, A.; Doshi, S.; Agarwal, A. The Role of Oxidative Stress in Endometriosis. In Handbook of Fertility: Nutrition, Diet, Lifestyle and Reproductive Health; Elsevier: Amsterdam, The Netherlands, 2015; pp. 273–281. ISBN 978-0-12-800872-0. [Google Scholar]
- Amreen, S.; Kumar, P.; Gupta, P.; Rao, P. Evaluation of Oxidative Stress and Severity of Endometriosis. J. Hum. Reprod. Sci. 2019, 12, 40–46. [Google Scholar] [CrossRef]
- Garcia-Velasco, J.A.; Arici, A. Is the Endometrium or Oocyte/Embryo Affected in Endometriosis? Hum. Reprod. Oxf. Engl. 1999, 14 (Suppl. 2), 77–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrelli, G.M.; Carvalho, K.I.; Kallas, E.G.; Mechsner, S.; Baracat, E.C.; Abrão, M.S. Chemokines in the Pathogenesis of Endometriosis and Infertility. J. Reprod. Immunol. 2013, 98, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Iwabe, T.; Terakawa, N. Role of Cytokines in Endometriosis. Fertil. Steril. 2001, 76, 1–10. [Google Scholar] [CrossRef]
- Van Langendonckt, A.; Casanas-Roux, F.; Donnez, J. Oxidative Stress and Peritoneal Endometriosis. Fertil. Steril. 2002, 77, 861–870. [Google Scholar] [CrossRef]
- Vinatier, D.; Dufour, P.; Oosterlynck, D. Immunological Aspects of Endometriosis. Hum. Reprod. Update 1996, 2, 371–384. [Google Scholar] [CrossRef] [Green Version]
- HALME, J.; WHITE, C.; KAUMA, S.; ESTES, J.; HASKILL, S. Peritoneal Macrophages From Patients With Endometriosis Release Growth Factor Activity in Vitro. J. Clin. Endocrinol. Metab. 1988, 66, 1044–1049. [Google Scholar] [CrossRef]
- Fakih, H.; Baggett, B.; Holtz, G.; Tsang, K.-Y.; Lee, J.C.; Williamson, H.O. Interleukin-1: A Possible Role in the Infertility Associated with Endometriosis. Fertil. Steril. 1987, 47, 213–217. [Google Scholar] [CrossRef]
- Mizel, S.B. Interleukin 1 and T Cell Activation. Immunol. Rev. 1982, 63, 51–72. [Google Scholar] [CrossRef] [PubMed]
- Falkoff, R.J.; Muraguchi, A.; Hong, J.X.; Butler, J.L.; Dinarello, C.A.; Fauci, A.S. The Effects of Interleukin 1 on Human B Cell Activation and Proliferation. J. Immunol. 1983, 131, 801–805. [Google Scholar]
- Rana, N.; Braun, D.P.; House, R.; Gebel, H.; Rotman, C.; Dmowski, W.P. Basal and Stimulated Secretion of Cytokines by Peritoneal Macrophages in Women with Endometriosis. Fertil. Steril. 1996, 65, 925–930. [Google Scholar] [CrossRef]
- Lucena, E.; Cubillos, J. Immune Abnormalities in Endometriosis Compromising Fertility in IVF-ET Patients. J. Reprod. Med. 1999, 44, 458–464. [Google Scholar] [PubMed]
- Pellicer, A.; Albert, C.; Garrido, N.; Navarro, J.; Remohí, J.; Simón, C. The Pathophysiology of Endometriosis-Associated Infertility: Follicular Environment and Embryo Quality. J. Reprod. Fertil. Suppl. 2000, 55, 109–119. [Google Scholar]
- Opøien, H.K.; Fedorcsak, P.; Polec, A.; Stensen, M.H.; Åbyholm, T.; Tanbo, T. Do Endometriomas Induce an Inflammatory Reaction in Nearby Follicles? Hum. Reprod. Oxf. Engl. 2013, 28, 1837–1845. [Google Scholar] [CrossRef] [Green Version]
- Pellicer, A.; Oliveira, N.; Ruiz, A.; Remohí, J.; Simón, C. Exploring the Mechanism(s) of Endometriosis-Related Infertility: An Analysis of Embryo Development and Implantation in Assisted Reproduction. Hum. Reprod. 1995, 10, 91–97. [Google Scholar] [CrossRef]
- Cahill, D.J.; Hull, M.G. Pituitary-Ovarian Dysfunction and Endometriosis. Hum. Reprod. Update 2000, 6, 56–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaeib, F.; Khan, S.; Saed, G.; Abu-Soud, H. Macrophages Activation Deteriorate Metaphase II Mouse Oocyte through Myeloperoxidase Action. Fertil. Steril. 2015, 104, e202. [Google Scholar] [CrossRef]
- Singh, A.K.; Dutta, M.; Chattopadhyay, R.; Chakravarty, B.; Chaudhury, K. Intrafollicular Interleukin-8, Interleukin-12, and Adrenomedullin Are the Promising Prognostic Markers of Oocyte and Embryo Quality in Women with Endometriosis. J. Assist. Reprod. Genet. 2016, 33, 1363–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazvani, M.R.; Bates, M.; Vince, G.; Christmas, S.; Lewis-Jones, D.I.; Kingsland, C. Follicular Fluid Concentrations of Interleukin-12 and Interleukin-8 in IVF Cycles. Fertil. Steril. 2000, 74, 953–958. [Google Scholar] [CrossRef]
- Lee, K.S.; Joo, B.S.; Na, Y.J.; Yoon, M.S.; Choi, O.H.; Kim, W.W. Relationships between Concentrations of Tumor Necrosis Factor-Alpha and Nitric Oxide in Follicular Fluid and Oocyte Quality. J. Assist. Reprod. Genet. 2000, 17, 222–228. [Google Scholar] [CrossRef]
- Bedaiwy, M.; Shahin, A.Y.; AbulHassan, A.M.; Goldberg, J.M.; Sharma, R.K.; Agarwal, A.; Falcone, T. Differential Expression of Follicular Fluid Cytokines: Relationship to Subsequent Pregnancy in IVF Cycles. Reprod. Biomed. Online 2007, 15, 321–325. [Google Scholar] [CrossRef]
- Lédée, N.; Lombroso, R.; Lombardelli, L.; Selva, J.; Dubanchet, S.; Chaouat, G.; Frankenne, F.; Foidart, J.M.; Maggi, E.; Romagnani, S.; et al. Cytokines and Chemokines in Follicular Fluids and Potential of the Corresponding Embryo: The Role of Granulocyte Colony-Stimulating Factor. Hum. Reprod. Oxf. Engl. 2008, 23, 2001–2009. [Google Scholar] [CrossRef] [Green Version]
- Saito, H.; Seino, T.; Kaneko, T.; Nakahara, K.; Toya, M.; Kurachi, H. Endometriosis and Oocyte Quality. Gynecol. Obstet. Investig. 2002, 53 (Suppl. 1), 46–51. [Google Scholar] [CrossRef]
- Perrin, G.Q.; Johnson, H.M.; Subramaniam, P.S. Mechanism of Interleukin-10 Inhibition of T-Helper Cell Activation by Superantigen at the Level of the Cell Cycle. Blood 1999, 93, 208–216. [Google Scholar] [CrossRef]
- Gupta, S.; Goldberg, J.M.; Aziz, N.; Goldberg, E.; Krajcir, N.; Agarwal, A. Pathogenic Mechanisms in Endometriosis-Associated Infertility. Fertil. Steril. 2008, 90, 247–257. [Google Scholar] [CrossRef]
- Ota, H.; Igarashi, S.; Hatazawa, J.; Tanaka, T. Distribution of Heat Shock Proteins in Eutopic and Ectopic Endometrium in Endometriosis and Adenomyosis. Fertil. Steril. 1997, 68, 23–28. [Google Scholar] [CrossRef]
- Harlow, C.R.; Cahill, D.J.; Maile, L.A.; Talbot, W.M.; Mears, J.; Wardle, P.G.; Hull, M.G. Reduced Preovulatory Granulosa Cell Steroidogenesis in Women with Endometriosis. J. Clin. Endocrinol. Metab. 1996, 81, 426–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morcos, R.N.; Gibbons, W.E.; Findley, W.E. Effect of Peritoneal Fluid on in Vitro Cleavage of 2-Cell Mouse Embryos: Possible Role in Infertility Associated with Endometriosis. Fertil. Steril. 1985, 44, 678–683. [Google Scholar] [CrossRef]
- Ding, G.-L.; Chen, X.-J.; Luo, Q.; Dong, M.-Y.; Wang, N.; Huang, H.-F. Attenuated Oocyte Fertilization and Embryo Development Associated with Altered Growth Factor/Signal Transduction Induced by Endometriotic Peritoneal Fluid. Fertil. Steril. 2010, 93, 2538–2544. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.E.; Ahn, S.H.; Monsanto, S.P.; Khalaj, K.; Koti, M.; Tayade, C. Implications of Immune Dysfunction on Endometriosis Associated Infertility. Oncotarget 2016, 8, 7138–7147. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, K.; Dip, Y.C.Y. Endometriosis and Infertility: The Role of Exogenous Lipid Peroxides in the Peritoneal Fluid. Fertil. Steril. 1995, 63, 198–199. [Google Scholar] [CrossRef]
- Mansour, G.; Agarwal, A.; Radwan, E.; Sharma, R.; Goldberg, J.; Falcone, T. DNA Damage in Metaphase II Oocytes Is Induced by Peritoneal Fluid from Endometriosis Patients. Fertil. Steril. 2007, 88, S299. [Google Scholar] [CrossRef]
- Brizek, C.L.; Schlaff, S.; Pellegrini, V.A.; Frank, J.B.; Worrilow, K.C. Increased Incidence of Aberrant Morphological Phenotypes in Human Embryogenesis--an Association with Endometriosis. J. Assist. Reprod. Genet. 1995, 12, 106–112. [Google Scholar] [CrossRef]
- Mansour, G.; Sharma, R.K.; Agarwal, A.; Falcone, T. Endometriosis-Induced Alterations in Mouse Metaphase II Oocyte Microtubules and Chromosomal Alignment: A Possible Cause of Infertility. Fertil. Steril. 2010, 94, 1894–1899. [Google Scholar] [CrossRef]
- Juneau, C.; Kraus, E.; Werner, M.; Franasiak, J.; Morin, S.; Patounakis, G.; Molinaro, T.; de Ziegler, D.; Scott, R.T. Patients with Endometriosis Have Aneuploidy Rates Equivalent to Their Age-Matched Peers in the in Vitro Fertilization Population. Fertil. Steril. 2017, 108, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.K.; Azeem, A.; Agarwal, A. Spindle and Chromosomal Alterations in Metaphase II Oocytes. Reprod. Sci. Thousand Oaks Calif 2013, 20, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.-J.; Banerjee, J.; Falcone, T.; Bena, J.; Agarwal, A.; Sharma, R.K. Oxidative Stress and Tumor Necrosis Factor-Alpha-Induced Alterations in Metaphase II Mouse Oocyte Spindle Structure. Fertil. Steril. 2007, 88, 1220–1231. [Google Scholar] [CrossRef]
- Banerjee, J.; Sharma, R.; Agarwal, A.; Maitra, D.; Diamond, M.P.; Abu-Soud, H.M. IL-6 and Mouse Oocyte Spindle. PLoS ONE 2012, 7, e35535. [Google Scholar] [CrossRef]
- Schatten, G.; Simerly, C.; Schatten, H. Microtubule Configurations during Fertilization, Mitosis, and Early Development in the Mouse and the Requirement for Egg Microtubule-Mediated Motility during Mammalian Fertilization. Proc. Natl. Acad. Sci. USA 1985, 82, 4152–4156. [Google Scholar] [CrossRef] [Green Version]
- Eroglu, A.; Toth, T.L.; Toner, M. Alterations of the Cytoskeleton and Polyploidy Induced by Cryopreservation of Metaphase II Mouse Oocytes. Fertil. Steril. 1998, 69, 944–957. [Google Scholar] [CrossRef]
- Da Broi, M.G.; Malvezzi, H.; Paz, C.C.P.; Ferriani, R.A.; Navarro, P.A.A.S. Follicular Fluid from Infertile Women with Mild Endometriosis May Compromise the Meiotic Spindles of Bovine Metaphase II Oocytes. Hum. Reprod. 2014, 29, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Ziyyat, A.; Naoura, I.; Chabbert-Buffet, N.; Aractingi, S.; Darai, E.; Lefevre, B. Effect of Induced Peritoneal Endometriosis on Oocyte and Embryo Quality in a Mouse Model. J. Assist. Reprod. Genet. 2015, 32, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Stilley, J.A.W.; Woods-Marshall, R.; Sutovsky, M.; Sutovsky, P.; Sharpe-Timms, K.L. Reduced Fecundity in Female Rats with Surgically Induced Endometriosis and in Their Daughters: A Potential Role for Tissue Inhibitors of Metalloproteinase 1. Biol. Reprod. 2009, 80, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Kosugi, Y.; Elias, S.; Malinak, L.R.; Nagata, J.; Isaka, K.; Takayama, M.; Simpson, J.L.; Bischoff, F.Z. Increased Heterogeneity of Chromosome 17 Aneuploidy in Endometriosis. Am. J. Obstet. Gynecol. 1999, 180, 792–797. [Google Scholar] [CrossRef]
- Matrisian, L.M. Metalloproteinases and Their Inhibitors in Matrix Remodeling. Trends Genet. TIG 1990, 6, 121–125. [Google Scholar] [CrossRef]
- Bałkowiec, M.; Maksym, R.B.; Włodarski, P.K. The Bimodal Role of Matrix Metalloproteinases and Their Inhibitors in Etiology and Pathogenesis of Endometriosis. Mol. Med. Rep. 2018, 18, 3123–3136. [Google Scholar] [CrossRef] [Green Version]
- Curry, T.E.; Osteen, K.G. Cyclic Changes in the Matrix Metalloproteinase System in the Ovary and Uterus. Biol. Reprod. 2001, 64, 1285–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ascenzo, S.; Giusti, I.; Millimaggi, D.; Marci, R.; Tatone, C.; Cardigno Colonna, R.; Moscarini, M.; Pavan, A.; Dolo, V.; Caserta, D. Intrafollicular Expression of Matrix Metalloproteinases and Their Inhibitors in Normally Ovulating Women Compared with Patients Undergoing in Vitro Fertilization Treatment. Eur. J. Endocrinol. 2004, 151, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.Q.; Li, H.; Yamashita, K.; Guo, X.K.; Hoshino, T.; Yoshida, S.; Shinya, T.; Hayakawa, T. Cell Cycle-Associated Accumulation of Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) in the Nuclei of Human Gingival Fibroblasts. J. Cell Sci. 1998, 111 Pt 9, 1147–1153. [Google Scholar]
- Practice Committee of the American Society for Reproductive Medicine Endometriosis and Infertility: A Committee Opinion. Fertil. Steril. 2012, 98, 591–598. [CrossRef]
- Pluchino, N.; Freschi, L.; Wenger, J.-M.; Streuli, I. Innovations in Classical Hormonal Targets for Endometriosis. Expert Rev. Clin. Pharmacol. 2016, 9, 317–327. [Google Scholar] [CrossRef]
- Freis, A.; Dietrich, J.E.; Binder, M.; Holschbach, V.; Strowitzki, T.; Germeyer, A. Relative Morphokinetics Assessed by Time-Lapse Imaging Are Altered in Embryos From Patients With Endometriosis. Reprod. Sci. Thousand Oaks Calif 2018, 25, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Donnez, J.; Binda, M.M.; Donnez, O.; Dolmans, M.-M. Oxidative Stress in the Pelvic Cavity and Its Role in the Pathogenesis of Endometriosis. Fertil. Steril. 2016, 106, 1011–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitajima, M.; Dolmans, M.-M.; Donnez, O.; Masuzaki, H.; Soares, M.; Donnez, J. Enhanced Follicular Recruitment and Atresia in Cortex Derived from Ovaries with Endometriomas. Fertil. Steril. 2014, 101, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.A.P.; Teixeira, D.M.; Navarro, P.A.A.S.; Ferriani, R.A.; Nastri, C.O.; Martins, W.P. Impact of Endometriosis and Its Staging on Assisted Reproduction Outcome: Systematic Review and Meta-Analysis. Ultrasound Obstet. Gynecol. 2014, 44, 261–278. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, A.; Vanni, V.S.; Bartiromo, L.; Papaleo, E.; Zilberberg, E.; Candiani, M.; Orvieto, R.; Viganò, P. Is the Oocyte Quality Affected by Endometriosis? A Review of the Literature. J. Ovarian Res. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Grümmer, R. Animal Models in Endometriosis Research. Hum. Reprod. Update 2006, 12, 641–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, H.S. Endometriosis: A Complex Systemic Disease with Multiple Manifestations. Fertil. Steril. 2019, 112, 235–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimbach, S.; Ulrich, U.; Schweppe, K.W. Surgical Therapy of Endometriosis: Challenges and Controversies. Geburtshilfe Frauenheilkd. 2013, 73, 918–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somigliana, E.; Vercellini, P.; Viganó, P.; Ragni, G.; Crosignani, P.G. Should Endometriomas Be Treated before IVF–ICSI Cycles? Hum. Reprod. Update 2006, 12, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Dunselman, G.A.J.; Vermeulen, N.; Becker, C.; Calhaz-Jorge, C.; D’Hooghe, T.; De Bie, B.; Heikinheimo, O.; Horne, A.W.; Kiesel, L.; Nap, A.; et al. ESHRE Guideline: Management of Women with Endometriosis. Hum. Reprod. Oxf. Engl. 2014, 29, 400–412. [Google Scholar] [CrossRef]
- Hwang, H.; Chung, Y.-J.; Lee, S.R.; Park, H.-T.; Song, J.-Y.; Kim, H.; Lee, D.-Y.; Lee, E.-J.; Kim, M.-R.; Oh, S.-T. Clinical Evaluation and Management of Endometriosis: Guideline for Korean Patients from Korean Society of Endometriosis. Obstet. Gynecol. Sci. 2018, 61, 553–564. [Google Scholar] [CrossRef]
- Leyland, N.; Casper, R.; Laberge, P.; Singh, S.S.; Allen, L.; Arendas, K.; Leyland, N.; Allaire, C.; Awadalla, A.; Best, C.; et al. Endometriosis: Diagnosis and Management. J. Obstet. Gynaecol. Can. 2010, 32, S1–S3. [Google Scholar] [CrossRef]
- Kuznetsov, L.; Dworzynski, K.; Davies, M.; Overton, C. Guideline Committee Diagnosis and Management of Endometriosis: Summary of NICE Guidance. BMJ 2017, 358, j3935. [Google Scholar] [CrossRef] [Green Version]
- Macer, M.L.; Taylor, H.S. Endometriosis and Infertility: A Review of the Pathogenesis and Treatment of Endometriosis-Associated Infertility. Obstet. Gynecol. Clin. North Am. 2012, 39, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Guo, N.; Zhang, X.; Shi, W.; Tong, X.; Iqbal, F.; Liu, Y. Oocyte Quality Is Decreased in Women with Minimal or Mild Endometriosis. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.R.; Hwang, K.J.; Kim, Y.A.; Ryu, H.S. The Clinical Efficacy of the Low Dose Aspirin and Corticosteroid Treatment for IVF-ET in Patients with Endometriosis Who Underwent IVF-ET. Fertil. Steril. 2002, 77, S12–S13. [Google Scholar] [CrossRef]
- Santanam, N.; Kavtaradze, N.; Murphy, A.; Dominguez, C.; Parthasarathy, S. Antioxidant Supplementation Reduces Endometriosis Related Pelvic Pain in Humans. Transl. Res. J. Lab. Clin. Med. 2013, 161, 189–195. [Google Scholar] [CrossRef] [Green Version]
Mechanisms | Result | Impact on Reproductive Tissues, on Oocytes and on Embryos | Induced Endometriosis Related Infertility |
---|---|---|---|
High proliferation of ectopic endometriotic cells [13] | Increased ROS production-High levels of ROS [13] | 1. Impaired mitochondrial functionality-reduced ATP synthesis [23] 2. Impaired enzyme functionality-total dysregulation of protein synthesis [26] 3. Lipid peroxidation and dysregulation of membranes architecture [34] 4. Increased intracellular calcium ions [23] 5. Impaired MAP functionality-dysregulation of the cytoskeleton and microtubule organization [24,25] 6. Direct impact on nuclear DNA structure [34] | 1. Impaired oocyte maturation [23,29] 2. Impaired ovarian steroidogenesis [27,28] 3. Dysregulation of the ovulation process [27,28] 4. Poor oocyte and embryo competence [23,29] 5. Impaired embryo development or even embryonic developmental arrest [35] 6. DNA damage on oocytes and embryos [34] 7. Reduced implantation dynamic [35] |
Compromised antioxidant functionality [21,22] | Impaired metabolic inactivation of ROS-High levels of ROS [21,22] | ||
Lysed erythrocytes of the retrograded menstrual blood result in elevated iron levels [18,19] | Iron ions levels increased leading to the production of free radicals including hydroxyl radical [18,19] | ||
ROS induced chronic inflammation and proinflammatory phenomena [6] | Dysregulation of the microenvironment of the fallopian tubes and of the uterus [6] |
Mechanisms | Result | Impact on Reproductive Tissues, on Embryos and on Oocytes | Induced Endometriosis Related Infertility |
---|---|---|---|
Immune system dysregulation in the areas where ectopic endometriotic lesions are present [39] | Resistant immunotolerance results in ectopic endometrial cells periodical proliferation [39] | 1. Increased IL-1β production and secretion directly affects oocyte and embryo competence as well as promotes the formation of adhesions [45] 2. IL-2 induce T and B cell mediated embryotoxicity [46] 3. IL-1β, IL-8, IL-10 and TNF-a altered secretion directly affects ovarian response, compromises cumulus cells’ functionality and jeopardizes oocyte maturation and embryo development [51,52,53,54] 4. TNF-a directly affects oocyte and embryo quality and leads to developmental arrest [67] 5. IL-6, IL-1β, IL-8 and IL-1α directly affect oocyte maturation and meiotic division causing cell cycle arrest [62] 6. Altered cytokine and prostaglandin production directly compromises HPO axis functionality [53] | 1. Impaired oocyte maturation [51,52,53,54] 2. Impaired ovarian steroidogenesis [51,52,53,54,64] 3. Impaired ovarian vascularization [49,50] 4. Dysregulation of the ovulation process [53] 5. Impaired corpus luteum formation [64] 6. Poor oocyte and embryo competence 7. Impaired embryo development or even embryonic developmental arrest [56,57,58,59] 8. Increased DNA fragmentation on oocytes and embryos [65,66] 9. Reduced implantation dynamic [52] |
Ectopic endometrial cells induce chronic inflammation [7] | Chronic macrophage activation [44,45] | ||
Activated macrophage secrete a cocktail of prostaglandins and cytokines including IL-1β, IL-2, TNF-a, IL-8, IL-10, IL-12 [51] | Secreted cytokines stimulate T and B cells expansion and proliferation, enhance natural killer cell activity, compromise ovarian niche microenvironment and jeopardize follicular growth and vascularization [46,47] | ||
Chronic inflammation induces ROS production and vice versa [68] | Data is summarized in Table 1 |
Meiotic Spindle Distribution | |||
Mechanisms | Result | Impact on Reproductive Tissues, on Embryos and on Oocytes | Induced Endometriosis Related Infertility |
Increased ROS production and chronic inflammation [74] | Data is summarized in Table 1 and Table 2 | 1. Nuclear and cytoplasmic impairment [69] 2. Meiotic spindle disorganization [71,72,73,74,75] 3. Abnormal meiotic divisions [71,72,73,74,75] 4. Impaired chromosomal separation [71,72,73,74,75] | 1. Compromised oocyte and embryo quality and competence [78] 2. Fertilization failure [78] 3. Increased aneuploidy rate (remains unclear) [72,81] 4. Reduced implantation dynamic [69] |
Extracellular Matrix Remodeling | |||
Immune system dysregulation and increased cytokine secretion [74] | Dysregulation of MMPs and TIMP functionality [83,84] | 1. Impaired MMPs and TIMPs functionality leads to abnormal remodeling of ECM [83,84,85] 2. TIMPs infiltrate into the nucleus and disrupt the overall cell cycle hindering the oocytes’ development [80,86] | 1. Compromised oocyte and embryo quality and competence [80] 2. Oocyte and embryo developmental arrest [80,86] 3. Impaired implantation potential [80,86] |
TIMP increased secretion [83] | Direct impact on oocytes [80,86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simopoulou, M.; Rapani, A.; Grigoriadis, S.; Pantou, A.; Tsioulou, P.; Maziotis, E.; Tzanakaki, D.; Triantafyllidou, O.; Kalampokas, T.; Siristatidis, C.; et al. Getting to Know Endometriosis-Related Infertility Better: A Review on How Endometriosis Affects Oocyte Quality and Embryo Development. Biomedicines 2021, 9, 273. https://doi.org/10.3390/biomedicines9030273
Simopoulou M, Rapani A, Grigoriadis S, Pantou A, Tsioulou P, Maziotis E, Tzanakaki D, Triantafyllidou O, Kalampokas T, Siristatidis C, et al. Getting to Know Endometriosis-Related Infertility Better: A Review on How Endometriosis Affects Oocyte Quality and Embryo Development. Biomedicines. 2021; 9(3):273. https://doi.org/10.3390/biomedicines9030273
Chicago/Turabian StyleSimopoulou, Mara, Anna Rapani, Sokratis Grigoriadis, Agni Pantou, Petroula Tsioulou, Evangelos Maziotis, Despina Tzanakaki, Olga Triantafyllidou, Theodoros Kalampokas, Charalampos Siristatidis, and et al. 2021. "Getting to Know Endometriosis-Related Infertility Better: A Review on How Endometriosis Affects Oocyte Quality and Embryo Development" Biomedicines 9, no. 3: 273. https://doi.org/10.3390/biomedicines9030273
APA StyleSimopoulou, M., Rapani, A., Grigoriadis, S., Pantou, A., Tsioulou, P., Maziotis, E., Tzanakaki, D., Triantafyllidou, O., Kalampokas, T., Siristatidis, C., Bakas, P., & Vlahos, N. (2021). Getting to Know Endometriosis-Related Infertility Better: A Review on How Endometriosis Affects Oocyte Quality and Embryo Development. Biomedicines, 9(3), 273. https://doi.org/10.3390/biomedicines9030273