Ovarian Cancer: Biomarkers and Targeted Therapy
Abstract
:1. Introduction
2. Classification and Histopathology
2.1. Histological Classifications
2.2. Phenotypic Classifications
3. Genetics of Ovarian Cancer
3.1. BRCA1 and BRCA2 Genes
3.2. Other Genes
3.2.1. MMR Genes
3.2.2. CHEK2 Gene
3.2.3. Somatic Mutations in Ovarian Cancer
4. Role of Microenvironmental Factors in Ovarian Cancer
5. Biomarkers in the Management and Prognosis of Ovarian Cancer
5.1. Traditional Biomarkers: CA125 and HE4
5.1.1. Cancer Antigen 125 or Carbohydrate Antigen 125 (CA125)
5.1.2. Human Epididymis Protein 4 (HE4)
5.2. Ovarian Cancer—Associated ncRNAs—Promising Non-Invasive Biomarkers
5.2.1. microRNAs (miRNAs)
5.2.2. Long Noncoding RNAs (lncRNAs)
5.2.3. Circular RNAs (circRNAs)
5.2.4. Transfer RNA-Derived Small Non-Coding RNAs (tsncRNA)
6. Targeted Therapy in the Personalized Management of Ovarian Cancer
6.1. Inhibitors of Angiogenesis
6.2. PARP Inhibitors
6.3. NTRK Inhibitors
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian Cancer: An Integrated Review. Semin. Oncol. Nurs. 2019, 35, 151–156. [Google Scholar] [CrossRef]
- Cho, K.R.; Shih, I.-M. Ovarian Cancer. Annu. Rev. Pathol. Mech. Dis. 2009, 4, 287–313. [Google Scholar] [CrossRef] [PubMed]
- Zeppernick, F.; Meinhold-Heerlein, I. The new FIGO staging system for ovarian, fallopian tube, and primary peritoneal cancer. Arch. Gynecol. Obstet. 2014, 290, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ma, T. Poorer prognosis of ovarian squamous cell carcinoma than serous carcinoma: A propensity score matching analysis based on the SEER database. J. Ovarian Res. 2020, 13, 75. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, Y.; Bonneau, C.; Popova, T.; Rouzier, R.; Stern, M.-H.; Mechta-Grigoriou, F. Clinical Interest of Combining Transcriptomic and Genomic Signatures in High-Grade Serous Ovarian Cancer. Front. Genet. 2020, 11, 219. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Sawada, K.; Yoshimura, A.; Kinose, Y.; Nakatsuka, E.; Kimura, T. Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Mol. Cancer 2016, 15, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piek, J.M.J.; Van Diest, P.J.; Zweemer, R.P.; Jansen, J.W.; Poort-Keesom, R.J.J.; Menko, F.H.; Gille, J.J.P.; Jongsma, A.P.M.; Pals, G.; Kenemans, P. Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. J. Pathol. 2001, 195, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Miron, A.; Drapkin, R.; Nucci, M.R.; Medeiros, F.; Saleemuddin, A.; Garber, J.; Birch, C.; Mou, H.; Gordon, R.W.; et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J. Pathol. 2007, 211, 26–35. [Google Scholar] [CrossRef]
- Levanon, K.; Ng, V.; Piao, H.Y.; Zhang, Y.; Chang, M.C.; Roh, M.H.; Kindelberger, D.W.; Hirsch, M.S.; Crum, C.P.; A Marto, J.; et al. Primary ex vivo cultures of human fallopian tube epithelium as a model for serous ovarian carcinogenesis. Oncogene 2009, 29, 1103–1113. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, S.; Coward, J.I.; Bast, R.C.; Berchuck, A.; Berek, J.S.; Brenton, J.D.; Coukos, G.; Crum, C.C.; Drapkin, R.; Etemadmoghadam, D.; et al. Rethinking ovarian cancer: Recommendations for improving outcomes. Nat. Rev. Cancer 2011, 11, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Matulonis, U.A.; Sood, A.K.; Fallowfield, L.; Howitt, B.E.; Sehouli, J.; Karlan, B.Y. Ovarian cancer. Nat. Rev. Dis. Prim. 2016, 2, 16061. [Google Scholar] [CrossRef]
- Santandrea, G.; Piana, S.; Valli, R.; Zanelli, M.; Gasparini, E.; De Leo, A.; Mandato, V.; Palicelli, A. Immunohistochemical Biomarkers as a Surrogate of Molecular Analysis in Ovarian Carcinomas: A Review of the Literature. Diagnostics 2021, 11, 199. [Google Scholar] [CrossRef]
- Vang, R.; Shih, I.-M.; Kurman, R.J. Ovarian Low-grade and High-grade Serous Carcinoma. Adv. Anat. Pathol. 2009, 16, 267–282. [Google Scholar] [CrossRef] [Green Version]
- Meinhold-Heerlein, I.; Fotopoulou, C.; Harter, P.; Kurzeder, C.; Mustea, A.; Wimberger, P.; Hauptmann, S.; Sehouli, J. The new WHO classification of ovarian, fallopian tube, and primary peritoneal cancer and its clinical implications. Arch. Gynecol. Obstet. 2016, 293, 695–700. [Google Scholar] [CrossRef]
- De Leo, A.; Santini, D.; Ceccarelli, C.; Santandrea, G.; Palicelli, A.; Acquaviva, G.; Chiarucci, F.; Rosini, F.; Ravegnini, G.; Pession, A.; et al. What Is New on Ovarian Carcinoma: Integrated Morphologic and Molecular Analysis Following the New 2020 World Health Organization Classification of Female Genital Tumors. Diagn. 2021, 11, 697. [Google Scholar] [CrossRef]
- Kurman, R.J.; Shih, I.-M. The Dualistic Model of Ovarian Carcinogenesis: Revisited, revised, and expanded. Am. J. Pathol. 2016, 186, 733–747. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.; Frumovitz, M. Mucinous Tumors of the Ovary: Current Thoughts on Diagnosis and Management. Curr. Oncol. Rep. 2014, 16, 1–9. [Google Scholar] [CrossRef]
- Idrees, R.; Din, N.U.; Siddique, S.; Fatima, S.; Abdul-Ghafar, J.; Ahmad, Z. Ovarian seromucinous tumors: Clinicopathological features of 10 cases with a detailed review of the literature. J. Ovarian Res. 2021, 14, 1–10. [Google Scholar] [CrossRef]
- Cochrane, D.R.; Tessier-Cloutier, B.; Lawrence, K.M.; Nazeran, T.; Karnezis, A.N.; Salamanca, C.; Cheng, A.S.; McAlpine, J.N.; Hoang, L.N.; Gilks, C.B.; et al. Clear cell and endometrioid carcinomas: Are their differences attributable to distinct cells of origin? J. Pathol. 2017, 243, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Huvila, J.; Gilks, C.B. Brenner Tumor. PathologyOutlines.com Website. Available online: https://www.pathologyoutlines.com/topic/ovarytumorb9brenner.html (accessed on 2 June 2021).
- Gotoh, O.; Sugiyama, Y.; Takazawa, Y.; Kato, K.; Tanaka, N.; Omatsu, K.; Takeshima, N.; Nomura, H.; Hasegawa, K.; Fujiwara, K.; et al. Clinically relevant molecular subtypes and genomic alteration-independent differentiation in gynecologic carcinosarcoma. Nat. Commun. 2019, 10, 4965. [Google Scholar] [CrossRef] [PubMed]
- Ehdaivand, S. WHO Classification. PathologyOutlines.com Website. Available online: https://www.pathologyoutlines.com/topic/ovarytumorwhoclassif.html (accessed on 2 June 2021).
- Klymenko, Y.; Kim, O.; Stack, M.S. Complex Determinants of Epithelial: Mesenchymal Phenotypic Plasticity in Ovarian Cancer. Cancers 2017, 9, 104. [Google Scholar] [CrossRef] [Green Version]
- Boussios, S.; Moschetta, M.; Zarkavelis, G.; Papadaki, A.; Kefas, A.; Tatsi, K. Ovarian sex-cord stromal tumours and small cell tumours: Pathological, genetic and management aspects. Crit. Rev. Oncol. 2017, 120, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.; Oliva, E. Ovarian sex cord-stromal tumours: An update in recent molecular advances. Pathol. 2018, 50, 178–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, L.A.; Mills, L.; Hooten, A.J.; Langer, E.; Roesler, M.; Frazier, A.L.; Krailo, M.; Nelson, H.H.; Bestrashniy, J.; Amatruda, J.F.; et al. Differences in DNA methylation profiles by histologic subtype of paediatric germ cell tumours: A report from the Children’s Oncology Group. Br. J. Cancer 2018, 119, 864–872. [Google Scholar] [CrossRef] [Green Version]
- Oosterhuis, J.W.; Looijenga, L.H.J. Human germ cell tumours from a developmental perspective. Nat. Rev. Cancer 2019, 19, 522–537. [Google Scholar] [CrossRef] [PubMed]
- Dey, P. Pathology of Ovary: Metastatic and Miscellaneous Tumours. In Color Atlas of Female Genital Tract Pathology; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; pp. 407–427. [Google Scholar]
- Lalwani, N.; Patel, S.; Ha, K.Y.; Shanbhogue, K.P.; Nagar, A.M.; Chintapalli, K.N.; Prasad, S.R. Miscellaneous tumour-like lesions of the ovary: Cross-sectional imaging review. Br. J. Radiol. 2012, 85, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Mogi, K.; Yoshihara, M.; Iyoshi, S.; Kitami, K.; Uno, K.; Tano, S.; Koya, Y.; Sugiyama, M.; Yamakita, Y.; Nawa, A.; et al. Ovarian Cancer-Associated Mesothelial Cells: Transdifferentiation to Minions of Cancer and Orchestrate Developing Peritoneal Dissemination. Cancers 2021, 13, 1352. [Google Scholar] [CrossRef]
- Duska, L.; Kohn, E. The new classifications of ovarian, fallopian tube, and primary peritoneal cancer and their clinical implications. Ann. Oncol. 2017, 28, viii8–viii12. [Google Scholar] [CrossRef]
- Silverberg, S.G. Histopathologic Grading of Ovarian Carcinoma: A Review and Proposal. Int. J. Gynecol. Pathol. 2000, 19, 7–15. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef]
- Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; Benz, C.C.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, V.W.; Ruiz, B.; Killeen, J.L.; Wu, X.C.; Correa, C.N.; Howe, H.L. Pathology and classification of ovarian tumors. Cancer 2003, 97, 2631–2642. [Google Scholar] [CrossRef] [PubMed]
- Yousefzadeh, Y.; Hallaj, S.; Moornani, M.B.; Asghary, A.; Azizi, G.; Farsangi, M.H.; Ghalamfarsa, G.; Jadidi-Niaragh, F. Tumor associated macrophages in the molecular pathogenesis of ovarian cancer. Int. Immunopharmacol. 2020, 84, 106471. [Google Scholar] [CrossRef] [PubMed]
- Kurman, R.J.; Shih, I.-M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer—Shifting the paradigm. Hum. Pathol. 2011, 42, 918–931. [Google Scholar] [CrossRef] [Green Version]
- Home—My Cancer Genome. Available online: https://www.mycancergenome.org/ (accessed on 27 November 2020).
- A Merritt, M.; Parsons, P.G.; Newton, T.R.; Martyn, A.C.; Webb, P.M.; Green, A.C.; Papadimos, D.J.; Boyle, G.M. Expression profiling identifies genes involved in neoplastic transformation of serous ovarian cancer. BMC Cancer 2009, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Chun, J.; Powell, S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer 2012, 12, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.S. Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecol. Oncol. 2015, 137, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Lou, W.; Ding, B.; Zhong, G.; Du, C.; Fan, W.; Fu, P. Dysregulation of pseudogene/lncRNA-hsa-miR-363-3p-SPOCK2 pathway fuels stage progression of ovarian cancer. Aging 2019, 11, 11416–11439. [Google Scholar] [CrossRef]
- Prat, J.; D’Angelo, E.; Espinosa, I. Ovarian carcinomas: At least five different diseases with distinct histological features and molecular genetics. Hum. Pathol. 2018, 80, 11–27. [Google Scholar] [CrossRef]
- Sowter, H.M.; Ashworth, A. BRCA1 and BRCA2 as ovarian cancer susceptibility genes. Carcinog. 2005, 26, 1651–1656. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.-H.; Chen, C.-C.; Hsiao, Y.-C.; Lin, Y.-H.; Pi, W.-C.; Huang, P.-R.; Wang, T.-C.V.; Chen, C.-Y. Heterogeneous Nuclear Ribonucleoproteins A1 and A2 Function in Telomerase-Dependent Maintenance of Telomeres. Cancers 2019, 11, 334. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Huang, Y.; Seckl, M.J.; Pardo, O.E. Emerging roles of hnRNPA1 in modulating malignant transformation. Wiley Interdiscip. Rev. RNA 2017, 8, e1431. [Google Scholar] [CrossRef] [Green Version]
- Vashishtha, V.; Jinghan, N.; Yadav, A.K. Antagonistic role of GSK3 isoforms in glioma survival. J. Cancer 2018, 9, 1846–1855. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhou, Y.; Lou, Y.; Zhong, H. Knockdown of HNRNPA1 inhibits lung adenocarcinoma cell proliferation through cell cycle arrest at G0/G1 phase. Gene 2016, 576, 791–797. [Google Scholar] [CrossRef]
- A Soslow, R.; Han, G.; Park, K.J.; Garg, K.; Olvera, N.; Spriggs, D.R.; Kauff, N.; A Levine, D. Morphologic patterns associated with BRCA1 and BRCA2 genotype in ovarian carcinoma. Mod. Pathol. 2011, 25, 625–636. [Google Scholar] [CrossRef]
- Köbel, M.; Piskorz, A.M.; Lee, S.; Lui, S.; Lepage, C.; Marass, F.; Rosenfeld, N.; Masson, A.-M.M.; Brenton, J.D. Optimized p53 immunohistochemistry is an accurate predictor ofTP53mutation in ovarian carcinoma. J. Pathol. Clin. Res. 2016, 2, 247–258. [Google Scholar] [CrossRef]
- Wong, R.W.-C.; Palicelli, A.; Hoang, L.; Singh, N. Interpretation of p16, p53 and mismatch repair protein immunohistochemistry in gynaecological neoplasia. Diagn. Histopathol. 2020, 26, 257–277. [Google Scholar] [CrossRef]
- Soussi, T.; Wiman, K. TP53: An oncogene in disguise. Cell Death Differ. 2015, 22, 1239–1249. [Google Scholar] [CrossRef]
- Lundgren, S.; Berntsson, J.; Nodin, B.; Micke, P.; Jirström, K. Prognostic impact of tumour-associated B cells and plasma cells in epithelial ovarian cancer. J. Ovarian Res. 2016, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Nowak, E.M.; Poczęta, M.; Bieg, D.; Bednarek, I.A. DNA methyltransferase inhibitors influence on the DIRAS3 and STAT3 expression and in vitro migration of ovarian and breast cancer cells. Ginekol. Polska 2017, 88, 543–551. [Google Scholar] [CrossRef]
- Sutton, M.N.; Lu, Z.; Li, Y.-C.; Zhou, Y.; Huang, T.; Reger, A.S.; Hurwitz, A.M.; Palzkill, T.; Logsdon, C.; Liang, X.; et al. DIRAS3 (ARHI) Blocks RAS/MAPK Signaling by Binding Directly to RAS and Disrupting RAS Clusters. Cell Rep. 2019, 29, 3448–3459.e6. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Yang, H.; Sutton, M.N.; Yang, M.; Clarke, C.H.; Liao, W.S.-L.; Bast, R.C. ARHI (DIRAS3) induces autophagy in ovarian cancer cells by downregulating the epidermal growth factor receptor, inhibiting PI3K and Ras/MAP signaling and activating the FOXo3a-mediated induction of Rab7. Cell Death Differ. 2014, 21, 1275–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, G.; Oldt, R.; Cohen, Y.; Wang, B.G.; Sidransky, D.; Kurman, R.J.; Shih, I.-M. Mutations in BRAF and KRAS Characterize the Development of Low-Grade Ovarian Serous Carcinoma. J. Natl. Cancer Inst. 2003, 95, 484–486. [Google Scholar] [CrossRef] [Green Version]
- Gemignani, M.L.; Schlaerth, A.C.; Bogomolniy, F.; Barakat, R.R.; Lin, O.; Soslow, R.; Venkatraman, E.; Boyd, J. Role of KRAS and BRAF gene mutations in mucinous ovarian carcinoma. Gynecol. Oncol. 2003, 90, 378–381. [Google Scholar] [CrossRef]
- Sadłecki, P.; Walentowicz-Sadłecka, M.; Grabiec, M. Molecular diagnosis in type I epithelial ovarian cancer. Ginekol. Polska 2017, 88, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Arend, R.C.; Londoño-Joshi, A.I.; Straughn, J.M.; Buchsbaum, D.J. The Wnt/β-catenin pathway in ovarian cancer: A review. Gynecol. Oncol. 2013, 131, 772–779. [Google Scholar] [CrossRef]
- Yoshioka, S.; King, M.L.; Ran, S.; Okuda, H.; Ii, J.A.M.; McAsey, M.E.; Sugino, N.; Brard, L.; Watabe, K.; Hayashi, K. WNT7A Regulates Tumor Growth and Progression in Ovarian Cancer through the WNT/β-Catenin Pathway. Mol. Cancer Res. 2012, 10, 469–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitler, B.; Nicodemus, J.P.; Li, H.; Cai, Q.; Wu, H.; Hua, X.; Li, T.; Birrer, M.J.; Godwin, A.K.; Cairns, P.; et al. Wnt5a Suppresses Epithelial Ovarian Cancer by Promoting Cellular Senescence. Cancer Res. 2011, 71, 6184–6194. [Google Scholar] [CrossRef] [Green Version]
- Ha, M.; Kim, J.; Park, S.M.; Hong, C.M.; Han, M.-E.; Song, P.; Kang, C.-D.; Lee, D.; Kim, Y.H.; Hur, J.; et al. Prognostic Role of Zinc Finger Homeobox 4 in Ovarian Serous Cystadenocarcinoma. Genet. Test. Mol. Biomarkers 2020, 24, 145–149. [Google Scholar] [CrossRef]
- Marchini, S.; Poynor, E.; Barakat, R.R.; Clivio, L.; Cinquini, M.; Fruscio, R.; Porcu, L.; Bussani, C.; D’Incalci, M.; Erba, E.; et al. The Zinc Finger Gene ZIC2 Has Features of an Oncogene and Its Overexpression Correlates Strongly with the Clinical Course of Epithelial Ovarian Cancer. Clin. Cancer Res. 2012, 18, 4313–4324. [Google Scholar] [CrossRef] [Green Version]
- Sadłecki, P.; Grabiec, M.; Grzanka, D.; Jóźwicki, J.; Antosik, P.; Walentowicz-Sadłecka, M. Expression of zinc finger transcription factors (ZNF143 and ZNF281) in serous borderline ovarian tumors and low-grade ovarian cancers. J. Ovarian Res. 2019, 12, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, S.; Mochimaru, Y.; Musha, S.; Kojima, R.; Deai, M.; Mogi, C.; Sato, K.; Okajima, F.; Tomura, H. Species-Dependent Enhancement of Ovarian Cancer G Protein-Coupled Receptor 1 Activation by Ogerin. Zool. Sci. 2020, 37, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Madden, N.E.; Wong, A.S.T.; Chow, B.K.C.; Lee, L.T.O. The Role of Endocrine G Protein-Coupled Receptors in Ovarian Cancer Progression. Front. Endocrinol. 2017, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Lappano, R.; Maggiolini, M. GPCRs and cancer. Acta Pharmacol. Sin. 2012, 33, 351–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, V.; Yeerna, H.; Nohata, N.; Chiou, J.; Harismendy, O.; Raimondi, F.; Inoue, A.; Russell, R.B.; Tamayo, P.; Gutkind, J.S. Illuminating the Onco-GPCRome: Novel G protein–coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. J. Biol. Chem. 2019, 294, 11062–11086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibbs, K.; Skubitz, K.M.; Pambuccian, S.E.; Casey, R.C.; Burleson, K.M.; Oegema, T.R.; Thiele, J.J.; Grindle, S.M.; Bliss, R.L.; Skubitz, A. Differential Gene Expression in Ovarian Carcinoma: Identification of Potential Biomarkers. Am. J. Pathol. 2004, 165, 397–414. [Google Scholar] [CrossRef]
- Di Sanzo, M.; Quaresima, B.; Biamonte, F.; Palmieri, C.; Faniello, M.C. FTH1 Pseudogenes in Cancer and Cell Metabolism. Cells 2020, 9, 2554. [Google Scholar] [CrossRef]
- Honda, H.; Pazin, M.J.; D’Souza, T.; Ji, H.; Morin, P.J. Regulation of the CLDN3 gene in ovarian cancer cells. Cancer Biol. Ther. 2007, 6, 1733–1742. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xuan, W.; Huang, L.; Chen, N.; Hou, Z.; Lu, B.; Wen, C.; Huang, S. Claudin 10 acts as a novel biomarker for the prognosis of patients with ovarian cancer. Oncol. Lett. 2020, 20, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-J.; Lin, L.-T.; Chu, P.-Y.; Chiang, A.-J.; Tsai, H.-W.; Chiu, Y.-H.; Huang, M.-S.; Wen, Z.-H.; Tsui, K.-H. Identification of Novel Biomarkers and Candidate Drug in Ovarian Cancer. J. Pers. Med. 2021, 11, 316. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, L.; Zhang, B.; Chen, L. Identification of Differentially Expressed Genes (DEGs) Relevant to Prognosis of Ovarian Cancer by Use of Integrated Bioinformatics Analysis and Validation by Immunohistochemistry Assay. Med Sci. Monit. 2019, 25, 9902–9912. [Google Scholar] [CrossRef]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.-A.; Roos-Blom, M.J.; Jervis, S.; van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; Goldgar, D.E.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402–2416. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, C.; De Felice, F.; Palaia, I.; Perniola, G.; Musella, A.; Musio, D.; Muzii, L.; Tombolini, V.; Panici, P.B. Risk-reducing salpingo-oophorectomy: A meta-analysis on impact on ovarian cancer risk and all cause mortality in BRCA 1 and BRCA 2 mutation carriers. BMC Women’s Heal. 2014, 14, 1–6. [Google Scholar] [CrossRef]
- Pujade-Lauraine, E.; Ledermann, J.A.; Selle, F.; Gebski, V.; Penson, R.T.; Oza, A.M.; Korach, J.; Huzarski, T.; Poveda, A.; Pignata, S.; et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1274–1284. [Google Scholar] [CrossRef] [Green Version]
- Jóhannsson, O.T.; Ranstam, J.; Borg, A.; Olsson, H. Survival of BRCA1 breast and ovarian cancer patients: A population-based study from southern Sweden. J. Clin. Oncol. 1998, 16, 397–404. [Google Scholar] [CrossRef]
- Pharoah, P.D.; Easton, D.F.; Stockton, D.L.; Gayther, S.; Ponder, B.A. Survival in familial, BRCA1-associated, and BRCA2-associated epithelial ovarian cancer. Cancer Res. 1999, 59, 868–871. [Google Scholar]
- Bolton, K. Association Between BRCA1 and BRCA2 Mutations and Survival in Women With Invasive Epithelial Ovarian Cancer. JAMA 2012, 307, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Chetrit, A.; Hirsh-Yechezkel, G.; Ben-David, Y.; Lubin, F.; Friedman, E.; Sadetzki, S. Effect of BRCA1/2 Mutations on Long-Term Survival of Patients With Invasive Ovarian Cancer: The National Israeli Study of Ovarian Cancer. J. Clin. Oncol. 2008, 26, 20–25. [Google Scholar] [CrossRef]
- Tung, N.M.; Garber, J.E. BRCA1/2 testing: Therapeutic implications for breast cancer management. Br. J. Cancer 2018, 119, 141–152. [Google Scholar] [CrossRef]
- Bach, D.-H.; Zhang, W.; Sood, A.K. Chromosomal Instability in Tumor Initiation and Development. Cancer Res. 2019, 79, 3995–4002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baretti, M.; Le, D.T. DNA mismatch repair in cancer. Pharmacol. Ther. 2018, 189, 45–62. [Google Scholar] [CrossRef] [PubMed]
- Bębenek, A.; Ziuzia-Graczyk, I. Fidelity of DNA replication—A matter of proofreading. Curr. Genet. 2018, 64, 985–996. [Google Scholar] [CrossRef] [Green Version]
- Bonneville, R.; Krook, M.A.; Kautto, E.; Miya, J.; Wing, M.R.; Chen, H.-Z.; Reeser, J.W.; Yu, L.; Roychowdhury, S. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis. Oncol. 2017, 1, 1–15. [Google Scholar] [CrossRef]
- Xiao, X.; Melton, D.W.; Gourley, C. Mismatch repair deficiency in ovarian cancer—Molecular characteristics and clinical implications. Gynecol. Oncol. 2014, 132, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Szymanska-Pasternak, J.; Szymanska, A.; Medrek, K.; Imyanitov, E.; Cybulski, C.; Gorski, B.; Magnowski, P.; Dziuba, I.; Gugala, K.; Debniak, B.; et al. CHEK2 variants predispose to benign, borderline and low-grade invasive ovarian tumors. Gynecol. Oncol. 2006, 102, 429–431. [Google Scholar] [CrossRef]
- Baysal, B.E.; Deloia, J.A.; Willett-Brozick, J.E.; Goodman, M.T.; Brady, M.F.; Modugno, F.; Lynch, H.T.; Conley, Y.P.; Watson, P.; Gallion, H.H. Analysis of CHEK2 gene for ovarian cancer susceptibility. Gynecol. Oncol. 2004, 95, 62–69. [Google Scholar] [CrossRef]
- Lee, Y.-R.; Chen, M.; Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor: New modes and prospects. Nat. Rev. Mol. Cell Biol. 2018, 19, 547–562. [Google Scholar] [CrossRef]
- Di Cristofano, A.; Pesce, B.; Cordon-Cardo, C.; Pandolfi, P.P. Pten is essential for embryonic development and tumour suppression. Nat. Genet. 1998, 19, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Di Cristofano, A.; Pandolfi, P.P. The Multiple Roles of PTEN in Tumor Suppression. Cell 2000, 100, 387–390. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D.R.; Martin-Zanca, D.; Parada, L.F. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nat. Cell Biol. 1991, 350, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Vaishnavi, A.; Le, A.T.; Doebele, R.C. TRKing Down an Old Oncogene in a New Era of Targeted Therapy. Cancer Discov. 2014, 5, 25–34. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/drugs/fda-approves-larotrectinib-solid-tumors-ntrk-gene-fusions (accessed on 4 June 2021).
- Ahmed, N.; Escalona, R.; Leung, D.; Chan, E.; Kannourakis, G. Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Semin. Cancer Biol. 2018, 53, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Casey, S.C.; Amedei, A.; Aquilano, K.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.E.; Boosani, C.S.; Chen, S.; Ciriolo, M.R.; et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin. Cancer Biol. 2015, 35, S199–S223. [Google Scholar] [CrossRef] [PubMed]
- Cassetta, L.; Fragkogianni, S.; Sims, A.H.; Swierczak, A.; Forrester, L.M.; Zhang, H.; Soong, D.Y.; Cotechini, T.; Anur, P.; Lin, E.Y.; et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell 2019, 35, 588–602.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, O.M.; Delaine-Smith, R.M.; Maniati, E.; Nichols, S.; Wang, J.; Böhm, S.; Rajeeve, V.; Ullah, D.; Chakravarty, P.; Jones, R.R.; et al. Deconstruction of a Metastatic Tumor Microenvironment Reveals a Common Matrix Response in Human Cancers. Cancer Discov. 2018, 8, 304–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J.; Tang, H.; Xu, L.; Wang, X.; Yang, C.; Ruan, S.; Guo, J.; Hu, S.; Wang, Z. Fibroblasts in omentum activated by tumor cells promote ovarian cancer growth, adhesion and invasiveness. Carcinog. 2011, 33, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.; Li, H.; Zhang, B. The diagnostic value of serum HE4 and CA-125 and ROMA index in ovarian cancer. Biomed. Rep. 2016, 5, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Dochez, V.; Caillon, H.; Vaucel, E.; Dimet, J.; Winer, N.; Ducarme, G. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J. Ovarian Res. 2019, 12, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsen, N.S.; Karlsen, M.A.; Høgdall, C.K.; Høgdall, E.V. HE4 Tissue Expression and Serum HE4 Levels in Healthy Individuals and Patients with Benign or Malignant Tumors: A Systematic Review. Cancer Epidemiology Biomarkers Prev. 2014, 23, 2285–2295. [Google Scholar] [CrossRef] [Green Version]
- Granato, T.; Porpora, M.G.; Longo, F.; Angeloni, A.; Manganaro, L.; Anastasi, E. HE4 in the differential diagnosis of ovarian masses. Clin. Chim. Acta 2015, 446, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montagnana, M.; Benati, M.; Danese, E. Circulating biomarkers in epithelial ovarian cancer diagnosis: From present to future perspective. Ann. Transl. Med. 2017, 5, 276. [Google Scholar] [CrossRef] [Green Version]
- Scaletta, G.; Plotti, F.; Luvero, D.; Capriglione, S.; Montera, R.; Miranda, A.; Lopez, S.; Terranova, C.; Nardone, C.D.C.; Angioli, R. The role of novel biomarker HE4 in the diagnosis, prognosis and follow-up of ovarian cancer: A systematic review. Expert Rev. Anticancer. Ther. 2017, 17, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-L.; Lu, Z.; Bast, R.C., Jr. The role of biomarkers in the management of epithelial ovarian cancer. Expert Rev. Mol. Diagn. 2017, 17, 577–591. [Google Scholar] [CrossRef]
- Peng, Y.; Li, J.; Zhu, L. Cancer and non-coding RNAs. Nutritional Epigenomics 2019, 119–132. [Google Scholar]
- Sanz-Rubio, D.; Martin-Burriel, I.; Gil, A.; Cubero, P.; Forner, M.; Khalyfa, A.; Marin, J.M. Stability of Circulating Exosomal miRNAs in Healthy Subjects. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Alberti, C.; Cochella, L. A framework for understanding the roles of miRNAs in animal development. Development 2017, 144, 2548–2559. [Google Scholar] [CrossRef] [Green Version]
- Forterre, A.; Lab, C.; Chikh, K.; Pesenti, S.; Euthine, V.; Granjon, A.; Errazuriz, E.; Lefai, E.; Vidal, H.; Rome, S. Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation. Cell Cycle 2013, 13, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Han, T.; Li, B.; Ma, Q.; Yang, P.; Li, H. miR-552 promotes ovarian cancer progression by regulating PTEN pathway. J. Ovarian Res. 2019, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Deb, B.; Uddin, A.; Chakraborty, S. miRNAs and ovarian cancer: An overview. J. Cell. Physiol. 2017, 233, 3846–3854. [Google Scholar] [CrossRef]
- Ling, H.; Krassnig, L.; Bullock, M.D.; Pichler, M. MicroRNAs in Testicular Cancer Diagnosis and Prognosis. Urol. Clin. North Am. 2016, 43, 127–134. [Google Scholar] [CrossRef]
- Filella, X.; Foj, L. miRNAs as novel biomarkers in the management of prostate cancer. Clin. Chem. Lab. Med. 2017, 55, 715–736. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhao, X.; Li, Y.; Duan, S. miR-552: An important post-transcriptional regulator that affects human cancer. J. Cancer 2020, 11, 6226–6233. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.H.L.; Yue, C.; Du, K.Y.; Salem, M.; O’Brien, J.; Peng, C. The Role of microRNAs in Epithelial Ovarian Cancer Metastasis. Int. J. Mol. Sci. 2020, 21, 7093. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Pan, Y.; Han, X.; Liu, J.; Li, R. MicroRNA-216a promotes the metastasis and epithelial–mesenchymal transition of ovarian cancer by suppressing the PTEN/AKT pathway. OncoTargets Ther. 2017, 10, 2701–2709. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Jiang, Y.; Mu, X.; Xu, L.; Cheng, W.; Wang, X. MiR-135a functions as a tumor suppressor in epithelial ovarian cancer and regulates HOXA10 expression. Cell. Signal. 2014, 26, 1420–1426. [Google Scholar] [CrossRef]
- Yan, H.; Li, H.; Li, P.; Li, X.; Lin, J.; Zhu, L.; Silva, M.A.; Wang, X.; Wang, P.; Zhang, Z. RETRACTED ARTICLE: Long noncoding RNA MLK7-AS1 promotes ovarian cancer cells progression by modulating miR-375/YAP1 axis. J. Exp. Clin. Cancer Res. 2018, 37, 1–18. [Google Scholar] [CrossRef]
- Liu, J.; Jin, S.; Wang, R. MicroRNA-139 suppressed tumor cell proliferation, migration and invasion by directly targeting HDGF in epithelial ovarian cancer. Mol. Med. Rep. 2017, 16, 3379–3386. [Google Scholar] [CrossRef]
- Yang, L.; Ma, H.L. MiRNA-584 suppresses the progression of ovarian cancer by negatively regulating LPIN1. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1062–1071. [Google Scholar] [CrossRef]
- Yokoi, A.; Yoshioka, Y.; Hirakawa, A.; Yamamoto, Y.; Ishikawa, M.; Ikeda, S.-I.; Kato, T.; Niimi, K.; Kajiyama, H.; Kikkawa, F.; et al. A combination of circulating miRNAs for the early detection of ovarian cancer. Oncotarget 2017, 8, 89811–89823. [Google Scholar] [CrossRef] [Green Version]
- Kan, C.W.S.; A Hahn, M.; Gard, G.B.; Maidens, J.; Huh, J.Y.; Marsh, D.J.; Howell, V.M. Elevated levels of circulating microRNA-200 family members correlate with serous epithelial ovarian cancer. BMC Cancer 2012, 12, 627. [Google Scholar] [CrossRef] [Green Version]
- Elias, K.M.; Guo, J.; Bast, R. Early Detection of Ovarian Cancer. Hematol. Clin. North Am. 2018, 32, 903–914. [Google Scholar] [CrossRef] [Green Version]
- Elias, K.M.; Fendler, W.; Stawiski, K.; Fiascone, S.J.; Vitonis, A.F.; Berkowitz, R.S.; Frendl, G.; Konstantinopoulos, P.; Crum, C.P.; Kedzierska, M.; et al. Diagnostic potential for a serum miRNA neural network for detection of ovarian cancer. eLife 2017, 6, e28932. [Google Scholar] [CrossRef]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zheng, X.; Xu, B.; Hu, W.; Huang, T.; Jiang, J. The Identification and Analysis of mRNA–lncRNA–miRNA Cliques From the Integrative Network of Ovarian Cancer. Front. Genet. 2019, 10, 751. [Google Scholar] [CrossRef] [Green Version]
- Li‡, X.; Yu‡, S.; Yang‡, R.; Wang, Q.; Liu, X.; Ma, M.; Li, Y.; Wu, S. Identification of lncRNA-associated ceRNA network in high-grade serous ovarian cancer metastasis. Epigenomics 2020, 12, 1175–1191. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, D.; Zuo, X.; Zhang, T.; Wang, C. Identification of lncRNA–miRNA–mRNA regulatory network associated with epithelial ovarian cancer cisplatin-resistant. J. Cell. Physiol. 2019, 234, 19886–19894. [Google Scholar] [CrossRef]
- Tian, J.; Wang, Y.; Zhang, X.; Ren, Q.; Huiling, L.; Huang, Y.; Lu, H.; Chen, J. Calycosin inhibits the in vitro and in vivo growth of breast cancer cells through WDR7-7-GPR30 Signaling. J. Exp. Clin. Cancer Res. 2017, 36, 1–13. [Google Scholar] [CrossRef]
- Braga, E.A.; Fridman, M.V.; Moscovtsev, A.A.; Filippova, E.A.; Dmitriev, A.A.; Kushlinskii, N.E. LncRNAs in Ovarian Cancer Progression, Metastasis, and Main Pathways: ceRNA and Alternative Mechanisms. Int. J. Mol. Sci. 2020, 21, 8855. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Dong, C.; Liu, G.; Li, Y.; Liu, L. Panel of seven long noncoding RNA as a candidate prognostic biomarker for ovarian cancer. OncoTargets Ther. 2017, 10, 2805–2813. [Google Scholar] [CrossRef] [Green Version]
- Буре, И.В.; Кузнецoва, Е.Б.; Залетаев, Д.В. Длинные некoдирующие РНК и их рoль в oнкoгенезе. Мoлекулярная биoлoгия 2018, 52, 907–920. [Google Scholar] [CrossRef]
- Gong, Y.-B.; Zou, Y.-F. Clinical significance of lncRNA FAM83H-AS1 in ovarian cancer. Eur. Rev. Med Pharmacol. Sci. 2019, 23, 4656–4662. [Google Scholar]
- Zhu, Z.; Song, L.; He, J.; Sun, Y.; Liu, X.; Zou, X. Ectopic expressed long non-coding RNA H19 contributes to malignant cell behavior of ovarian cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 10082–10091. [Google Scholar]
- Tripathi, M.K.; Doxtater, K.; Keramatnia, F.; Zacheaus, C.; Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Role of lncRNAs in ovarian cancer: Defining new biomarkers for therapeutic purposes. Drug Discov. Today 2018, 23, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cheng, J.; Wu, Y.; Qiu, J.; Sun, Y.; Tong, X. LncRNA HOTAIR controls the expression of Rab22a by sponging miR-373 in ovarian cancer. Mol. Med. Rep. 2016, 14, 2465–2472. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Guo, R.; Yuan, Z.; Shi, H.; Zhang, D. LncRNA HOTAIR Regulates CCND1 and CCND2 Expression by Sponging miR-206 in Ovarian Cancer. Cell. Physiol. Biochem. 2018, 49, 1289–1303. [Google Scholar] [CrossRef]
- Pei, C.; Gong, X.; Zhang, Y. LncRNA MALAT-1 promotes growth and metastasis of epithelial ovarian cancer via sponging microrna-22. Am. J. Transl. Res 2020, 12, 6977–6987. [Google Scholar]
- Zhou, Y.; Xu, X.; Lv, H.; Wen, Q.; Li, J.; Tan, L.; Li, J.; Sheng, X. The Long Noncoding RNA MALAT-1 Is Highly Expressed in Ovarian Cancer and Induces Cell Growth and Migration. PLOS ONE 2016, 11, e0155250. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xue, D.; Li, Y.; Pan, X.; Zhang, X.; Kuang, B.; Zhou, M.; Li, X.; Xiong, W.; Li, G.; et al. The Long Noncoding RNA MALAT-1 is A Novel Biomarker in Various Cancers: A Meta-analysis Based on the GEO Database and Literature. J. Cancer 2016, 7, 991–1001. [Google Scholar] [CrossRef]
- Chen, L.-L. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 2016, 17, 205–211. [Google Scholar] [CrossRef]
- Greene, J.; Baird, A.-M.; Brady, L.; Lim, M.; Gray, S.; McDermott, R.; Finn, S.P. Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front. Mol. Biosci. 2017, 4, 38. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Q.; Shi, C.; Liu, C.; Zhang, Z. Does Circular RNA Exert Significant Effects in Ovarian Cancer? Crit. Rev. Eukaryot. Gene Expr. 2019, 29, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ge, Y.-Z.; Xu, L.; Jia, R. Circular RNA ITCH: A novel tumor suppressor in multiple cancers. Life Sci. 2020, 254, 117176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, Q.; Qiu, Q.; Hou, L.; Wu, M.; Li, J.; Li, X.; Lu, B.; Cheng, X.; Liu, P.; et al. CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol. Cancer 2019, 18, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lin, S.; Mo, Z.; Jiang, J.; Tang, H.; Wu, C.; Song, J. CircRNA_100395 inhibits cell proliferation and metastasis in ovarian cancer via regulating miR-1228/p53/epithelial-mesenchymal transition (EMT) axis. J. Cancer 2020, 11, 599–609. [Google Scholar] [CrossRef]
- Zhang, M.; Li, F.; Wang, J.; He, W.; Li, Y.; Li, H.; Wei, Z.; Cao, Y. tRNA-derived fragment tRF-03357 promotes cell proliferation, migration and invasion in high-grade serous ovarian cancer. OncoTargets Ther. 2019, 12, 6371–6383. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Tan, W.; Zhou, Y. Transfer RNA-derived small RNAs: Potential applications as novel biomarkers for disease diagnosis and prognosis. Ann. Transl. Med. 2020, 8, 1092. [Google Scholar] [CrossRef]
- Zhou, K.; Diebel, K.W.; Holy, J.; Skildum, A.; Odean, E.; Hicks, D.A.; Schotl, B.; Abrahante, J.E.; Spillman, M.A.; Bemis, L.T. A tRNA fragment, tRF5-Glu, regulates BCAR3 expression and proliferation in ovarian cancer cells. Oncotarget 2017, 8, 95377–95391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef]
- Wada, S.; Tsunoda, T.; Baba, T.; Primus, F.J.; Kuwano, H.; Shibuya, M.; Tahara, H. Rationale for Antiangiogenic Cancer Therapy with Vaccination Using Epitope Peptides Derived from Human Vascular Endothelial Growth Factor Receptor 2. Cancer Res. 2005, 65, 4939–4946. [Google Scholar] [CrossRef] [Green Version]
- Lapeyre-Prost, A.; Terme, M.; Pernot, S.; Pointet, A.-L.; Voron, T.; Tartour, E.; Taieb, J. Immunomodulatory Activity of VEGF in Cancer. International Review of Cell and Molecular Biology 2017, 330, 295–342. [Google Scholar] [CrossRef]
- Wang, Q.; Peng, H.; Qi, X.; Wu, M.; Zhao, X. Targeted therapies in gynecological cancers: A comprehensive review of clinical evidence. Signal Transduct. Target. Ther. 2020, 5, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Cannistra, S.A.; Matulonis, U.A.; Penson, R.T.; Hambleton, J.; Dupont, J.; Mackey, H.; Douglas, J.; Burger, R.A.; Armstrong, D.; Wenham, R.; et al. Phase II Study of Bevacizumab in Patients With Platinum-Resistant Ovarian Cancer or Peritoneal Serous Cancer. J. Clin. Oncol. 2007, 25, 5180–5186. [Google Scholar] [CrossRef] [PubMed]
- Ben-David, U.; Beroukhim, R.; Golub, T.R. Genomic evolution of cancer models: Perils and opportunities. Nat. Rev. Cancer 2019, 19, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Ledermann, J.A.; Pujade-Lauraine, E. Olaparib as maintenance treatment for patients with platinum-sensitive relapsed ovarian cancer. Ther. Adv. Med. Oncol. 2019, 11. [Google Scholar] [CrossRef]
- Morales, J.C.; Li, L.; Fattah, F.J.; Dong, Y.; Bey, E.A.; Patel, M.; Gao, J.; Boothman, D.A. Review of Poly (ADP-ribose) Polymerase (PARP) Mechanisms of Action and Rationale for Targeting in Cancer and Other Diseases. Crit. Rev. Eukaryot. Gene Expr. 2014, 24, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Motegi, A.; Masutani, M.; Yoshioka, K.-I.; Bessho, T. Aberrations in DNA repair pathways in cancer and therapeutic significances. Semin. Cancer Biol. 2019, 58, 29–46. [Google Scholar] [CrossRef]
- Tomao, F.; Boccia, S.M.; Sassu, C.M.; Chirra, M.; Palaia, I.; Petrella, M.C.; Di Donato, V.; Colombo, N.; Panici, P.B. First-Line Treatment with Olaparib for Early Stage BRCA-Positive Ovarian Cancer: May It Be Possible? Hypothesis Potentially Generating a Line of Research. Cancer Manage. Res. 2020, 12, 5479–5489. [Google Scholar] [CrossRef]
- Amatu, A.; Sartore-Bianchi, A.; Siena, S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 2016, 1, e000023. [Google Scholar] [CrossRef] [Green Version]
- Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 2018, 15, 731–747. [Google Scholar] [CrossRef]
Type of Tumors According to the WHO Guidelines | Ovarian Cancer Subtypes: | Observation: | References |
---|---|---|---|
Serous tumors | Benign serous tumors: serous cystadenoma, adenofibroma, surface papilloma | Ovarian serous carcinomas are divided into low-grade and high-grade carcinomas, two different tumor types that have different morphology, pathogenesis, molecular events, and prognosis. Ovarian HGSCs originate from a precursor lesion on the distal fimbrial end of the fallopian tube, are associated with TP53 mutation and homologous recombination deficiency (including BRCA); LGSCs arise from the ovary from benign and borderline serous tumors, associated with BRAF and KRAS mutations. | [14,15,16] |
Borderline serous tumors: Serous borderline tumor, micropapillary variant | |||
Malignant serous tumors: low-grade serous carcinoma, high-grade serous carcinoma | |||
Mucinous tumors | Bening mucinous tumors: Mucinous cystadenoma and adenofibroma | Such types of tumors are benign with gastrointestinal or Mullerian-type mucinous epithelium, the association of some subtypes of these tumors with dermoid cysts suggests a germ cell origin. Molecular aberration refers to copy-number loss of CDKN2A in the majority of cases, and KRAS, TP53, ERBB2, (HER2) mutations. | [14,15,16,17,18] |
Borderline mucinous tumors: Mucinous borderline tumor | |||
Malignant mucinous tumors: Mucinous carcinoma | |||
Endometrioid tumors | Bening endometrioid tumors: Endometrioid cystadenoma and adenofibroma | The presumed tissue of origin is the endometrial epithelium, where histotype-specific mutations are present. Between these, POLE exonuclease domain mutations, mismatch repair deficiency, TP53, and non-specific molecular profile (NSMP) has been reported. | [14,15,16,19] |
Borderline endometrioid tumors: Endometrioid borderline tumor | |||
Endometrioid adenocarcinoma | |||
Seromucinous carcinoma | |||
Clear cell tumors | Benign clear cell tumors: Clear cell cystadenoma and adenofibroma | The majority of these tumors arise from transformed ovarian endometrioid lesions or benign and borderline tumors. Common mutations in ARID1A, PIK3CA, KRAS, TP53 mutations, and uncommon mismatch repair deficiency. | [14,15,16] |
Borderline clear cell tumors: Clear cell borderline tumor | |||
Malignant clear cell tumors: Clear cell carcinoma | |||
Seromucinous tumors | Benign seromucinous tumors: Seromucinous cystadenoma and adenofibroma | According to WHO, seromucinous carcinoma is considered a subtype of endometrioid carcinoma, | [14,16,18] |
Borderline seromucinous tumors: Seromucinous borderline tumor | |||
Malignant seromucinous tumors: Seromucinous carcinoma | |||
Brenner tumors | Benign Brenner tumors: Brenner tumor | Cell of origin of Brenner tumors is controversial; they may arise from Walthard rests which are nests of metaplasic transitional epithelium in paratubal tissue. Rare extraovarian Brenner tumors are reported, associated with a teratoma that may originate from germ cells. | [14,16,20] |
Borderline Brenner tumors: Borderline Brenner tumor | |||
Malignant Brenner tumors: Malignant Brenner tumor | |||
Other carcinomas | Mesonephric-like adenocarcinoma | Some of these tumors arise from mesonephric remnants in the paraovarian area, or from Mullerian carcinomas that exhibit secondary mesonephric transdifferentiation. The association of mesonephric-like carcinomas with endometriosis, cystadenomas, adenofibromas, borderline tumors, and low-grade serous carcinomas was also reported. The most common molecular alterations are KRAS, NRAS, PIK3CA mutations. | [14,16,21,22] |
Undifferentiated and dedifferentiated carcinomas | |||
Carcinosarcoma | |||
Mixed carcinoma | |||
Mesenchymal tumors | Endometrioid stromal sarcoma | Some of these tumors may occur in association with another ovarian tumor, the mechanism of occurrence of these tumors may be associated with cascading-metastatic invasion of epithelial carcinomas, which spread through the bloodstream or lymphatic system, arrest at distant organ sites, and undergo extravasation into the parenchymal organ, and subsequent proliferation to form micro- and macro-metastases. | [14,22,23] |
Smooth muscle tumors | |||
Ovarian myxoma | |||
Other ovarian mesenchymal tumors | |||
Mixed epithelial and mesenchymal tumors | Mixed malignant epithelial and mesenchymal tumors, Adenocarcinoma | This type of carcinoma is composed of two or more different histological types that have a common clonal origin, which could develop through transdifferentiation of one type to another or through divergence of two histological types from a common precursor. Mixed ovarian carcinomas are rare, less than 1%, their etiology is related to the histological types, and usually are associated with endometrioid and clear cell histotypes. | [14,21,22] |
Sex cord-stromal tumors (SCSTs) | Pure stromal tumors | (SCSTs) comprise a heterogeneous group of neoplasms, some of them may mimic non-SCSTs, They affect all age groups from childhood to old age and include malignancies of germ cell origin, sex cord-stromal cell origin, and a variety of extremely rare ovarian cancers. For diagnostic are used a panel of immunohistochemical markers with specificity for sex cord-stromal differentiation such as α-inhibin, calretinin, SF-1, and FOXL2, could confirm the cellular lineage of these tumors but cannot distinguish between the different histotypes within this category. Some of the molecular events linked with this tumors types are specific for some histotype, for example: in sex cord tumor with annular tubules (associated with Peutz–Jeghers sindromesyndrome) was found germline STK11 gene mutations on chromosome 19p13.3; in Steroli-Leydig cell tumor in which, patients have different hormonal manifestations with a retiform pattern or germline DICER1 mutation that occur at a younger age. SCSTs present usually wildtype for DICER1 and FOXL2 mutations. The expression of WT1, FOXL2, CD56, melan A, CD10, and CD99 also characterize many SCSTs. | [14,24,25] |
Ovarian fibroma | |||
Thecoma | |||
Luteinized thecoma associated with sclerosing peritonitis | |||
Sclerosing stromal tumor | |||
Microcystic stromal tumor | |||
Signet-ring stromal tumor | |||
Leydig cell tumor | |||
Steroid cell tumor | |||
Ovarian fibrosarcoma | |||
Pure sex cord tumors | |||
Adult granulosa cell tumor | |||
Juvenile granulosa cell tumor | |||
Sertoli cell tumor | |||
Sex cord tumor with annular tubules | |||
Mixed sex cord-stromal tumors | |||
Sertoli-Leiding cell tumor | |||
Sex cord-stromal tumor NOS | |||
Gynandroblastoma | |||
Germ cell tumors (GCTs) | Mature teratoma | (GCTs) originate from stem cells of the early embryo and the germline. These types of tumors are characterized by the latent potency state of their cells of origin, which are reprogrammed to omnipotent, totipotent, or pluripotent stem cells. Each histotype is defined by distinct epidemiological and (epi)genomic features. These groups of tumors are rarely caused by somatic driver mutations, and molecular changes are characterized by failure to control the latent developmental potential of their cells of origin, resulting in their reprogramming. It was found that they are high sensitivity for DNA damage and are characterized by wild-type TP53 mutation. | [14,26,27] |
Immature teratoma | |||
Dysgerminoma | |||
Yolk sac tumor | |||
Embryonal carcinoma | |||
Non-gestational choriocarcinoma | |||
Mixed germ cell tumor | |||
Monodermal teratomas and somatic-type tumors arising from a dermoid cyst, Struma ovarii | |||
Ovarian carcinoid | |||
Neuroectodermal-type tumors | |||
Monodermal cystic teratoma | |||
Somatic neoplasms arising from teratomas: Germ cell-sex cord-stromal tumor, Gonadoblastoma | |||
Mixed germ cell-sex cord-stromal tumor, unclassified | |||
Miscellaneous tumors | Rete cystadenoma, adenoma, and adenocarcinoma | These tumor-like ovarian lesions are histobiologically diverse, that present a wide spectrum of uncommon, varied clinical manifestations and characteristic histomorphology. | [14,28,29] |
Wolffian tumor | |||
Solid pseudopapillary tumor | |||
Small cell carcinoma of the ovary, hypercalcemic type | |||
Wilms tumor | |||
Mesothelial tumors | It was demonstrated that mesothelial cells that cover the peritoneal cavity in the tumor microenvironment, cooperate with ovarian cancer cells to adhere to the peritoneum, invade, and disseminate. | [14,30] | |
Tumor-like lesions | Follicle cyst | [14] | |
Corpus luteum cyst | |||
Large solitary luteinized follicle cyst | |||
Hiperreactio luteinalis | |||
Pregnancy luteoma | |||
Stromal hyperplasia and hyperthecosis | |||
Fibromatosis and massive edema | |||
Leydig cell hyperplasia | |||
Metastases | Ovarian metastases are malignant tumors metastasizing to the ovary from extraovarian primary site, and the pathogenesis and specific molecular events depend on the primary tumor. | [14] |
Genes Associated with Tumor Behavior | Main Role of the Gene in Carcinomatosis | References |
---|---|---|
BRCA1 and BRCA2 | tumor suppressor genes, well known to play roles in hereditary breast and ovarian cancer, both BRCA1 and BRCA2 encode proteins that are involved in the repair of double-stranded DNA breaks (DSBs) by homologous recombination (HR) | [12,31,39,40,41,42,43,44] |
CDKN1A | Cyclin-dependent kinase inhibitor 1A (p21, Cip1), interacting protein, encodes a protein that functions as a potent cyclin-dependent kinase inhibitor, and suffer different alteration such as missense mutations, nonsense mutations, silent mutations, and frameshift deletions and insertions. | [12,38,39,40] |
HNRPA1 hnRNPs genes family | Heterogeneous nuclear ribonucleoprotein A1 are RNA-binding proteins associated with complex and diverse biological processes such as processing of heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs, RNA splicing, transactivation of gene expression, and modulation of protein translation. | [39,45,46,47,48] |
TP53 | tumor protein p53 that acts as a tumor suppressor and regulates cell division, but these functions are context-dependent and may be influenced by numerous factors, such as cell type, microenvironment, and oncogenic events acquired during the course of tumor evolution. p53 is one of the most extensively studied proteins in cancer research. | [12,31,43,49,50,51,52,53] |
DIRAS | DIRAS family, GTP-binding RAS-like, This gene encodes a member of the ras superfamily, The encoded protein acts as a tumor suppressor whose function is abrogated in many ovarian and breast cancers; DIRAS3, shares 50–60% homology to the oncogene H/N/K-RAS (DIRAS family, GTP-binding Ras-like 3) is related to ovarian and breast cancer progression. | [39,54,55,56] |
BRAF, KRAS NRAS | KRAS and BRAF are involved in RAS-RAF-mitogen/extracellular signal-regulated kinase (MEK), extracellular signal-regulated kinase (ERK), and mitogen-activated protein kinase (MAPK) pathways that regulate cell proliferation. KRAS oncogene mutations exist in several histologic types of invasive epithelial ovarian carcinoma, especially stage I tumors, but are common only in tumors of mucinous histology. Mutations in BRAF and KRAS genes are the most frequent genetic aberrations found in low-grade serous ovarian carcinomas, serous borderline tumors, and mucinous cancers. | [31,43,57,58,59] |
WNT2 | Wingless Type MMTV integration site (WNT) gene family. Dysregulation in the WNT signaling pathway promotes or inhibits cancer biological progression. | [39,60,61,62] |
IGKC | Immunoglobulin kappa constant immunoglobulin genes and proteins have been found in a variety of cancer cells, and published data suggest that Ig secreted by epithelial cancer cells can promote the growth and survival of tumor cells. | [39,53,63] |
NFXL1 OZFP | NF-X1-type zinc finger protein NFXL1 named also Ovarian zinc finger protein (hOZFP), ZFHX4, ZIC2, ZNF222, ZNF143, ZNF281, FLJ13842- protein dysregulated in OVCs. Differential expressions of genes encoding the zinc finger homeobox 4 (ZFHX4) protein have been observed in different stages of OVCs. They act as a molecular regulator factor of tumor-initiating stem cells and have also DNA-binding transcription factor activity. Interacting selectively and non-covalently with zinc (Zn) ions. | [39,63,64,65] |
GPCRs (G-protein-coupled receptors) | represent the largest gene family in the human genome, involved in the progression and metastasis of ovarian neoplasms, but the most important function accomplished by GPCRs, are to be drug targets, due their activities are regulated by approximately 25% of all drugs approved by the Food and Drug Administration used in OVCs therapies. | [39,66,67,68,69,70] |
ferritin light chain (FTL) | encodes the light subunit of the ferritin protein, a gene that has multiple pseudogenes, involved in the rates of iron uptake and release in different tissues. | [39,71] |
Other differentially expressed genes (DEGs)- associated with OVCs | S100 calcium-binding protein A1, A2 (S100A1, S100A 2), Spondin 1, (f-spondin) extracellular matrix protein (SPON1, SPOCK2), claudin (CLDN), Osteomodulin (OMD)—Bone morphogenetic protein 7 (osteogenic protein 1), Solute carrier family (SLC28A2), Spermatogenesis associated 2-like (MGC26885, Collagen, type IX, alpha 2 (COL9A2)), Solute carrier family (SLC), Brain-specific protein (CGI-38), Ki-67, cyclin B1-CDK1 complex—Cyclin-dependent kinase inhibitor, Aldehyde dehydrogenase 3 families, Ceruloplasmin (ferroxidase) CP, Homeobox D1 (HOXD1), Kallikrein family (KLK5, KLK6, KLK7, KLK8), Mesothelin (MSLN), Paired box gene 8 (PAX8), SRY (sex-determining region Y)-box, etc. | [39,42,70,72,73,74,75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radu, M.R.; Prădatu, A.; Duică, F.; Micu, R.; Creţoiu, S.M.; Suciu, N.; Creţoiu, D.; Varlas, V.N.; Rădoi, V.E. Ovarian Cancer: Biomarkers and Targeted Therapy. Biomedicines 2021, 9, 693. https://doi.org/10.3390/biomedicines9060693
Radu MR, Prădatu A, Duică F, Micu R, Creţoiu SM, Suciu N, Creţoiu D, Varlas VN, Rădoi VE. Ovarian Cancer: Biomarkers and Targeted Therapy. Biomedicines. 2021; 9(6):693. https://doi.org/10.3390/biomedicines9060693
Chicago/Turabian StyleRadu, Mihaela Raluca, Alina Prădatu, Florentina Duică, Romeo Micu, Sanda Maria Creţoiu, Nicolae Suciu, Dragoş Creţoiu, Valentin Nicolae Varlas, and Viorica Elena Rădoi. 2021. "Ovarian Cancer: Biomarkers and Targeted Therapy" Biomedicines 9, no. 6: 693. https://doi.org/10.3390/biomedicines9060693
APA StyleRadu, M. R., Prădatu, A., Duică, F., Micu, R., Creţoiu, S. M., Suciu, N., Creţoiu, D., Varlas, V. N., & Rădoi, V. E. (2021). Ovarian Cancer: Biomarkers and Targeted Therapy. Biomedicines, 9(6), 693. https://doi.org/10.3390/biomedicines9060693