An Overview of ICA/BSS-Based Application to Alzheimer’s Brain Signal Processing
Abstract
:1. Introduction
2. Alzheimer’s Disease
3. Biomedical Techniques for Detecting Alzheimer’s Brain Signals
4. Theory and Model of ICA/BSS
5. ICA/BSS Model for fMRI
5.1. Spatial and Temporal ICA Models of fMRI
5.2. Variants of ICA Models for fMRI Data
6. ICA/BSS Applications to Brain Signal Processing for AD Diagnosis
6.1. Why Apply ICA to Diagnosis of AD
6.2. Comparison of ICA/BSS Algorithms
6.3. Spatial, Temporal, and Spatiotemporal ICA
6.4. How Many Components Are There?
6.5. Application of ICA/BSS to AD Diagnosis
6.6. ICA as a Component of Machine Learning Models
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holroyd, S.; Shepherd, M.L. Alzheimer’s disease: A review for the ophthalmologist. Surv. Ophthalmol. 2001, 45, 516–524. [Google Scholar] [CrossRef]
- Hendrie, H.C. Epidemiology of dementia and Alzheimer’s disease. Am. J. Geriatr. Psychiatry 1998, 6, S3–S18. [Google Scholar] [CrossRef]
- Alzheimer’s Association. Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement 2020, 16, 391–460. [Google Scholar]
- Cichocki, A.; Shishkin, S.L.; Musha, T.; Leonowicz, Z.; Asada, T.; Kurachi, T. EEG filtering based on blind source separation (BSS) for early detection of Alzheimer’s disease. Clin. Neurophysiol. 2005, 116, 729–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.S. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 2004, 115, 1490–1505. [Google Scholar] [CrossRef]
- Babiloni, C.; Babiloni, F.; Carducci, F.; Cincotti, F.; Eusebi, F.; Ferri, R.; Miniussi, C.; Moretti, D.V.; Nobili, F.; Pasqualetti, P.; et al. Quantitative EEG/MEG analysis for objective assessment of Alzheimer disease: The project “Alzheimer database on-line”. Neuroimage 2001, 13, S770. [Google Scholar] [CrossRef]
- deLeon, M.J.; George, A.E.; Golomb, J.; Tarshish, C.; Convit, A.; Kluger, A.; DeSanti, S.; McRae, T.; Ferris, S.H.; Reisberg, B.; et al. Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol. Aging 1997, 18, 1–11. [Google Scholar] [CrossRef]
- Cohen, C.I.; Strashun, A.; Ortega, C.; Horn, L.; Magai, C. The effects of poverty and education on temporoparietal perfusion in Alzheimer’s disease: A reconsideration of the cerebral reserve hypothesis. Int. J. Geriatr. Psychiatry 1996, 11, 1105–1110. [Google Scholar] [CrossRef]
- Higdon, R.; Foster, N.L.; Koeppe, R.A.; DeCarli, C.S.; Jagust, W.J.; Clark, C.M.; Barbas, N.R.; Arnold, S.E.; Turner, R.S.; Heidebrink, J.L.; et al. A comparison of classification methods for differentiating fronto-temporal dementia from Alzheimer’s disease using FDG-PET imaging. Stat. Med. 2004, 23, 315–326. [Google Scholar] [CrossRef]
- De Santi, S.; de Leon, M.J.; Rusinek, H.; Convit, A.; Tarshish, C.Y.; Roche, A.; Tsui, W.H.; Kandil, E.; Boppana, M.; Daisley, K.; et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol. Aging 2001, 22, 529–539. [Google Scholar] [CrossRef]
- Friston, K.J. Modes or models: A critique on independent component analysis for fMRI. Trends Cogn. Sci. 1998, 2, 373–375. [Google Scholar] [CrossRef]
- Su, H.R.; Aston, J.A.D.; Lion, M.; Cheng, P.E. A hybrid wavelet-ICA model for dynamic PET analysis. Neuroimage 2006, 31, T67–T68. [Google Scholar] [CrossRef]
- Marcie, P.; Roudier, M.; Goldblum, M.-C.; Boller, F. Principal component analysis of language performances in Alzheimer’s disease. J. Commun. Disord. 1993, 26, 53–63. [Google Scholar] [CrossRef]
- Makeig, S.; Jung, T.P.; Bell, A.J.; Ghahremani, D.; Sejnowski, T.J. Blind separation of auditory event-related brain responses into independent components. Proc. Natl. Acad. Sci. USA 1997, 94, 10979–10984. [Google Scholar] [CrossRef] [Green Version]
- Beckmann, C.F.; Smith, S.M. Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage 2005, 25, 294–311. [Google Scholar] [CrossRef] [PubMed]
- Katz, B.; Rimmer, S. Ophthalmologic manifestations of alzheimers-disease. Surv. Ophthalmol. 1989, 34, 31–43. [Google Scholar] [CrossRef]
- Masters, C.L.; Beyreuther, K. Molecular neuropathology of alzheimers-disease. Arzneim. Forsch. Drug Res. 1995, 45, 410–412. [Google Scholar]
- Gomez-ISLA, T.; Spires, T.; De Calignon, A.; Hyman, B.T. Neuropathology of Alzheimer’s Disease. Hankbook Clin. Neurol. Dement. 2008, 89, 234–243. [Google Scholar]
- Cogan, D.G. Visual disturbances with focal progressive dementing disease. Am. J. Ophthalmol. 1985, 100, 68–72. [Google Scholar] [CrossRef]
- Cogan, D.G. Alzheimer syndromes. Am. J. Ophthalmol. 1987, 104, 183–184. [Google Scholar]
- Sadum, A.A.; Bassi, C.J. The visual system in Alzheimer’s disease. Res. Publ. Assoc Res. Nerv. Ment. Dis. 1990, 67, 331–347. [Google Scholar]
- Mendez, M.F.; Mendez, M.A.; Martin, R.; Smyth, K.A.; Whitehouse, P.J. Complex visual disturbances in alzheimers-disease. Neurology 1990, 40, 439–443. [Google Scholar] [CrossRef]
- Croningolomb, A.; Rizzo, J.F.; Corkin, S.; Growdon, J.H. Visual function in alzheimers-disease and normal aging. Aging Alzheimers Dis. 1991, 640, 28–35. [Google Scholar]
- Rizzo, J.F.; Croningolomb, A.; Growdon, J.H.; Corkin, S.; Rosen, T.J.; Sandberg, M.A.; Chiappa, K.H.; Lessell, S. Retinocalcarine function in alzheimers-disease—A clinical and electrophysiological study. Arch. Neurol. 1992, 49, 93–101. [Google Scholar] [CrossRef]
- Fox, M.D.; Raichle, M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 2007, 8, 700–711. [Google Scholar] [CrossRef] [PubMed]
- Adeli, H.; Ghosh-Dastidar, S.; Dadmehr, N. Alzheimer’s disease: Models of computation and analysis of EEGs. Clin. Eeg Neurosci. 2005, 36, 131–140. [Google Scholar] [CrossRef]
- Jervis, B.; Belal, S.; Camilleri, K.; Cassar, T.; Bigan, C.; Linden, D.E.; Michalopoulos, K.; Zervakis, M.; Besleaga, M.; Fabri, S.; et al. The independent components of auditory P300 and CNV evoked potentials derived from single-trial recordings. Physiol. Meas. 2007, 28, 745–771. [Google Scholar] [CrossRef] [PubMed]
- Cassani, R.; Estarellas, M.; San-Martin, R.; Fraga, F.J.; Falk, T.H. Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment. Dis. Markers 2018, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horvath, A.; Szucs, A.; Csukly, G.; Sakovics, A.; Stefanics, G.; Kamondi, A. EEG and ERP biomarkers of Alzheimer’s disease: A critical review. Front. Biosci. (Landmark Ed.) 2018, 23, 183–220. [Google Scholar] [CrossRef] [PubMed]
- Kurimoto, R.; Ishii, R.; Canuet, L.; Ikezawa, K.; Azechi, M.; Iwase, M.; Yoshida, T.; Kazui, H.; Yoshimine, T.; Takeda, M. Event-related synchronization of alpha activity in early Alzheimer’s disease and mild cognitive impairment: An MEG study combining beamformer and group comparison. Neurosci. Lett. 2008, 443, 86–89. [Google Scholar] [CrossRef]
- Osipova, D.; Rantanen, K.; Ahveninen, J.; Ylikoski, R.; Happola, O.; Strandberg, T.; Pekkonen, E. Source estimation of spontaneous MEG oscillations in mild cognitive impairment. Neurosci. Lett. 2006, 405, 57–61. [Google Scholar] [CrossRef]
- Fernandez, A.; Hornero, R.; Mayo, A.; Poza, J.; Maestu, F.; Ortiz Alonso, T. Quantitative magnetoencephalography of spontaneous brain activity in Alzheimer disease: An exhaustive frequency analysis. Alzheimer Dis. Assoc. Disord. 2006, 20, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Maestu, F.; Garcia-Segura, J.; Ortiz, T.; Montoya, J.; Fernandez, A.; Gil-Gregorio, P.; Campo, P.; Fernandez, S.; Viano, J.; Portera, A. Evidence of biochemical and biomagnetic interactions in Alzheimer’s disease: An MEG and MR spectroscopy study. Dement Geriatr. Cogn. Disord. 2005, 20, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Maestu, F.; Arrazola, J.; Fernandez, A.; Simos, P.G.; Amo, C.; Gil-Gregorio, P.; Fernandez, S.; Papanicolaou, A.; Ortiz, T. Do cognitive patterns of brain magnetic activity correlate with hippocampal atrophy in Alzheimer’s disease? J. Neurol. Neurosurg. Psychiatry 2003, 74, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.; Maestu, F.; Amo, C.; Gil, P.; Fehr, T.; Wienbruch, C.; Rockstroh, B.; Elbert, T.; Ortiz, T. Focal temporoparietal slow activity in Alzheimer’s disease revealed by magnetoencephalography. Biol. Psychiatry 2002, 52, 764–770. [Google Scholar] [CrossRef] [Green Version]
- Stam, C.J.; van Walsum, A.M.V.; Pijnenburg, Y.A.L.; Berendse, H.W.; de Munck, J.C.; Scheltens, P.; van Dijk, B.W. Generalized synchronization of MEG recordings in Alzheimer’s disease: Evidence for involvement of the gamma band. J. Clin. Neurophysiol. 2002, 19, 562–574. [Google Scholar] [CrossRef]
- van Cappellen van Walsum, A.M.; Pijnenburg, Y.A.L.; Berendse, H.W.; van Dijk, B.W.; Knol, D.L.; Scheltens, P.; Stam, C.J. A neural complexity measure applied to MEG data in Alzheimer’s disease. Clin. Neurophysiol. 2003, 114, 1034–1040. [Google Scholar] [CrossRef]
- Azami, H.; Escudero, J.; Fernández, A. Refined composite multivariate multiscale entropy based on variance for analysis of resting-state magnetoencephalograms in Alzheimer’s disease. In Proceedings of the 2016 International Conference for Students on Applied Engineering (ICSAE), Newcastle upon Tyne, UK, 10–21 October 2016; pp. 413–418. [Google Scholar]
- Escudero, J.; Acar, E.; Fernández, A.; Bro, R. Multiscale entropy analysis of resting-state magnetoencephalogram with tensor factorisations in Alzheimer’s disease. Brain Res. Bull. 2015, 119, 136–144. [Google Scholar] [CrossRef]
- Gómez, C.; Poza, J.; Monge, J.; Fernández, A.; Hornero, R. Analysis of magnetoencephalography recordings from Alzheimer’s disease patients using embedding entropies. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 702–705. [Google Scholar]
- Bruña, R.; Poza, J.; Gomez, C.; Garcia, M.; Fernandez, A.; Hornero, R. Analysis of spontaneous MEG activity in mild cognitive impairment and Alzheimer’s disease using spectral entropies and statistical complexity measures. J. Neural Eng. 2012, 9, 036007. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; Hornero, R. Entropy and complexity analyses in Alzheimer’s disease: An MEG study. Open Biomed. Eng. J. 2010, 4, 223. [Google Scholar] [CrossRef] [Green Version]
- Poza, J.; Gómez, C.; Bachiller, A.; Hornero, R. Spectral and non-linear analyses of spontaneous magnetoencephalographic activity in Alzheimer’s disease. J. Healthc. Eng. 2012, 3, 299–322. [Google Scholar] [CrossRef] [Green Version]
- Habeck, C.; Foster, N.L.; Perneczky, R.; Kurz, A.; Alexopoulos, P.; Koeppe, R.A.; Drzezga, A.; Stern, Y. Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. Neuroimage 2008, 40, 1503–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minoshima, S.; Giordani, B.; Berent, S.; Frey, K.A.; Foster, N.L.; Kuhl, D.E. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann. Neurol. 1997, 42, 85–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, H. Cerebral blood flow and metabolic abnormalities in Alzheimer’s disease. Ann. Nucl. Med. 2001, 15, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Fukai, M.; Hirosawa, T.; Kikuchi, M.; Hino, S.; Kitamura, T.; Ouchi, Y.; Yokokura, M.; Yoshikawa, E.; Bunai, T.; Minabe, Y. Different Patterns of Glucose Hypometabolism Underlie Functional Decline in Frontotemporal Dementia and Alzheimer’s Disease: FDG-PET Study. Neuropsychiatry 2018, 8, 441–447. [Google Scholar] [CrossRef]
- Maclin, J.M.A.; Wang, T.; Xiao, S. Biomarkers for the diagnosis of Alzheimer’s disease, dementia Lewy body, frontotemporal dementia and vascular dementia. Gen. Psychiatry 2019, 32, e100054. [Google Scholar] [CrossRef] [Green Version]
- Craig-Schapiro, R.; Fagan, A.M.; Holtzman, D.M. Biomarkers of Alzheimer’s disease. Neurobiol. Dis. 2008, in press, Corrected. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747727/ (accessed on 28 October 2008).
- Messa, C.; Perani, D.; Lucignani, G.; Zenorini, A.; Zito, F.; Rizzo, G.; Grassi, F.; Delsole, A.; Franceschi, M.; Gilardi, M.C.; et al. High-resolution technetium-99m-hmpao spect in patients with probable alzheimers-disease—comparison with fluorine-18-FDG PET. J. Nucl. Med. 1994, 35, 210–216. [Google Scholar]
- Klunk, W.E.; Engler, H.; Nordberg, A.; Wang, Y.M.; Blomqvist, G.; Holt, D.P.; Bergstrom, M.; Savitcheva, I.; Huang, G.F.; Estrada, S.; et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 2004, 55, 306–319. [Google Scholar] [CrossRef]
- Johnson, K.A.; Gregas, M.; Becker, J.A.; Kinnecom, C.; Salat, D.H.; Moran, E.K.; Smith, E.E.; Rosand, J.; Rentz, D.M.; Klunk, W.E.; et al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann. Neurol. 2007, 62, 229–234. [Google Scholar] [CrossRef]
- Kwong, K.K.; Belliveau, J.W.; Chesler, D.A.; Goldberg, I.E.; Weisskoff, R.M.; Poncelet, B.P.; Kennedy, D.N.; Hoppel, B.E.; Cohen, M.S.; Turner, R.; et al. Dynamic magnetic-resonance-imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 1992, 89, 5675–5679. [Google Scholar] [CrossRef] [Green Version]
- Pekar, J.J. A brief introduction to functional MRI—History and today’s developments. IEEE Eng. Med. Biol. Mag. 2006, 25, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Frisoni, G.B. Structural imaging in the clinical diagnosis of Alzheimer’s disease: Problems and tools. J. Neurol. Neurosurg. Psychiatry 2001, 70, 711–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampel, H.; Teipel, S.J.; Alexander, G.E.; Pogarell, O.; Rapoport, S.I.; Moller, H.J. In vivo imaging of region and cell type specific neocortical neurodegeneration in Alzheimer’s disease—Perspectives of MRI derived corpus callosum measurement for mapping disease progression and effects of therapy. Evidence from studies with MRI, EEG and PET. J. Neural Transm. 2002, 109, 837–855. [Google Scholar] [PubMed]
- Josephs, K.A.; Whitwell, J.L.; Dickson, D.W.; Boeve, B.F.; Knopman, D.S.; Petersen, R.C.; Parisi, J.E.; Jack, C.R. Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol. Aging 2008, 29, 280–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.C.; Koretsky, A.P. Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc. Natl. Acad. Sci. USA 2002, 99, 15182–15187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, S.; Menon, R.S.; Tank, D.W.; Kim, S.G.; Merkle, H.; Ellermann, J.M.; Ugurbil, K. Functional brain mapping by blood oxygenation level-dependent contrast magnetic-resonance-imaging—A comparison of signal characteristics with a biophysical model. Biophys. J. 1993, 64, 803–812. [Google Scholar] [CrossRef] [Green Version]
- Bandettini, P.A.; Jesmanowicz, A.; Wong, E.C.; Hyde, J.S. Processing strategies for time-course data sets in functional mri of the human brain. Magn. Reson. Med. 1993, 30, 161–173. [Google Scholar] [CrossRef]
- Jain, S.N.; Rai, C. Blind source separation and ICA techniques: A review. Int. J. Eng. Sci. Technol. 2012, 4, 1490–1503. [Google Scholar]
- Comon, P.; Jutten, C. Handbook of Blind Source Separation: Independent Component Analysis and Applications; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis; Springer: New York, NY, USA, 1986. [Google Scholar]
- Bell, A.J.; Sejnowski, T.J. An information maximization approach to blind separation and blind deconvolution. Neural Comput. 1995, 7, 1129–1159. [Google Scholar] [CrossRef]
- Jutten, C.; Herault, J. Independent Component Analysis versus pca. Proc. Eusipco 1988, 643–648. [Google Scholar]
- Cardoso, J.F. Blind signal separation: Statistical principles. Proc. IEEE 1998, 86, 2009–2025. [Google Scholar] [CrossRef] [Green Version]
- Hyvarinen, A. The fixed-point algorithm and maximum likelihood estimation for independent component analysis. Neural Process. Lett. 1999, 10, 1–5. [Google Scholar] [CrossRef]
- Lee, T.W.; Girolami, M.; Bell, A.J.; Sejnowski, T.J. A unifying information-theoretic framework for independent component analysis. Comput. Math. Appl. 2000, 39, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Jutten, C.; Taleb, A. Source separation: From dusk till dawn. In Proceedings of the International Workshop on Independent Component Analysis and Blind Signal Separation—ICA2000, Helsinki, Finland, 19–22 June 2000; pp. 15–26. [Google Scholar]
- Comon, P. Independent component analysis, a new concept. Signal Process. 1994, 36, 287–314. [Google Scholar] [CrossRef]
- Amari, S. Natural gradient learning for over- and under-complete bases in ICA. Neural Comput. 1999, 11, 1875–1883. [Google Scholar] [CrossRef]
- Hyvarinen, A.; Oja, E. A fast fixed-point algorithm for independent component analysis. Neural Comput. 1997, 9, 1483–1492. [Google Scholar] [CrossRef]
- Hyvarinen, A. Survey on independent component analysis. Neural Comput. Surv. 1999, 2, 94–128. [Google Scholar]
- Biswal, B.B.; Ulmer, J.L. Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. J. Comput. Assist. Tomogr. 1999, 23, 265–271. [Google Scholar] [CrossRef]
- McKeown, M.J. Detection of consistently task-related activations in fMRI data with hybrid independent component analysis. Neuroimage 2000, 11, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porrill, J.; Stone, J.V.; Berwick, J.; Mayhew, J.; Coffey, P. Analysis of optical imaging data using weak models and ica. In Perspectives in Neural Computing; Springer: New York, NY, USA, 2000; pp. 233–317. [Google Scholar]
- Vigario, R.; Sarela, J.; Jousmaki, V.; Hamalainen, M.; Oja, E. Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans. Biomed. Eng. 2000, 47, 589–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigario, R.N. Extraction of ocular artefacts from EEG using independent component analysis. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 395–404. [Google Scholar] [CrossRef]
- McKeown, M.J.; Sejnowski, T.J. Independent component analysis of fMRI data: Examining the assumptions. Hum. Brain Mapp. 1998, 6, 368–372. [Google Scholar] [CrossRef]
- Calhoun, V.D.; Adali, T. Unmixing fMRI with independent component analysis—Using ICA to characterize high-dimensional fMRI data in a concise manner. IEEE Eng. Med. Biol. Mag. 2006, 25, 79–90. [Google Scholar] [CrossRef]
- Calhoun, V.; Pearlson, G.; Adali, T. Independent component analysis applied to fMRI data: A generative model for validating results. J. Vlsi Signal Process. Syst. Signal Image Video Technol. 2004, 37, 281–291. [Google Scholar] [CrossRef]
- Calhoun, V.D.; Adali, T.; Pearlson, G.D.; Pekar, J.J. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum. Brain Mapp. 2001, 13, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, J.V.; Porrill, J.; Porter, N.R.; Wilkinson, I.D. Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions. Neuroimage 2002, 15, 407–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckmann, C.F.; Smith, S.A. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med Imaging 2004, 23, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, V.D.; Adali, T.; Pearlson, G.D.; Pekar, J.J. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 2001, 14, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Svensen, M.; Kruggel, F.; Benali, H. ICA of fMRI group study data. Neuroimage 2002, 16, 551–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckmann, C.F.; Noble, J.A.; Smith, S.M. Investigating the intrinsic dimensionality of FMRI data for ICA. Neuroimage 2001, 13, S76. [Google Scholar] [CrossRef]
- Suzuki, K.; Kiryu, T.; Nakada, T. Fast and precise independent component analysis for high field fMRI time series tailored using prior information on spatiotemporal structure. Hum. Brain Mapp. 2002, 15, 54–66. [Google Scholar] [CrossRef]
- Calhoun, V.D.; Adali, T.; McGinty, V.B.; Pekar, J.J.; Watson, T.D.; Pearlson, G.D. fMRI activation in a visual-perception task: Network of areas detected using the general linear model and independent components analysis. Neuroimage 2001, 14, 1080–1088. [Google Scholar] [CrossRef] [Green Version]
- Sorg, C.; Riedl, V.; Muhlau, M.; Calhoun, V.D.; Eichele, T.; Laer, L.; Drzezga, A.; Forstl, H.; Kurz, A.; Zimmer, C.; et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2007, 104, 18760–18765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa, N.; Adali, T.; Li, Y.-O.; Calhoun, V. Comparison of blind source separation algorithms for FMRI using a new Matlab toolbox: GIFT. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal, Processing, (ICASSP’05), Philadelphia, PA, USA, 18–23 March 2005; pp. 18–23. [Google Scholar]
- Harshman, R.A.; Lundy, M.E. Parafac—parallel factor-analysis. Comput. Stat. Data Anal. 1994, 18, 39–72. [Google Scholar] [CrossRef]
- Formisano, E.; Esposito, F.; Di Salle, F.; Goebel, R. Cortex-based independent component analysis of fMRI time series. Magn. Reson. Imaging 2004, 22, 1493–1504. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R.; Petersen, R.C.; Obrien, P.C.; Tangalos, E.G. Mr-based hippocampal volumetry in the diagnosis of alzheimers-disease. Neurology 1992, 42, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Giesel, F.L.; Thomann, P.A.; Hahn, H.K.; Wilkinson, I.D. Comparison of manual direct and automated indirect measurement of hippocampus using magnetic resonance imaging. Eur. J. Radiol. 2008, 66, 268–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirata, Y.; Matsuda, H.; Nemoto, K.; Ohnishi, T.; Hirao, K.; Yamashita, F.; Asada, T.; Iwabuchi, S.; Samejima, H. Voxel-based morphometry to discriminate early Alzheimer’s disease from controls. Neurosci. Lett. 2005, 382, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J.; Friston, K.J. Voxel-based morphometry—The methods. Neuroimage 2000, 11, 805–821. [Google Scholar] [CrossRef] [Green Version]
- Baron, J.C.; Chetelat, G.; Desgranges, B.; Perchey, G.; Landeau, B.; de la Sayette, V.; Eustache, F. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 2001, 14, 298–309. [Google Scholar] [CrossRef]
- Ohnishi, T.; Matsuda, H.; Tabira, T.; Asada, T.; Uno, M. Changes in brain morphology in Alzheimer disease and normal aging: Is Alzheimer disease an exaggerated aging process? Am. J. Neuroradiol. 2001, 22, 1680–1685. [Google Scholar]
- Busatto, G.E.; Garrido, G.E.J.; Almeida, O.P.; Castro, C.C.; Camargo, C.H.P.; Cid, C.G.; Buchpiguel, C.A.; Furuie, S.; Bottino, C.M. A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer’s disease. Neurobiol. Aging 2003, 24, 221–231. [Google Scholar] [CrossRef]
- Testa, C.; Laakso, M.P.; Sabattoli, F.; Rossi, R.; Beltramello, A.; Soininen, H.; Frisoni, G.B. Comparison between the accuracy of voxel-based morphometry and hippocampal volumetry in Alzheimer’s disease. J. Magn. Reson. Imaging 2004, 19, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. Statistical parametric mapping and other analyses of functional imaging data. Brain Mapp. Methods 1996, 363–386. [Google Scholar]
- Esposito, F.; Formisano, E.; Seifritz, E.; Goebel, R.; Morrone, R.; Tedeschi, G.; Di Salle, F. Spatial independent component analysis of functional MRI time-series: To what extent do results depend on the algorithm used? Hum. Brain Mapp. 2002, 16, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Asllani, I.; Habeck, C.; Scarmeas, N.; Borogovac, A.; Brown, T.R.; Stern, Y. Multivariate and univariate analysis of continuous arterial spin labeling perfusion MRI in Alzheimer’s disease. J. Cereb. Blood Flow Metab. 2008, 28, 725–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKeown, M.J.; Makeig, S.; Brown, G.G.; Jung, T.P.; Kindermann, S.S.; Bell, A.J.; Sejnowski, T.J. Analysis of fMRI data by blind separation into independent spatial components. Hum. Brain Mapp. 1998, 6, 160–188. [Google Scholar] [CrossRef]
- Moritz, C.H.; Haughton, V.M.; Cordes, D.; Quigley, M.; Meyerand, M.E. Whole-brain functional MR imaging activation from a finger-tapping task examined with independent component analysis. Am. J. Neuroradiol. 2000, 21, 1629–1635. [Google Scholar]
- McKeown, M.J.; Hansen, L.K.; Sejnowski, T.J. Independent component analysis of functional MRI: What is signal and what is noise? Curr. Opin. Neurobiol. 2003, 13, 620–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, F.; Scarabino, T.; Hyvarinen, A.; Himberg, J.; Formisano, E.; Comani, S.; Tedeschi, G.; Goebel, R.; Seifritz, E.; Di Salle, F. Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 2005, 25, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, J.F.; Souloumiac, A. Blind beamforming for non-gaussian signals. IEE Proc. F Radar Signal Process. 1993, 140, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Cruces-alvarez, S.A.; Cichocki, A.; Amari, S.I. On a new blind signal extraction algorithm: Different criteria and stability analysis. IEEE Signal Process. Lett. 2002, 9, 233–236. [Google Scholar] [CrossRef] [Green Version]
- Seifritz, E.; Esposito, F.; Hennel, F.; Mustovic, H.; Neuhoff, J.G.; Bilecen, D.; Tedeschi, G.; Scheffler, K.; Di Salle, F. Spatiotemporal pattern of neural processing in the human auditory cortex. Science 2002, 297, 1706–1708. [Google Scholar] [CrossRef] [Green Version]
- Beckmann, C.F.; Neble, J.A.; Smith, S.M. Artefact detection in FMRI data using independent component analysis. Neuroimage 2000, 11, S614. [Google Scholar] [CrossRef]
- Calhoun, V.; Adali, T.; Pearlson, G.; Pekar, J. A method for making group inferences using independent component analysis of functional MRI data: Exploring the visual system. Neuroimage 2001, 13, S88. [Google Scholar] [CrossRef]
- Akaike, H. New look at statistical-model identification. IEEE Trans. Autom. Control 1974, AC19, 716–723. [Google Scholar] [CrossRef]
- Rissanen, J. A universal prior for integers and estimation by minimum description length. Ann. Stat. 1983, 11, 416–431. [Google Scholar] [CrossRef]
- Vigario, R.; Sarela, J.; Oja, E. Independent component analysis inwave decomposition of auditory evoked fields. In Proceedings of the International Conference on Artificial Neural Networks (ICANN’98), Skovde, Sweden, 2–4 September 1998; pp. 287–292. [Google Scholar]
- vigario, R.; Sarela, J.; Oja, E. Independent component analysis in decomposition of auditory and somatosensory evoked fields. In Proceedings of the International Workshop on Independent Component Analysis and Signal Separation (ICA’99), Aussois, France, 11–15 January 1999; pp. 167–172. [Google Scholar]
- Celone, K.A.; Calhoun, V.D.; Dickerson, B.C.; Atri, A.; Chua, E.F.; Miller, S.L.; DePeau, K.; Rentz, D.M.; Selkoe, D.J.; Blacker, D.; et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: An independent component analysis. J. Neurosci. 2006, 26, 10222–10231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, R.M.; Nowlis, G.H.; McCrary, J.W.; Chapman, J.A.; Sandoval, T.C.; Guillily, M.D.; Gardner, M.N.; Reilly, L.A. Brain event-related potentials: Diagnosing early-stage Alzheimer’s disease. Neurobiol. Aging 2007, 28, 194–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besthorn, C.; Zerfass, R.; GeigerKabisch, C.; Sattel, H.; Daniel, S.; SchreiterGasser, U.; Forstl, H. Discrimination of Alzheimer’s disease and normal aging by EEG data. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 241–248. [Google Scholar] [CrossRef]
- Melissant, C.; Ypma, A.; Frietman, E.E.E.; Stam, C.J. A method for detection of Alzheimer’s disease using ICA-enhanced EEG measurements. Artif. Intell. Med. 2005, 33, 209–222. [Google Scholar] [CrossRef]
- Tong, L.; Soon, V.; Huang, Y.; Liu, R. AMUSE: A new blind identification algorithm. In Proceedings of the IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 1–3 May 1990; pp. 1784–1787. [Google Scholar]
- Vialatte, F.-B.; Solé-Casals, J.; Maurice, M.; Latchoumane, C.; Hudson, N.; Wimalaratna, S.; Jeong, J.; Cichocki, A. Improving the quality of EEG data in patients with Alzheimer’s disease using ICA. In Proceedings of the International Conference on Neural Information Processing, Cambridge, MA, USA, 25–28 November 2008; pp. 979–986. [Google Scholar]
- Escudero, J.; Hornero, R.; Poza, J.; Abasolo, D.; Fernandez, A. Assessment of classification improvement in patients with Alzheimer’s disease based on magnetoencephalogram blind source separation. Artif. Intell. Med. 2008, 43, 75–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, A.; Hornero, R.; Mayo, A.; Poza, J.; Gil-Gregorio, P.; Ortiz, T. MEG spectral profile in Alzheimer’s disease and mild cognitive impairment. Clin. Neurophysiol. 2006, 117, 306–314. [Google Scholar] [CrossRef]
- Kerrouche, N.; Herholz, K.; Mielke, R.; Holthoff, V.; Baron, J.C. (18)FDG PET in vascular dementia: Differentiation from Alzheimer’s disease using voxel-based multivariate analysis. J. Cereb. Blood Flow Metab. 2006, 26, 1213–1221. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Reiman, E.M.; Alexander, G.E.; Crum, W.R.; Fox, N.C.; Rossor, M.N. Automated method using iterative principal component analysis for detecting brain atrophy rates from sequential MRI in persons with Alzheimer’s disease. Soc. Neurosci. Abstr. 2001, 27, 1216. [Google Scholar]
- Chen, K.W.; Reiman, E.M.; Alexander, G.E.; Bandy, D.; Renaut, R.; Crum, W.R.; Fox, N.C.; Rossor, M.N. An automated algorithm for the computation of brain volume change from sequential MRIs using an iterative principal component analysis and its evaluation for the assessment of whole-brain atrophy rates in patients with probable Alzheimer’s disease. Neuroimage 2004, 22, 134–143. [Google Scholar] [CrossRef]
- Turkheimer, F.E.; Aston, J.A.D.; Banati, R.B.; Riddell, C.; Cunningham, V.J. A linear wavelet filter for parametric imaging with dynamic PET. IEEE Trans. Med Imaging 2003, 22, 289–301. [Google Scholar] [CrossRef]
- Bai, F.; Zhang, Z.J.; Yu, H.; Shi, Y.M.; Yuan, Y.G.; Zhu, W.L.; Zhang, X.R.; Qian, Y. Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: A combined structural and resting-state functional MRI study. Neurosci. Lett. 2008, 438, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Greicius, M.D.; Srivastava, G.; Reiss, A.L.; Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proc. Natl. Acad. Sci. USA 2004, 101, 4637–4642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, N.; Wang, Z.; Wu, X.; Li, K.; Yao, L. Functional connectivity methods based on ICA and correlation with fMRI data. J. Beijing Norm. Univ. (Nat. Sci.) 2008, 44, 54–58. [Google Scholar]
- Calhoun, V.D.; Kiehl, K.A.; Pearlson, G.D. Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum. Brain Mapp. 2008, 29, 828–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greicius, M. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 2008, 21, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Rombouts, S.A.; Damoiseaux, J.S.; Goekoop, R.; Barkhof, F.; Scheltens, P.; Smith, S.M.; Beckmann, C.F. Model-free group analysis shows altered BOLD FMRI networks in dementia. Hum. Brain Mapp. 2009, 30, 256–266. [Google Scholar] [CrossRef]
- Illán, I.Á.; Górriz, J.; Ramírez, J.; Salas-Gonzalez, D.; López, M.; Segovia, F.; Padilla, P.; Puntonet, C.G. Projecting independent components of SPECT images for computer aided diagnosis of Alzheimer’s disease. Pattern Recognit. Lett. 2010, 31, 1342–1347. [Google Scholar] [CrossRef]
- Savio, A.; Graña, M. Deformation based feature selection for computer aided diagnosis of Alzheimer’s disease. Expert Syst. Appl. 2013, 40, 1619–1628. [Google Scholar] [CrossRef]
- Martínez-Murcia, F.J.; Górriz, J.M.; Ramirez, J.; Puntonet, C.G.; Salas-Gonzalez, D.; Initiative, A.s.D.N. Computer aided diagnosis tool for Alzheimer’s disease based on Mann–Whitney–Wilcoxon U-test. Expert Syst. Appl. 2012, 39, 9676–9685. [Google Scholar] [CrossRef]
- Chaves, R.; Ramírez, J.; Górriz, J.; López, M.; Salas-Gonzalez, D.; Alvarez, I.; Segovia, F. SVM-based computer-aided diagnosis of the Alzheimer’s disease using t-test NMSE feature selection with feature correlation weighting. Neurosci. Lett. 2009, 461, 293–297. [Google Scholar] [CrossRef]
- Salas-Gonzalez, D.; Górriz, J.M.; Ramírez, J.; López, M.; Alvarez, I.; Segovia, F.; Chaves, R.; Puntonet, C. Computer-aided diagnosis of Alzheimer’s disease using support vector machines and classification trees. Phys. Med. Biol. 2010, 55, 2807. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Li, S.; Xiao, B.; Li, Y.; Wang, G.; Ma, X. Computer aided Alzheimer’s disease diagnosis by an unsupervised deep learning technology. Neurocomputing 2020, 392, 296–304. [Google Scholar] [CrossRef]
- Trambaiolli, L.R.; Lorena, A.C.; Fraga, F.J.; Kanda, P.A.; Anghinah, R.; Nitrini, R. Improving Alzheimer’s disease diagnosis with machine learning techniques. Clin. Eeg Neurosci. 2011, 42, 160–165. [Google Scholar] [CrossRef]
- Simpraga, S.; Alvarez-Jimenez, R.; Mansvelder, H.D.; Van Gerven, J.M.; Groeneveld, G.J.; Poil, S.-S.; Linkenkaer-Hansen, K. EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Podgorelec, V. Analyzing EEG signals with machine learning for diagnosing Alzheimer’s disease. Elektron. Ir Elektrotechnika 2012, 18, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Morabito, F.C.; Campolo, M.; Ieracitano, C.; Ebadi, J.M.; Bonanno, L.; Bramanti, A.; Desalvo, S.; Mammone, N.; Bramanti, P. Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings. In Proceedings of the 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), Bologna, Italy, 7–9 September 2016; pp. 1–6. [Google Scholar]
- Lehmann, C.; Koenig, T.; Jelic, V.; Prichep, L.; John, R.E.; Wahlund, L.-O.; Dodge, Y.; Dierks, T. Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J. Neurosci. Methods 2007, 161, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Doermann, D.; DeMenthon, D. Hybrid independent component analysis and support vector machine learning scheme for face detection. In Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), Salt Lake City, UT, USA, 7–11 May 2001; pp. 1481–1484. [Google Scholar]
- Aziz, R.; Verma, C.; Srivastava, N. A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data. Genom. Data 2016, 8, 4–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radüntz, T.; Scouten, J.; Hochmuth, O.; Meffert, B. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features. J. Neural Eng. 2017, 14, 046004. [Google Scholar] [CrossRef]
- Vialatte, F.; Cichocki, A.; Dreyfus, G.; Musha, T.; Shishkin, S.L.; Gervais, R. Early detection of Alzheimer’s disease by blind source separation, time frequency representation, and bump modeling of EEG signals. In Proceedings of the International Conference on Artificial Neural Networks, Warsaw, Poland, 11–15 September 2005; pp. 683–692. [Google Scholar]
- Cassani, R.; Falk, T.H.; Fraga, F.J.; Kanda, P.A.; Anghinah, R. The effects of automated artifact removal algorithms on electroencephalography-based Alzheimer’s disease diagnosis. Front. Aging Neurosci. 2014, 6, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ball, G.; Aljabar, P.; Arichi, T.; Tusor, N.; Cox, D.; Merchant, N.; Nongena, P.; Hajnal, J.V.; Edwards, A.D.; Counsell, S.J. Machine-learning to characterise neonatal functional connectivity in the preterm brain. Neuroimage 2016, 124, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Welsh, R.C.; Jelsone-Swain, L.M.; Foerster, B.R. The utility of independent component analysis and machine learning in the identification of the amyotrophic lateral sclerosis diseased brain. Front. Hum. Neurosci. 2013, 7, 251. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Douglas, P.K.; Wu, Y.N.; Brody, A.L.; Anderson, A.E. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms. J. Neurosci. Methods 2017, 282, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Sui, J.; Adali, T.; Pearlson, G.; Yang, H.; Sponheim, S.R.; White, T.; Calhoun, V.D. A CCA+ ICA based model for multi-task brain imaging data fusion and its application to schizophrenia. Neuroimage 2010, 51, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Vergara, V.M.; Ulloa, A.; Calhoun, V.D.; Boutte, D.; Chen, J.; Liu, J. A three-way parallel ICA approach to analyze links among genetics, brain structure and brain function. Neuroimage 2014, 98, 386–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khedher, L.; Illán, I.A.; Górriz, J.M.; Ramírez, J.; Brahim, A.; Meyer-Baese, A. Independent component analysis-support vector machine-based computer-aided diagnosis system for Alzheimer’s with visual support. Int. J. Neural Syst. 2017, 27, 1650050. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 1999, 10, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Lui, R.L.; Gao, J.H.; Chan, T.F.; Yau, S.T.; Sperling, R.A.; Huang, X. Independent component analysis-based classification of Alzheimer’s disease MRI data. J Alzheimers Dis. 2011, 24, 775–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Chen, X.; Cohen, D.S.; Rosin, E.R.; Toga, A.W.; Thompson, P.M.; Huang, X. Classification of MRI and psychological testing data based on support vector machine. Int. J. Clin. Exp. Med. 2017, 10, 16004–16026. [Google Scholar]
- Qiao, J.; Lv, Y.; Cao, C.; Wang, Z.; Li, A. Multivariate deep learning classification of Alzheimer’s disease based on hierarchical partner matching independent component analysis. Front. Aging Neurosci. 2018, 10, 417. [Google Scholar] [CrossRef] [Green Version]
- Basheera, S.; Ram, M.S.S. Convolution neural network–based Alzheimer’s disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2019, 5, 974–986. [Google Scholar] [CrossRef] [PubMed]
- Toussaint, P.-J.; Perlbarg, V.; Bellec, P.; Desarnaud, S.; Lacomblez, L.; Doyon, J.; Habert, M.-O.; Benali, H. Resting state FDG-PET functional connectivity as an early biomarker of Alzheimer’s disease using conjoint univariate and independent component analyses. Neuroimage 2012, 63, 936–946. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Pilozzi, A.; Huang, X. An Overview of ICA/BSS-Based Application to Alzheimer’s Brain Signal Processing. Biomedicines 2021, 9, 386. https://doi.org/10.3390/biomedicines9040386
Yang W, Pilozzi A, Huang X. An Overview of ICA/BSS-Based Application to Alzheimer’s Brain Signal Processing. Biomedicines. 2021; 9(4):386. https://doi.org/10.3390/biomedicines9040386
Chicago/Turabian StyleYang, Wenlu, Alexander Pilozzi, and Xudong Huang. 2021. "An Overview of ICA/BSS-Based Application to Alzheimer’s Brain Signal Processing" Biomedicines 9, no. 4: 386. https://doi.org/10.3390/biomedicines9040386
APA StyleYang, W., Pilozzi, A., & Huang, X. (2021). An Overview of ICA/BSS-Based Application to Alzheimer’s Brain Signal Processing. Biomedicines, 9(4), 386. https://doi.org/10.3390/biomedicines9040386