Healthcare Data for Achieving a More Personalized Treatment of Chronic Kidney Disease
Abstract
:1. Real-World Evidence Biomarkers for Chronic Kidney Disease
2. Pragmatic Contributions
3. Strategies for Managing Data and Their Limits
4. Concluding Remarks
Acknowledgments
Conflicts of Interest
References
- Bai, J.P.F.; Bell, R.; Buckman, S.; Burckart, G.J.; Eichler, H.-G.; Fang, K.C.; Goodsaid, F.M.; Jusko, W.J.; Lesko, L.L.; Meibohm, B.; et al. Translational Biomarkers: From Preclinical to Clinical a Report of 2009 AAPS/ACCP Biomarker Workshop. AAPS J. 2011, 13, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Formentini, I.; Bobadilla, M.; Haefliger, C.; Hartmann, G.; Loghman-Adham, M.; Mizrahi, J.; Pomposiello, S.; Prunotto, M.; Meier, M. Current drug development challenges in chronic kidney disease (CKD)--identification of individualized determinants of renal progression and premature cardiovascular disease (CVD). Nephrol. Dial. Transplant. 2012, 27, iii81–iii88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Fassett, R.G.; Venuthurupalli, S.K.; Gobe, G.C.; Coombes, J.S.; Cooper, M.A.; Hoy, W.E. Biomarkers in chronic kidney disease: A review. Kidney Int. 2011, 80, 806–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danger, R.; Chesneau, M.; Paul, C.; Guérif, P.; Durand, M.; Newell, K.A.; Kanaparthi, S.; Turka, L.A.; Soulillou, J.-P.; Houlgatte, R.; et al. A composite score associated with spontaneous operational tolerance in kidney transplant recipients. Kidney Int. 2017, 91, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Baron, D.; Ramstein, G.; Chesneau, M.; Echasseriau, Y.; Pallier, A.; Paul, C.; Degauque, N.; Hernandez-Fuentes, M.P.; Sanchez-Fueyo, A.; Newell, K.A.; et al. A common gene signature across multiple studies relate biomarkers and functional regulation in tolerance to renal allograft. Kidney Int. 2015, 87, 984–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Abejón, E.; Martín-García, D.; Tamayo, E.; Alvarez, F.J.; Herrera-Gómez, F. Clinical profile, Pharmacological Treatment and Predictors of Death among hospitalized COVID-19 patients with Acute Kidney In-jury: A Population-Based Registry Analysis. Front. Med. 2021, in press. [Google Scholar]
- Bernuy-Guevara, C.; Chehade, H.; Muller, Y.D.; Vionnet, J.; Cachat, F.; Guzzo, G.; Ochoa-Sangrador, C.; Álvarez, F.J.; Teta, D.; Martín-García, D.; et al. The Inhibition of Complement System in Formal and Emerging Indications: Results from Parallel One-Stage Pairwise and Network Meta-Analyses of Clinical Trials and Real-Life Data Studies. Biomedicines 2020, 8, 355. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jang, H.B.; Yoo, M.-G.; Park, S.I.; Lee, H.-J. Amino Acid Metabolites Associated with Chronic Kidney Disease: An Eight-Year Follow-Up Korean Epidemiology Study. Biomedicines 2020, 8, 222. [Google Scholar] [CrossRef] [PubMed]
- Dozio, E.; Vettoretti, S.; Caldiroli, L.; Nerini-Molteni, S.; Tacchini, L.; Ambrogi, F.; Messa, P.; Romanelli, M.M.C. Advanced Glycation End Products (AGE) and Soluble Forms of AGE Receptor: Emerging Role as Mortality Risk Factors in CKD. Biomedicines 2020, 8, 638. [Google Scholar] [CrossRef] [PubMed]
- Dozio, E.; Vettoretti, S.; Lungarella, G.; Messa, P.; Romanelli, M.C. Sarcopenia in Chronic Kidney Disease: Focus on Advanced Glycation End Products as Mediators and Markers of Oxidative Stress. Biomedicines 2021, 9, 405. [Google Scholar] [CrossRef]
- Lecamwasam, A.; Nelson, T.M.; Rivera, L.; Ekinci, E.I.; Saffery, R.; Dwyer, K.M. Gut Microbiome Composition Remains Stable in Individuals with Diabetes-Related Early to Late Stage Chronic Kidney Disease. Biomedicines 2020, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Owens, E.; Tan, K.-S.; Ellis, R.; Del Vecchio, S.; Humphries, T.; Lennan, E.; Vesey, D.; Healy, H.; Hoy, W.; Gobe, G. Development of a Biomarker Panel to Distinguish Risk of Progressive Chronic Kidney Disease. Biomedicines 2020, 8, 606. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Astor, B.C.; Lewis, J.; Hu, B.; Appel, L.J.; Lipkowitz, M.S.; Toto, R.D.; Wang, X.; Wright, J.T.; Greene, T.H. Longitudinal Progression Trajectory of GFR Among Patients With CKD. Am. J. Kidney Dis. 2012, 59, 504–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Gómez, F.; Álvarez, F.J. Healthcare Data for Achieving a More Personalized Treatment of Chronic Kidney Disease. Biomedicines 2021, 9, 488. https://doi.org/10.3390/biomedicines9050488
Herrera-Gómez F, Álvarez FJ. Healthcare Data for Achieving a More Personalized Treatment of Chronic Kidney Disease. Biomedicines. 2021; 9(5):488. https://doi.org/10.3390/biomedicines9050488
Chicago/Turabian StyleHerrera-Gómez, Francisco, and F. Javier Álvarez. 2021. "Healthcare Data for Achieving a More Personalized Treatment of Chronic Kidney Disease" Biomedicines 9, no. 5: 488. https://doi.org/10.3390/biomedicines9050488
APA StyleHerrera-Gómez, F., & Álvarez, F. J. (2021). Healthcare Data for Achieving a More Personalized Treatment of Chronic Kidney Disease. Biomedicines, 9(5), 488. https://doi.org/10.3390/biomedicines9050488