Dopamine D3 Receptor Plasticity in Parkinson’s Disease and L-DOPA-Induced Dyskinesia
Abstract
:1. Introduction
2. The D3 Receptor
3. Dopamine D3 Receptor (D3R) in the Parkinsonian Brain
3.1. Dopamine D1 Receptor (D1R) and Dopamine D3 Receptor (D3R) Expression Following Denervation
3.2. Dopamine D3 Receptor (D3R) Signaling Changes Following Denervation
4. Dopamine D3 Receptor (D3R) in the Dyskinetic Brain
4.1. Dopamine D3 Receptor (D3R) Changes to Expression in LID
4.2. Dopamine D3 Receptor (D3R) Changes to Signaling in LID
5. Targeting D3R in LID
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Jankovic, J. Parkinson’s Disease: Clinical Features and Diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navntoft, C.A.; Dreyer, J.K. How Compensation Breaks down in Parkinson’s Disease: Insights from Modeling of Denervated Striatum. Mov. Disord. 2016, 31, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Iravani, M.M.; McCreary, A.C.; Jenner, P. Striatal Plasticity in Parkinson’s Disease and L-DOPA Induced Dyskinesia. Parkinsonism Relat. Disord. 2012, 18, S123–S125. [Google Scholar] [CrossRef]
- Lees, A.J.; Tolosa, E.; Olanow, C.W. Four Pioneers of L-Dopa Treatment: Arvid Carlsson, Oleh Hornykiewicz, George Cotzias, and Melvin Yahr. Mov. Disord. 2015, 30, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Hely, M.A.; Morris, J.G.L.; Reid, W.G.J.; Trafficante, R. Sydney Multicenter Study of Parkinson’s Disease: Non-L-Dopa–Responsive Problems Dominate at 15 Years. Mov. Disord. 2005, 20, 190–199. [Google Scholar] [CrossRef]
- Ahlskog, J.E.; Muenter, M.D. Frequency of Levodopa-Related Dyskinesias and Motor Fluctuations as Estimated from the Cumulative Literature. Mov. Disord. 2001, 16, 448–458. [Google Scholar] [CrossRef]
- Sokoloff, P.; Giros, B.; Martres, M.-P.; Bouthenet, M.-L.; Schwartz, J.-C. Molecular Cloning and Characterization of a Novel Dopamine Receptor (D3) as a Target for Neuroleptics. Nature 1990, 347, 146–151. [Google Scholar] [CrossRef]
- Giros, B.; Martres, M.P.; Sokoloff, P.; Schwartz, J.C. Gene cloning of human dopaminergic D3 receptor and identification of its chromosome. CR Acad. Sci. III 1990, 311, 501–508. [Google Scholar]
- Cortés, A.; Moreno, E.; Rodríguez-Ruiz, M.; Canela, E.I.; Casadó, V. Targeting the Dopamine D3 Receptor: An Overview of Drug Design Strategies. Expert Opin. Drug Discov. 2016, 11, 641–664. [Google Scholar] [CrossRef]
- Galaj, E.; Ewing, S.; Ranaldi, R. Dopamine D1 and D3 Receptor Polypharmacology as a Potential Treatment Approach for Substance Use Disorder. Neurosci. Biobehav. Rev. 2018, 89, 13–28. [Google Scholar] [CrossRef]
- Beaulieu, J.-M.; Espinoza, S.; Gainetdinov, R.R. Dopamine Receptors—IUPHAR Review 13. Br. J. Pharm. 2015, 172, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Chien, E.Y.T.; Liu, W.; Zhao, Q.; Katritch, V.; Han, G.W.; Hanson, M.A.; Shi, L.; Newman, A.H.; Javitch, J.A.; Cherezov, V.; et al. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist. Science 2010, 330, 1091–1095. [Google Scholar] [CrossRef] [Green Version]
- Levesque, D.; Diaz, J.; Pilon, C.; Martres, M.P.; Giros, B.; Souil, E.; Schott, D.; Morgat, J.L.; Schwartz, J.C.; Sokoloff, P. Identification, Characterization, and Localization of the Dopamine D3 Receptor in Rat Brain Using 7-[3H]Hydroxy-N,N-Di-n-Propyl-2-Aminotetralin. Proc. Natl. Acad. Sci. USA 1992, 89, 8155–8159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landwehrmeyer, B.; Mengod, G.; Palacios, J.M. Differential Visualization of Dopamine D2 and D3 Receptor Sites in Rat Brain. A Comparative Study Using in Situ Hybridization Histochemistry and Ligand Binding Autoradiography. Eur. J. Neurosci. 1993, 5, 145–153. [Google Scholar] [CrossRef]
- Clarkson, R.L.; Liptak, A.T.; Gee, S.M.; Sohal, V.S.; Bender, K.J. D3 Receptors Regulate Excitability in a Unique Class of Prefrontal Pyramidal Cells. J. Neurosci. 2017, 37, 5846–5860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swant, J.; Stramiello, M.; Wagner, J.J. Postsynaptic Dopamine D3 Receptor Modulation of Evoked IPSCs via GABAA Receptor Endocytosis in Rat Hippocampus. Hippocampus 2008, 18, 492–502. [Google Scholar] [CrossRef]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine Receptors: From Structure to Function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Trujillo, R.; Avalos-Fuentes, A.; Rangel-Barajas, C.; Paz-Bermúdez, F.; Sierra, A.; Escartín-Perez, E.; Aceves, J.; Erlij, D.; Florán, B. D3 Dopamine Receptors Interact with Dopamine D1 but Not D4 Receptors in the GABAergic Terminals of the SNr of the Rat. Neuropharmacology 2013, 67, 370–378. [Google Scholar] [CrossRef]
- Guigoni, C.; Doudnikoff, E.; Li, Q.; Bloch, B.; Bezard, E. Altered D1 Dopamine Receptor Trafficking in Parkinsonian and Dyskinetic Non-Human Primates. Neurobiol. Dis. 2007, 26, 452–463. [Google Scholar] [CrossRef]
- Berthet, A.; Porras, G.; Doudnikoff, E.; Stark, H.; Cador, M.; Bezard, E.; Bloch, B. Pharmacological Analysis Demonstrates Dramatic Alteration of D1 Dopamine Receptor Neuronal Distribution in the Rat Analog of L-DOPA-Induced Dyskinesia. J. Neurosci. 2009, 29, 4829–4835. [Google Scholar] [CrossRef]
- Rassu, M.; Del Giudice, M.G.; Sanna, S.; Taymans, J.M.; Morari, M.; Brugnoli, A.; Frassineti, M.; Masala, A.; Esposito, S.; Galioto, M.; et al. Role of LRRK2 in the Regulation of Dopamine Receptor Trafficking. PLoS ONE 2017, 12, e0179082. [Google Scholar] [CrossRef] [PubMed]
- Alcacer, C.; Santini, E.; Valjent, E.; Gaven, F.; Girault, J.-A.; Hervé, D. Gαolf Mutation Allows Parsing the Role of CAMP-Dependent and Extracellular Signal-Regulated Kinase-Dependent Signaling in l-3,4-Dihydroxyphenylalanine-Induced Dyskinesia. J. Neurosci. 2012, 32, 5900–5910. [Google Scholar] [CrossRef] [PubMed]
- Corvol, J.-C.; Muriel, M.-P.; Valjent, E.; Féger, J.; Hanoun, N.; Girault, J.-A.; Hirsch, E.C.; Hervé, D. Persistent Increase in Olfactory Type G-Protein α Subunit Levels May Underlie D1 Receptor Functional Hypersensitivity in Parkinson Disease. J. Neurosci. 2004, 24, 7007–7014. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.; Wang, H.-Y.; Friedman, E. Increased Dopamine Receptor Signaling and Dopamine Receptor-G Protein Coupling in Denervated Striatum. J. Pharm. Exp. 2002, 302, 1105–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangel-Barajas, C.; Silva, I.; Lopéz-Santiago, L.M.; Aceves, J.; Erlij, D.; Florán, B. L-DOPA-Induced Dyskinesia in Hemiparkinsonian Rats Is Associated with up-Regulation of Adenylyl Cyclase Type V/VI and Increased GABA Release in the Substantia Nigra Reticulata. Neurobiol. Dis. 2011, 41, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Morissette, M.; Goulet, M.; Grondin, R.; Blanchet, P.; Bédard, P.J.; Paolo, T.D.; Lévesque, D. Associative and Limbic Regions of Monkey Striatum Express High Levels of Dopamine D3 Receptors: Effects of MPTP and Dopamine Agonist Replacement Therapies. Eur. J. Neurosci. 1998, 10, 2565–2573. [Google Scholar] [CrossRef]
- Farré, D.; Muñoz, A.; Moreno, E.; Reyes-Resina, I.; Canet-Pons, J.; Dopeso-Reyes, I.G.; Rico, A.J.; Lluís, C.; Mallol, J.; Navarro, G.; et al. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia. Mol. Neurobiol. 2015, 52, 1408–1420. [Google Scholar] [CrossRef] [PubMed]
- Bézard, E.; Ferry, S.; Mach, U.; Stark, H.; Leriche, L.; Boraud, T.; Gross, C.; Sokoloff, P. Attenuation of Levodopa-Induced Dyskinesia by Normalizing Dopamine D 3 Receptor Function. Nat. Med. 2003, 9, 762–767. [Google Scholar] [CrossRef]
- Guigoni, C.; Aubert, I.; Li, Q.; Gurevich, V.V.; Benovic, J.L.; Ferry, S.; Mach, U.; Stark, H.; Leriche, L.; Håkansson, K.; et al. Pathogenesis of Levodopa-Induced Dyskinesia: Focus on D1 and D3 Dopamine Receptors. Parkinsonism Relat. Disord. 2005, 11, S25–S29. [Google Scholar] [CrossRef]
- Quik, M.; Police, S.; He, L.; Di Monte, D.A.; Langston, J.W. Expression of D3 Receptor Messenger RNA and Binding Sites in Monkey Striatum and Substantia Nigra after Nigrostriatal Degeneration: Effect of Levodopa Treatment. Neuroscience 2000, 98, 263–273. [Google Scholar] [CrossRef]
- Rinne, J.O.; Laihinen, A.; Ruottinen, H.; Ruotsalainen, U.; Någren, K.; Lehikoinen, P.; Oikonen, V.; Rinne, U.K. Increased Density of Dopamine D2 Receptors in the Putamen, but Not in the Caudate Nucleus in Early Parkinson’s Disease: A PET Study with [11C]Raclopride. J. Neurol. Sci. 1995, 132, 156–161. [Google Scholar] [CrossRef]
- Hurley, M.J.; Stubbs, C.M.; Jenner, P.; Marsden, C.D. D3 Receptor Expression within the Basal Ganglia Is Not Affected by Parkinson’s Disease. Neurosci. Lett. 1996, 214, 75–78. [Google Scholar] [CrossRef]
- Yang, P.; Perlmutter, J.S.; Benzinger, T.L.S.; Morris, J.C.; Xu, J. Dopamine D3 Receptor: A Neglected Participant in Parkinson Disease Pathogenesis and Treatment? Ageing Res. Rev. 2020, 57, 100994. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Ueda, H.; Okumura, F.; Misu, Y. 6-OHDA-Induced Lesion of the Nigrostriatal Dopaminergic Neurons Potentiates the Inhibitory Effect of 7-OHDPAT, a Selective D3 Agonist, on Acetylcholine Release during Striatal Microdialysis in Conscious Rats. Brain Res. 1994, 655, 233–236. [Google Scholar] [CrossRef]
- Prieto, G.A.; Perez-Burgos, A.; Palomero-Rivero, M.; Galarraga, E.; Drucker-Colin, R.; Bargas, J. Upregulation of D2-Class Signaling in Dopamine-Denervated Striatum Is in Part Mediated by D3 Receptors Acting on CaV2.1 Channels via PIP2 Depletion. J. Neurophysiol. 2011, 105, 2260–2274. [Google Scholar] [CrossRef] [PubMed]
- Prieto, G.A.; Perez-Burgos, A.; Fiordelisio, T.; Salgado, H.; Galarraga, E.; Drucker-Colin, R.; Bargas, J. Dopamine D2-Class Receptor Supersensitivity as Reflected in Ca2+ Current Modulation in Neostriatal Neurons. Neuroscience 2009, 164, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Elmhurst, J.L.; Xie, Z.; O’Dowd, B.F.; George, S.R. The Splice Variant D3nf Reduces Ligand Binding to the D3 Dopamine Receptor: Evidence for Heterooligomerization. Mol. Brain Res. 2000, 80, 63–74. [Google Scholar] [CrossRef]
- Richtand, N.M.; Liu, Y.; Ahlbrand, R.; Sullivan, J.R.; Newman, A.H.; McNamara, R.K. Dopaminergic Regulation of Dopamine D3 and D3nf Receptor MRNA Expression. Synapse 2010, 64, 634–643. [Google Scholar] [CrossRef] [Green Version]
- Prieto, G.A. Abnormalities of Dopamine D3 Receptor Signaling in the Diseased Brain. J. Cent. Nerv. Syst. Dis. 2017, 9, 1179573517726335. [Google Scholar] [CrossRef] [Green Version]
- Avalos-Fuentes, A.; Loya-López, S.; Flores-Pérez, A.; Recillas-Morales, S.; Cortés, H.; Paz-Bermúdez, F.; Aceves, J.; Erlij, D.; Florán, B. Presynaptic CaMKIIα Modulates Dopamine D3 Receptor Activation in Striatonigral Terminals of the Rat Brain in a Ca2+ Dependent Manner. Neuropharmacology 2013, 71, 273–281. [Google Scholar] [CrossRef]
- Marcellino, D.; Ferré, S.; Casadó, V.; Cortés, A.; Le Foll, B.; Mazzola, C.; Drago, F.; Saur, O.; Stark, H.; Soriano, A.; et al. Identification of Dopamine D1–D3 Receptor Heteromers. J. Biol. Chem. 2008, 283, 26016–26025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorentini, C.; Busi, C.; Gorruso, E.; Gotti, C.; Spano, P.; Missale, C. Reciprocal Regulation of Dopamine D1 and D3 Receptor Function and Trafficking by Heterodimerization. Mol. Pharm. 2008, 74, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-Y.; Mao, L.-M.; Zhang, G.-C.; Papasian, C.J.; Fibuch, E.E.; Lan, H.-X.; Zhou, H.-F.; Xu, M.; Wang, J.Q. Activity-Dependent Modulation of Limbic Dopamine D3 Receptors by CaMKII. Neuron 2009, 61, 425–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avalos-Fuentes, A.; Albarrán-Bravo, S.; Loya-Lopéz, S.; Cortés, H.; Recillas-Morales, S.; Magaña, J.J.; Paz-Bermúdez, F.; Rangel-Barajas, C.; Aceves, J.; Erlij, D.; et al. Dopaminergic Denervation Switches Dopamine D3 Receptor Signaling and Disrupts Its Ca2+ Dependent Modulation by CaMKII and Calmodulin in Striatonigral Projections of the Rat. Neurobiol. Dis. 2015, 74, 336–346. [Google Scholar] [CrossRef]
- Campos, B.C.; Ávalos-Fuentes, A.; Leyva, C.P.; Sánchez-Zavaleta, R.; Loya-López, S.; Rangel-Barajas, C.; Leyva-Gómez, G.; Cortés, H.; Erlij, D.; Florán, B. Coexistence of D3R Typical and Atypical Signaling in Striatonigral Neurons during Dopaminergic Denervation. Correlation with D3nf Expression Changes. Synapse 2020, 74, e22152. [Google Scholar] [CrossRef] [PubMed]
- Bordet, R.; Ridray, S.; Carboni, S.; Diaz, J.; Sokoloff, P.; Schwartz, J.-C. Induction of Dopamine D3 Receptor Expression as a Mechanism of Behavioral Sensitization to Levodopa. Proc. Natl. Acad. Sci. USA 1997, 94, 3363–3367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordet, R.; Ridray, S.; Schwartz, J.-C.; Sokoloff, P. Involvement of the Direct Striatonigral Pathway in Levodopa-Induced Sensitization in 6-Hydroxydopamine-Lesioned Rats. Eur. J. Neurosci. 2000, 12, 2117–2123. [Google Scholar] [CrossRef]
- Solís, O.; Garcia-Montes, J.R.; González-Granillo, A.; Xu, M.; Moratalla, R. Dopamine D3 Receptor Modulates L-DOPA-Induced Dyskinesia by Targeting D1 Receptor-Mediated Striatal Signaling. Cereb. Cortex 2017, bhv231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cote, S.R.; Kuzhikandathil, E.V. Chronic Levodopa Treatment Alters Expression and Function of Dopamine D3 Receptor in the MPTP/p Mouse Model of Parkinson’s Disease. Neurosci. Lett. 2015, 585, 33–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Pernaute, R.; Jenkins, B.G.; Choi, J.-K.; Chen, Y.-C.I.; Isacson, O. In Vivo Evidence of D3 Dopamine Receptor Sensitization in Parkinsonian Primates and Rodents with L-DOPA-Induced Dyskinesias. Neurobiol. Dis. 2007, 27, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Cote, S.R.; Chitravanshi, V.C.; Bleickardt, C.; Sapru, H.N.; Kuzhikandathil, E.V. Overexpression of the Dopamine D3 Receptor in the Rat Dorsal Striatum Induces Dyskinetic Behaviors. Behav. Brain Res. 2014, 263, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Lanza, K.; Meadows, S.M.; Chambers, N.E.; Nuss, E.; Deak, M.M.; Ferré, S.; Bishop, C. Behavioral and Cellular Dopamine D1 and D3 Receptor-Mediated Synergy: Implications for L-DOPA-Induced Dyskinesia. Neuropharmacology 2018, 138, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Payer, D.E.; Guttman, M.; Kish, S.J.; Tong, J.; Adams, J.R.; Rusjan, P.; Houle, S.; Furukawa, Y.; Wilson, A.A.; Boileau, I. D3 Dopamine Receptor-Preferring [11C]PHNO PET Imaging in Parkinson Patients with Dyskinesia. Neurology 2016, 86, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Cairns, N.J.; Perlmutter, J.S.; Mach, R.H.; Xu, J. Regulation of Dopamine D3 Receptor in the Striatal Regions and Substantia Nigra in Diffuse Lewy Body Disease (DLBD). Neuroscience 2013, 0, 112–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Kampen, J.M.; Jon Stoessl, A. Effects of Oligonucleotide Antisense to Dopamine D3 Receptor MRNA in a Rodent Model of Behavioural Sensitization to Levodopa. Neuroscience 2003, 116, 307–314. [Google Scholar] [CrossRef]
- Guitart, X.; Navarro, G.; Moreno, E.; Yano, H.; Cai, N.-S.; Sánchez-Soto, M.; Kumar-Barodia, S.; Naidu, Y.T.; Mallol, J.; Cortés, A.; et al. Functional Selectivity of Allosteric Interactions within G Protein–Coupled Receptor Oligomers: The Dopamine D 1 -D 3 Receptor Heterotetramer. Mol. Pharm. 2014, 86, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Knight, W.C.; Li, H.; Guo, Y.; Perlmutter, J.S.; Benzinger, T.L.S.; Morris, J.C.; Xu, J. Dopamine D1 + D3 Receptor Density May Correlate with Parkinson Disease Clinical Features. Ann. Clin. Transl. Neurol. 2020, 8, 224–237. [Google Scholar] [CrossRef]
- Lanza, K.; Centner, A.; Coyle, M.; Del Priore, I.; Manfredsson, F.P.; Bishop, C. Genetic Suppression of the Dopamine D3 Receptor in Striatal D1 Cells Reduces the Development of L-DOPA-Induced Dyskinesia. Exp. Neurol. 2021, 336, 113534. [Google Scholar] [CrossRef]
- Fanni, S.; Scheggi, S.; Rossi, F.; Tronci, E.; Traccis, F.; Stancampiano, R.; De Montis, M.G.; Devoto, P.; Gambarana, C.; Bortolato, M.; et al. 5alpha-Reductase Inhibitors Dampen L-DOPA-Induced Dyskinesia via Normalization of Dopamine D1-Receptor Signaling Pathway and D1-D3 Receptor Interaction. Neurobiol. Dis. 2019, 121, 120–130. [Google Scholar] [CrossRef]
- Hsu, A.; Togasaki, D.M.; Bezard, E.; Sokoloff, P.; Langston, J.W.; Monte, D.A.D.; Quik, M. Effect of the D3 Dopamine Receptor Partial Agonist BP897 [N-[4-(4-(2-Methoxyphenyl)Piperazinyl)Butyl]-2-Naphthamide] on l-3,4-Dihydroxyphenylalanine-Induced Dyskinesias and Parkinsonism in Squirrel Monkeys. J. Pharm. Exp. 2004, 311, 770–777. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Riddle, L.; Griffin, S.A.; Grundt, P.; Newman, A.H.; Luedtke, R.R. Evaluation of the D3 Dopamine Receptor Selective Antagonist PG01037 on L-Dopa-Dependent Abnormal Involuntary Movements in Rats. Neuropharmacology 2009, 56, 944–955. [Google Scholar] [CrossRef] [Green Version]
- Sebastianutto, I.; Maslava, N.; Hopkins, C.R.; Cenci, M.A. Validation of an Improved Scale for Rating L-DOPA-Induced Dyskinesia in the Mouse and Effects of Specific Dopamine Receptor Antagonists. Neurobiol. Dis. 2016, 96, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Visanji, N.P.; Fox, S.H.; Johnston, T.; Reyes, G.; Millan, M.J.; Brotchie, J.M. Dopamine D3 Receptor Stimulation Underlies the Development of L-DOPA-Induced Dyskinesia in Animal Models of Parkinson’s Disease. Neurobiol. Dis. 2009, 35, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Mela, F.; Millan, M.J.; Brocco, M.; Morari, M. The Selective D3 Receptor Antagonist, S33084, Improves Parkinsonian-like Motor Dysfunction but Does Not Affect l-DOPA-Induced Dyskinesia in 6-Hydroxydopamine Hemi-Lesioned Rats. Neuropharmacology 2010, 58, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Riddle, L.R.; Kumar, R.; Griffin, S.A.; Grundt, P.; Newman, A.H.; Luedtke, R.R. Evaluation of the D3 Dopamine Receptor Selective Agonist/Partial Agonist PG01042 on l-Dopa Dependent Animal Involuntary Movements in Rats. Neuropharmacology 2011, 60, 284–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerlach, M.; Bartoszyk, G.D.; Riederer, P.; Dean, O.; van den Buuse, M. Role of Dopamine D3 and Serotonin 5-HT1A Receptors in l-DOPA-Induced Dyskinesias and Effects of Sarizotan in the 6-Hydroxydopamine-Lesioned Rat Model of Parkinson’s Disease. J. Neural Transm. 2011, 118, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Simms, S.L.; Huettner, D.P.; Kortagere, S. In Vivo Characterization of a Novel Dopamine D3 Receptor Agonist to Treat Motor Symptoms of Parkinson’s Disease. Neuropharmacology 2016, 100, 106–115. [Google Scholar] [CrossRef]
- Lanza, K.; Chemakin, K.; Lefkowitz, S.; Saito, C.; Chambers, N.; Bishop, C. Reciprocal Cross-Sensitization of D1 and D3 Receptors Following Pharmacological Stimulation in the Hemiparkinsonian Rat. Psychopharmacology 2020, 237, 155–165. [Google Scholar] [CrossRef]
- Bathina, S.; Das, U.N. Brain-Derived Neurotrophic Factor and Its Clinical Implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef]
- Saylor, A.J.; McGinty, J.F. An Intrastriatal Brain-Derived Neurotrophic Factor Infusion Restores Striatal Gene Expression in Bdnf Heterozygous Mice. Brain Struct. Funct. 2010, 215, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Guillin, O.; Diaz, J.; Carroll, P.; Griffon, N.; Schwartz, J.-C.; Sokoloff, P. BDNF Controls Dopamine D 3 Receptor Expression and Triggers Behavioural Sensitization. Nature 2001, 411, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Tronci, E.; Napolitano, F.; Muñoz, A.; Fidalgo, C.; Rossi, F.; Björklund, A.; Usiello, A.; Carta, M. BDNF Over-Expression Induces Striatal Serotonin Fiber Sprouting and Increases the Susceptibility to l-DOPA-Induced Dyskinesia in 6-OHDA-Lesioned Rats. Exp. Neurol. 2017, 297, 73–81. [Google Scholar] [CrossRef]
- Scheggi, S.; Rossi, F.; Corsi, S.; Fanni, S.; Tronci, E.; Ludovica, C.; Vargiu, R.; Gambarana, C.; Muñoz, A.; Stancampiano, R.; et al. BDNF Overexpression Increases Striatal D3 Receptor Level at Striatal Neurons and Exacerbates D1-Receptor Agonist-Induced Dyskinesia. J. Parkinsons Dis. 2020, 10, 1503–1514. [Google Scholar] [CrossRef]
- Samadi, P.; Morissette, M.; Lévesque, D.; Paolo, T.D. BDNF Levels Are Not Related with Levodopa-Induced Dyskinesias in MPTP Monkeys. Mov. Disord. 2010, 25, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Leino, S.; Kohtala, S.; Rantamäki, T.; Koski, S.K.; Rannanpää, S.; Salminen, O. Dyskinesia and Brain-Derived Neurotrophic Factor Levels after Long-Term Levodopa and Nicotinic Receptor Agonist Treatments in Female Mice with near-Total Unilateral Dopaminergic Denervation. BMC Neurosci. 2018, 19, 1503–1514. [Google Scholar] [CrossRef] [PubMed]
- Jones-Tabah, J.; Mohammad, H.; Hadj-Youssef, S.; Kim, L.E.H.; Martin, R.D.; Benaliouad, F.; Tanny, J.C.; Clarke, P.B.S.; Hébert, T.E. Dopamine D1 Receptor Signalling in Dyskinetic Parkinsonian Rats Revealed by Fiber Photometry Using FRET-Based Biosensors. Sci. Rep. 2020, 10, 14426. [Google Scholar] [CrossRef]
- Guitart, X.; Moreno, E.; Rea, W.; Sánchez-Soto, M.; Cai, N.-S.; Quiroz, C.; Kumar, V.; Bourque, L.; Cortés, A.; Canela, E.I.; et al. Biased G Protein-Independent Signaling of Dopamine D1-D3 Receptor Heteromers in the Nucleus Accumbens. Mol. Neurobiol. 2019, 56, 6756–6769. [Google Scholar] [CrossRef]
- Silverdale, M.A.; Nicholson, S.L.; Ravenscroft, P.; Crossman, A.R.; Millan, M.J.; Brotchie, J.M. Selective Blockade of D3 Dopamine Receptors Enhances the Anti-Parkinsonian Properties of Ropinirole and Levodopa in the MPTP-Lesioned Primate. Exp. Neurol. 2004, 188, 128–138. [Google Scholar] [CrossRef]
- Xu, W.; Wang, X.; Tocker, A.M.; Huang, P.; Reith, M.E.A.; Liu-Chen, L.-Y.; Smith, A.B.; Kortagere, S. Functional Characterization of a Novel Series of Biased Signaling Dopamine D3 Receptor Agonists. ACS Chem. Neurosci. 2017, 8, 486–500. [Google Scholar] [CrossRef] [PubMed]
- Ferré, S.; Casadó, V.; Devi, L.A.; Filizola, M.; Jockers, R.; Lohse, M.J.; Milligan, G.; Pin, J.-P.; Guitart, X. G Protein–Coupled Receptor Oligomerization Revisited: Functional and Pharmacological Perspectives. Pharm. Rev. 2014, 66, 413–434. [Google Scholar] [CrossRef] [Green Version]
- Maggio, R.; Scarselli, M.; Capannolo, M.; Millan, M.J. Novel Dimensions of D3 Receptor Function: Focus on Heterodimerisation, Transactivation and Allosteric Modulation. Eur. Neuropsychopharmacol. 2015, 25, 1470–1479. [Google Scholar] [CrossRef] [PubMed]
- Maggio, R.; Millan, M.J. Dopamine D2-D3 Receptor Heteromers: Pharmacological Properties and Therapeutic Significance. Curr. Opin. Pharm. 2010, 10, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Bono, F.; Mutti, V.; Devoto, P.; Bolognin, S.; Schwamborn, J.C.; Missale, C.; Fiorentini, C. Impaired Dopamine D3 and Nicotinic Acetylcholine Receptor Membrane Localization in IPSCs-Derived Dopaminergic Neurons from Two Parkinson’s Disease Patients Carrying the LRRK2 G2019S Mutation. Neurobiol. Aging 2021, 99, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Bono, F.; Mutti, V.; Fiorentini, C.; Missale, C. Dopamine D3 Receptor Heteromerization: Implications for Neuroplasticity and Neuroprotection. Biomolecules 2020, 10, 1016. [Google Scholar] [CrossRef]
- Kiss, B.; Laszlovszky, I.; Krámos, B.; Visegrády, A.; Bobok, A.; Lévay, G.; Lendvai, B.; Román, V. Neuronal Dopamine D3 Receptors: Translational Implications for Preclinical Research and CNS Disorders. Biomolecules 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Svenningsson, P.; Johansson, A.; Nyholm, D.; Tsitsi, P.; Hansson, F.; Sonesson, C.; Tedroff, J. Safety and Tolerability of IRL790 in Parkinson’s Disease with Levodopa-Induced Dyskinesia-a Phase 1b Trial. NPJ Parkinsons Dis. 2018, 4, 35. [Google Scholar] [CrossRef] [PubMed]
- Becanovic, K.; de Donno, M.V.; Sousa, V.C.; Tedroff, J.; Svenningsson, P. Effects of a Novel Psychomotor Stabilizer, IRL790, on Biochemical Measures of Synaptic Markers and Neurotransmission. J. Pharm. Exp. 2020, 374, 126–133. [Google Scholar] [CrossRef]
- Xu, P.; Huang, S.; Mao, C.; Krumm, B.E.; Zhou, X.E.; Tan, Y.; Huang, X.-P.; Liu, Y.; Shen, D.-D.; Jiang, Y.; et al. Structures of the Human Dopamine D3 Receptor-Gi Complexes. Mol. Cell 2021. [Google Scholar] [CrossRef]
Compound (Action) | Model | Effect on LID | L-DOPA Efficacy | Ref. |
---|---|---|---|---|
ST 198 (antagonist) | MPTP macaque | ↓ expression | ↓ | [28] |
BP 897 (partial agonist) | MPTP macaque | ↓ expression | = | [28] |
MPTP squirrel monkey | ↓ expression | ↓ | [60] | |
PG01037 (antagonist) | Striatal 6-OHDA mice | ↓ expression | = | [48] |
Striatal 6-OHDA mice | ↓ development | = | [48] | |
MFB 6-OHDA rats | ↓ expression | = | [61] | |
MFB 6-OHDA mice | ↓ expression | = | [62] | |
S33084 (antagonist) | MPTP marmoset | ↓ development | = | [63] |
MFB 6-OHDA rats | ↓ development of sensitization | ? | [63] | |
MFB 6-OHDA rats | - expression of sensitization | ? | [63] | |
MFB 6-OHDA rats | - development | ↑ | [64] | |
MFB 6-OHDA rats | - expression | ↑ | [64] | |
MPTP marmoset | - expression | ↑ | [65] | |
GR103691 (antagonist) | MFB 6-OHDA rats | - expression | = | [66] |
PG01042 (agonist) | MFB 6-OHDA rats | ↓ expression | = | [65] |
SK609 (agonist) | MFB 6-OHDA rats | ↓ expression | ↑ | [67] |
Strategy | Model | Effect on LID | L-DOPA Efficacy | Ref. |
---|---|---|---|---|
Global knockout | Striatal 6-OHDA D3R -/- mice | ↓ development | = | [48] |
Striatal knockdown | MFB 6-OHDA rats | ↓ development | = | [55] |
Cell-specific striatal knockdown | MFB 6-OHDA D1R-Cre rats | ↓ development | = | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanza, K.; Bishop, C. Dopamine D3 Receptor Plasticity in Parkinson’s Disease and L-DOPA-Induced Dyskinesia. Biomedicines 2021, 9, 314. https://doi.org/10.3390/biomedicines9030314
Lanza K, Bishop C. Dopamine D3 Receptor Plasticity in Parkinson’s Disease and L-DOPA-Induced Dyskinesia. Biomedicines. 2021; 9(3):314. https://doi.org/10.3390/biomedicines9030314
Chicago/Turabian StyleLanza, Kathryn, and Christopher Bishop. 2021. "Dopamine D3 Receptor Plasticity in Parkinson’s Disease and L-DOPA-Induced Dyskinesia" Biomedicines 9, no. 3: 314. https://doi.org/10.3390/biomedicines9030314
APA StyleLanza, K., & Bishop, C. (2021). Dopamine D3 Receptor Plasticity in Parkinson’s Disease and L-DOPA-Induced Dyskinesia. Biomedicines, 9(3), 314. https://doi.org/10.3390/biomedicines9030314