Classical Xanthinuria in Nine Israeli Families and Two Isolated Cases from Germany: Molecular, Biochemical and Population Genetics Aspects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Control Subjects
2.2. Biochemical Tests
2.3. DNA Analyses
2.4. Bioinformatic and In Silico Analyses
2.5. In Vitro Expression Studies
2.6. Genealogic Research
3. Results
3.1. Assessment of Xanthinuria and Detection of Variants
3.1.1. Identification of a Yemenite-Jewish Founder MOCOS Variant (c.1046C>T) in Families F1, F3 and F8
3.1.2. Identification of a Recurrent XDH Variant (c.2473C>T) in Family F2
3.1.3. Identification of a Novel XDH (c.913del) Variant in Family F4
3.1.4. Identification of a Novel XDH (c.1871C>G) Variant in Families F5 and F7
3.1.5. Identification of Two XDH Variants in Family F6: One Recurrent (c.141insG) and One (c.913del) Shared with Family F4
3.1.6. Identification of a Novel XDH (c.1434G>A) Variant in Family F9
3.1.7. Identification of Compound Heterozygosity for MOCOS (c.1088_1089del and c.1771C>T) and XDH (c.449G>T and c.641del) Variants in Cases G1 and G2, Respectively
3.2. In Silico and Biochemical Characterization of Pathogenic Amino Acid Substitutions in XDH and MOCOS
3.2.1. Cys150Phe in the Fe/S I Cluster Binding Site Affects XDH Biogenesis
3.2.2. Thr349Ile in the NifS-Like Domain of MOCOS Impairs Protein Stability and Cysteine Desulfurase Activity
3.2.3. Pro591Ser and Arg 776Cys in the C-Terminal Domain of MOCOS Effect Moco Binding
4. Discussion
4.1. Structural/Functional Significance of Pathogenic Amino Acid Substitutions in XDH and MOCOS
4.2. Potential Dispersion of the Identified Variants in Specific Populations
4.3. Clinical Aspects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simmonds, H.A.; Reiter, S.; Nishino, T. Hereditary xanthinuria. In The Metabolic and Molecular Bases of Inherited Diseases; Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., Stanbury, J.B., Wyngaarden, J.B., Fredrickson, D.S., Eds.; McGraw-Hill Inc.: New York, NY, USA, 1995; pp. 1781–1797. [Google Scholar]
- Simmonds, H.A. Hereditary Xanthinuria. Orphanet Encyclopedia, update July 2003. Available online: http://www.orpha.net/data/patho/GB/uk-XDH.pdf (accessed on 15 May 2020).
- Ichida, K.; Amaya, Y.; Kamatani, N.; Nishino, T.; Hosoya, T.; Sakai, O. Identification of two mutations in the human xanthine dehydrogenase gene responsible for classical type I xanthinuria. J. Clin. Investig. 1997, 99, 2391–2397. [Google Scholar] [CrossRef] [Green Version]
- Ichida, K.; Matsumura, T.; Sakuma, R.; Hosoya, T.; Nishino, T. Mutation of human molybdenum cofactor sulfurase gene is responsible for classical xanthinuria type II. Biochem. Biophys. Res. Commun. 2001, 282, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Minoshima, S.; Wang, Y.; Ichida, K.; Nishino, T.; Shimizu, N. Mapping of the gene for human xanthine dehydrogenase (oxidase) (XDH) to band p23 of chromosome 2. Cytogenet. Cell Genet. 1995, 68, 52–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-H.; Zhang, C.; Xing, X.-H. Xanthine dehydrogenase: An old enzyme with new knowledge and prospects. Bioengineered 2016, 7, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Terao, M.; Garattini, E.; Romao, M.J.; Leimkuhler, S. Evolution, expression and substrate specificities of aldehyde oxidase enzymes in eukaryotes. J. Biol. Chem. 2020, 295, 5377–5389. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Matsumura, T.; Ichida, K.; Okamoto, K.; Nishino, T. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: Roles of active site residues in binding and activation of purine substrate. J. Biochem. 2007, 141, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Hille, R.; Nishino, T.; Bittner, F. Molybdenum enzymes in higher organisms. Coord. Chem. Rev. 2011, 255, 1179–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, C.; Foti, A.; Hartmann, T.; Santos-Silva, T.; Leimkühler, S.; Romão, M.J. Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase. Nat. Chem. Biol. 2015, 11, 779–785. [Google Scholar] [CrossRef]
- Mayr, S.J.; Mendel, R.R.; Schwarz, G. Molybdenum cofactor biology, evolution and deficiency. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 1–12. [Google Scholar] [CrossRef]
- Levartovsky, D.; Lagziel, A.; Sperling, O.; Liberman, U.; Yaron, M.; Hosoya, T.; Ichida, K.; Peretz, H. XDH gene mutation is the underlying cause of classical xanthinuria: A second report. Kidney Int. 2000, 57, 2215–2220. [Google Scholar] [CrossRef] [Green Version]
- Peretz, H.; Shtauber-Naamati, M.; Levartovsky, D.; Lagziel, A.; Shani, E.; Horn, I.; Shalev, H.; Landau, D. Identification and characterization of the first mutation (Arg776Cys) in the C-terminal domain of the Human Molybdenum Cofactor Sulfurase (HMCS) associated with type II classical xanthinuria. Mol. Genet. Metab. 2007, 91, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Peretz, H.; Korostishevsky, M.; David, M.; Steinberg, D.M.; Kabha, M.; Usher, S.; Krause, I.; Shalev, H.; Landau, D.; Levartovsky, D. An ancestral variant causing type I xanthinuria in Turkmen and Arab families is predicted to prevail in the Afro-Asian stone-forming belt. J. Inhert. Metab. Dis. Rep. 2020, 51, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichida, K.; Yoshida, M.; Sakuma, R.; Hosoya, T. Two siblings with classical xanthinuria type 1: Significance of allopurinol loading test. Int. Med. 1998, 37, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Kong, A.; Gudbjartsson, D.; Sainz, J.; Jonsdottir, G.M.; Gudjonsson, S.A.; Richardsson, B.; Sigurdardottir, S.; Barnard, J.; Hallbeck, B.; Masson, G.; et al. A high-resolution recombination map of the human genome. Nat. Genet. 2002, 31, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Ihara, N.; Itoh, T.; Fujita, T.; Sugimoto, Y. Deletion mutation in Drosophila ma-l homologous, putative molybdopterin cofactor sulfurase gene is associated with bovine xanthinuria type II. J. Biol. Chem. 2000, 275, 21789–21792. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazy, H.; Abadi, S.; Martz, M.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016, 44, W344–W350. [Google Scholar] [CrossRef] [Green Version]
- Zarepour, M.; Kaspari, K.; Stagge, S.; Rethmeier, R.; Mendel, R.R.; Bittner, F. Xanthine dehydrogenase AtXDH1 from Arabidopsis thaliana is a potent producer of superoxide anions via its NADH oxidase activity. Plant Mol. Biol. 2010, 72, 301–310. [Google Scholar] [CrossRef]
- Lehrke, M.; Rump, S.; Heidenreich, T.; Wissing, J.; Mendel, R.R.; Bittner, F. Identification of persulfide-binding and disulfide-forming cysteine residues in the NifS-like domain of the molybdenum cofactor sulfurase ABA3 by cysteine-scanning mutagenesis. Biochem. J. 2012, 441, 823–832. [Google Scholar] [CrossRef]
- Giles, L.J.; Ruppelt, C.; Yang, J.; Mendel, R.R.; Bittner, F. Molybdenum site structure of MOSC family proteins. Inorg. Chem. 2014, 53, 9460–9462. [Google Scholar] [CrossRef] [Green Version]
- Wollers, S.; Heidenreich, T.; Zarepour, M.; Zachmann, D.; Kraft, C.; Zhao, Y.; Mende, R.R.; Bitner, F. Binding of sulfurated Molybdenum cofactor to the C-terminal domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of Molybdenum cofactor sulfuration. J. Biol. Chem. 2008, 283, 9642–9650. [Google Scholar] [CrossRef] [Green Version]
- Litwin, H. Methodological issues in measuring social networks (Hebrew). Gerontology 2001, 3, 155–168. [Google Scholar]
- Lagziel, A.; Levartovsky, D.; Sperling, O.; Ichida, K.; Peretz, H. Polymorphic markers in the XDH gene as diagnostic tools for typing classical xanthinuria. Adv. Exp. Med. Biol. 2000, 486, 83–86. [Google Scholar] [CrossRef]
- Stiburkova, B.; Krijt, J.; Vyletal, P.; Bartl, J.; Gerhatova, E.; Korinek, M.; Sebesta, I. Novel mutations in xanthine dehydrogenase/oxidase cause hypouricemia: Biochemical and molecular genetic analysis in two Czech families with xanthinuria type I. Clin. Chim. Acta 2012, 413, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Falik-Zaccai, T.C.; Khayat, M.; Luder, A.; Frenkel, P.; Magen, D.; Brik, R.; Gershoni-Baruch, R.; Mandel, H. A broad spectrum of developmental delay in a large cohort of prolidase deficiency patients demonstrates marked interfamilial and intrafamilial phenotypic variability. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153, 46–56. [Google Scholar] [CrossRef]
- Nir, V.; Ilivitky, A.; Hakim, F.; Yoseph, R.B.; Gur, M.; Mandel, H.; Bentur, L. Pulmonary manifestations of prolidase deficiency. Pediatr. Pulmonol. 2016, 51, 1229–1233. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Yuichiro, Y.; Oliver, S.J.; Tomohiro, M.; Schwab, K.O.; Takeshi, N.; Tatsuo, H.; Ichida, K. Identification of a xanthinuria type I case with mutations of xanthine dehydrogenase in an Afghan child. Clin. Chim. Acta 2012, 414, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Stockdale, C. A Rare Cause of Renal Stone Formation in Two Siblings. 2013. Available online: http://www.acb.org.uk/docs/default/source/committees/regions/sww/trainingday180714-renal-stone-casecs907C02B2FFB5.pdf?sfvrsn=4 (accessed on 15 June 2019).
- Jurecka, A.; Stiburkova, B.; Krijt, J.; Gradowska, W.; Tylki-Szymanska, A. Xanthine dehydrogenase deficiency with novel sequence variations presenting as rheumatoid arthritis in a 78-year old patient. J. Inherit. Metab. Dis. Suppl. 2010, 3, S21–S24. [Google Scholar] [CrossRef]
- Darr, R.W.; Lenzner, S.; Eggermann, T.; Darr, W.H. Xanthinuria type1 in a woman with arthralgias: A combined clinical and molecular genetic investigation. Dtsch. Med. Wochenschr. 2016, 141, 571–574. [Google Scholar] [CrossRef] [Green Version]
- Nishino, T.; Okamoto, K. The role of the [2Fe-2S] cluster centers in xanthine oxidoreductase. J. Inorg. Biochem. 2000, 82, 43–49. [Google Scholar] [CrossRef]
- Hesberg, C.; Hansch, R.; Mendel, R.R.; Bittner, F. Tandem orientation of duplicated Xanthine Dehydrogenase genes from Arabidopsis thaliana. J. Biol. Chem. 2004, 279, 13547–13554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubitza, C.; Bittner, F.; Ginsel, C.; Havemeyer, A.; Clement, B.; Scheidig, A.J. Crystal structure of human mARC1 reveals its exceptional position among eukaryotic molybdenum enzymes. Proc. Natl. Acad. Sci. USA 2018, 115, 11958–11963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumann, S.; Saggu, M.; Möller, N.; Anker, S.D.; Lendzian, F.; Hildebrandt, P.; Leimkühler, S. The mechanism of assembly and cofactor insertion into Rhodobacter capsulatus xanthine dehydrogenase. J. Biol. Chem. 2008, 283, 16602–16611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasaki, T.; Okamoto, K.; Nishino, T.; Mizushima, J.; Hori, H. Sequence motif-specific assignment of two [2Fe-2S] clusters in rat xanthine oxidoreductase studied by site-directed mutagenesis. J. Biochem. 2000, 127, 771–778. [Google Scholar] [CrossRef]
- Enroth, C.; Eger, B.T.; Okamoto, K.; Nishino, T.; Nishino, T.; Pai, E.F. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Structure-based mechanism of conversion. Proc. Natl. Acad. Sci. USA 2000, 97, 10723–10728. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Moriwaki, Y.; Takahashi, S.; Tsutsumi, Z.; Tuneyoshi, K.; Matsui, K.; Cheng, J.; Hada, T. Identification of a new point mutation in the human molybdenum cofactor sulfurase gene that is responsible for xanthinuria type II. Metabolism 2003, 52, 1501–1504. [Google Scholar] [CrossRef]
- Stiburkova, B.; Pavelcova, K.; Petru, L.; Krijt, J. Thiopurine-induced toxicity is associated with dysfunction variant of the human molybdenum cofactor sulfurase gene (xanthinuria type II). Toxicol. Appl. Pharmacol. 2018, 353, 102–108. [Google Scholar] [CrossRef]
- Heidenreich, T.; Wollers, S.; Mendel, R.R.; Bittner, F. Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J. Biol. Chem. 2005, 280, 4213–4218. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Fluhr, R.; Nozaki, H.; Cheng, Y.; Zhao, Y. Genetic and chemical analyses of the action mechanisms of sirtionol in Arabidopsis. Proc. Natl. Acad. Sci. USA 2005, 102, 3129–3134. [Google Scholar] [CrossRef] [Green Version]
- Ott, G.; Havemeyer, A.; Clement, B. The mammalian molybdenum enzymes of mARC. J. Biol. Inorg. Chem. 2015, 20, 265–275. [Google Scholar] [CrossRef]
- Sebesta, I.; Stiburkova, B.; Krijt, J. Hereditary xanthinuria is not so rare disorder of purine metabolism. Nucleoside Nucleotides Nucleic Acids 2018, 37, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Mandel, N.S.; Mandel, G.S. Urinary tract stone disease in the United States veteran population. II. Geographical analysis of variations in composition. J. Urol. 1989, 142, 1516–1521. [Google Scholar] [PubMed]
- Meiouet, F.; El Kabbaj, S.; Daudon, M. Pediatric urolithiasis in Morocco: Composition of 432 urinary calculi analyzed by Infrared Spectroscopy. Prog. Urol. 2019, 29, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Gargah, T.; Essid, A.; Labassi, A.; Hamzaoui, M.; Lakhoua, M.R. Xanthine urolithiasis. Saudi Kidney Dis. Transpl. 2010, 21, 328–331. [Google Scholar]
- Al-Eisa, A.A.; Al-Hunayyan, A.; Gupta, R. Pediatric urolithiasis in Kuwait. Int. Urol. Nephrol. 2002, 33, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Badertscher, E.; Robson, W.L.M.; Leung, A.K.C.; Trevenen, C.L. Xanthine calculi presenting at 1month of age. Eur. J. Pediatr. 1993, 152, 252–254. [Google Scholar] [CrossRef]
- Gok, F.; Ichida, K.; Topaloglu, R. Mutational analysis of the xanthine dehydrogenase gene in a Turkish family with autosomal recessive classical xanthinuria. Nephrol. Dial. Transplant. 2003, 18, 2278–2283. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, Y.; Kawakami, Y.; Shinohara, Y.; Ichida, K. A case of hereditary xanthinuria type 1 accompanied by bilateral renal calculi. Intern. Med. 2012, 51, 1879–1884. [Google Scholar] [CrossRef] [Green Version]
- Garattini, E.; Mendel, R.; Romao, M.J.; Wright, R.; Terao, M. Mammalian molybdo-flvoenzymes, an expanding family of proteins: Structure, genetics, regulation, function and pathophysiology. Biochem. J. 2003, 372, 15–32. [Google Scholar] [CrossRef]
- Battelli, M.G.; Bolognesi, A.; Polito, L. Pathophysiology of circulating xanthine oxidoreductase: New emerging roles for a multi-tasking enzyme. Biochim. Biophys. Acta 2014, 1842, 1502–1517. [Google Scholar] [CrossRef] [Green Version]
- Battelli, M.G.; Bortolotti, M.; Polito, L.; Bolognesi, A. Metabolic syndrome and cancer risk: The role of xanthine oxidoreductase. Redox Biol. 2019, 21, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Peretz, H.; Watson, D.G.; Blackburn, G.; Zhang, T.; Lagziel, A.; Shtauber-Naamati, M.; Morad, T.; Keren-Tardai, E.; Greenshpun, V.; Usher, S.; et al. Urine metabolomics reveals novel physiologic functions of human aldehyde oxidase and provides biomarkers for typing xanthinuria. Metabolomics 2012, 8, 951–959. [Google Scholar] [CrossRef]
- Zhou, S.-S.; Li, D.; Sun, W.-P.; Guo, M.; Lun, Y.-Z.; Zhou, Y.-M.; Xiao, F.-C.; Jing, L.-X.; Sun, S.-X.; Zhang, L.-B.; et al. Nicotinamide overload may play a role in the development of type 2 diabetes. World J. Gastroenterol. 2009, 15, 5674–5684. [Google Scholar] [CrossRef] [PubMed]
- Feron, F.; Gepner, B.; Lacassagne, E.; Stephan, D.; Mesnage, B.; Blanchard, M.P.; Boulanger, N.; Tardif, C.; Deveze, A.; Rousseau, S.; et al. Olfactory stem cells reveal MOCOS as a new player in autism spectrum disorders. Mol. Psychiatr. 2016, 21, 1215–1224. [Google Scholar] [CrossRef] [Green Version]
- Rontani, P.; Perche, O.; Greetham, L.; Jullien, N.; Gepner, B.; Feron, F.; Nivet, E.; Erard-Garcia, M. Impaired expression of the COSMOC/MOCOS gene unit in ASD patient stem cells. Mol. Psychiatr. 2020. [Google Scholar] [CrossRef] [Green Version]
- Taheri, M.; Noroozi, R.; Aghaei, K.; Omrani, M.D.; Ghafuri-Fard, S. The rs594445 in MOCOS gene is associated with risk of autism spectrum disorder. Metab. Brain Dis. 2020, 35, 497–501. [Google Scholar] [CrossRef]
- Safa, A.; Omrani, M.D.; Nicknafs, F.; Komaki, A.; Taheri, M.; Ghafouri-Fard, S. A single nucleotide polymorphism within Molybdenum Cofactor Sulfurase gene is associated with neuropsychiatric conditions. Front. Mol. Biosci. 2020, 7, 540375. [Google Scholar] [CrossRef]
- Zannolli, R.; Micheli, V.; Mazzei, M.A.; Sacco, P.; Piomboni, P.; Bruni, E.; Miracco, C.; de Santi, M.M.; Terrosi Vagnoli, P.; Volterani, L.; et al. Hereditary xanthinuria type II associated with mental delay, autism, cortical renal cysts, nephrocalcinosis, osteopenia and hair and teeth defects. J. Med. Genet. 2003, 40, 121–124. [Google Scholar] [CrossRef]
- Kitamura, S.; Sugihara, K.; Ohta, S. Drug-metabolizing ability of molybdenum hydroxylases. Drug. Metab. Pharmacokinet. 2006, 21, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Dalvie, D.; Di, L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol. Ther. 2019, 201, 137–180. [Google Scholar] [CrossRef]
- Bosaeed, M.; Mahmoud, E.; Hussein, M.; Alharbi, A.; Alsaedy, A.; Alothman, A.; Aljeraisy, M.; Alqahtani, H.; Nashabat, M.; Almutairi, B.; et al. A Trial of Favipiravir and Hydroxychloroquine combination in adults hospitalized with moderate and severe Covid-19: A structured summary of a study protocol for a randomized controlled trial. Trials 2020, 21, 904. [Google Scholar] [CrossRef]
- Kurzawski, M.; Dziewanowski, K.; Safrnow, K.; Drozdzik, M. Polymorphism of genes involved in purine metabolism (XDH, AOX1, MOCOS) in kidney transplant recipients receiving azathioprine. Ther. Drug Monit. 2012, 34, 266–274. [Google Scholar] [CrossRef]
- Coelho, T.; Andreoletti, G.; Ashton, J.J.; Batra, A.; Afzal, N.A.; Gao, Y.; Williams, A.P.; Beattie, R.M.; Ennis, S. Genes implicated in thiopurine induced toxicity: Comparing TPMT enzyme activity with clinical phenotype and exome data in a paediatric IBD cohort. Sci. Rep. 2016, 6, 34658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanev, D.; Peteva, P.; Fairbanks, L.; Marinaki, A.; Ivanova, M.; Alaikov, T.; Shivarov, V. Beware of the uric acid: Severe azathioprine myelosuppression in a patient with juvenile idiopathic arthritis and hereditary xanthinuria. J. Clin. Rheumatol. 2020, 26, e49–e52. [Google Scholar] [CrossRef] [PubMed]
- Mraz, M.; Hurba, O.; Bartl, J.; Dolezel, Z.; Marinaki, A.; Fairbanks, L.; Stiburkova, B. Modern diagnostic approach to hereditary xanthinuria. Urolithiasis 2015, 43, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Coene, K.L.M.; Kluijtmans, L.A.J.; van der Heeft, E.; Engelke, U.F.H.; DeBoer, S.; Hoegen, B.; Kwast, H.J.T.; van de Vorst, M.; Huigen, M.C.D.G.; Keularts, I.M.L.W.; et al. Next-generation metabolic screening: Targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients. J. Iherit. Metab. Dis. 2018, 41, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhang, X.; Ding, R.; Li, Z.; Hong, Q.; Wang, Y.; Zheng, W.; Geng, X.; Fan, M.; Cai, G.; et al. Using next-generation sequencing to identify a mutation in human MCSU that is responsible for type II xanthinuria. Cell. Physiol. Biochem. 2015, 35, 2412–2421. [Google Scholar] [CrossRef]
- Xu, T.; Xie, X.; Zhang, Z.; Zhao, N.; Deng, Y.; Li, P. Novel mutation in xanthine dehydrogenase in a case with xanthinuria in Hunan province of China. Clin. Chim. Acta 2020, 504, 168–171. [Google Scholar] [CrossRef]
- Eggermann, T.; Spengler, S.; Denecke, B.; Zerres, K.; Mache, C.J. Multi-exon deletion in the XDH gene as a cause of classical xanthinuria. Clin. Nephrol. 2013, 79, 78–80. [Google Scholar] [CrossRef]
Family/Case | Type | Case | Sex/Age 1 (y) | Clinical Manifestations 2 | |
---|---|---|---|---|---|
Xanthinuria | Other | ||||
F1 | II | II-1 | M 64 80 * | UL | RA, vitiligo, DM**, HTN, tinnitus, dementia, CVA, leukoaraiosis |
II-7 | M 49 | (UL) | Sjogren’s syndrome, myeloma, HTN, NAFLD | ||
II-8 | M 41 61 * | UL | autoimmune overlap syndrome 3, NSCLC, DM1, dyslipidemia, cholecystitis, osteoporosis | ||
II-10 | F 44 | - | breast cancer, Hashimoto | ||
F2 | I | V-2 | M 0.5 | UL | splenomegaly |
V-3 | M 5 | - | - | ||
V-5 | F 5 | - | - | ||
F3 | II | II-1 | F 69 72 * | - | obesity, DM2 |
F4 | I | IV-7 | M 52 52 * | - | prolidase deficiency |
V-5 | M 1.25 2.5 * | UL | prolidase deficiency | ||
V-6 | M 1.5 | - | - | ||
F5 | I | IV-6 | M 4 | UL | - |
F6 | I | IV-15 | F 22 40 * | low-back pain | congenital glaucoma, breast cancer |
IV-18 | M 24 | - | - | ||
V-1 | F 8 | - | - | ||
F7 | I | V-6 | F 1 | - | osteogenesis imperfecta, mild Bartter-like tubulopathy |
F8 | II | III-1 | M 70 85 * | - | DM2, TCC of bladder, colon cancer, TIA, ESRD |
F9 | I | II-3 | M 9.6 | UL | - |
G1 | II | F 46 | - | lost to follow-up | |
G2 | I | M 61 | - | lost to follow-up |
Gene | Exon | Variant 1 | Protein | Family/Case | Reference |
---|---|---|---|---|---|
XDH, NM_000379.4 NP_000370.2 | 3 | c.141insG | p.(C48Lfs*12) | F6 | 29, 30 |
6 | c.449G>T | p.(C150F) | G2 | - | |
8 | c.641del | p.(P214Qfs*4) | G2 | 26, 31, 32 | |
11 | c.913del | p.(L305*1) | F6, F4 | - | |
15 | c.1434G>A | p.(W478*) | F9 | - | |
16 | c.1658insC * | p.(A556Sfs*67) | 12 | ||
18 | c.1871C>G | p.(S624*1) | F5, F7 | - | |
20 | c.2164A>T * | p.(K722*) | 14, 50 | ||
23 | c.2473C>T | p.(R825*) | F2 | 24 | |
MOCOS NM_017947.1 NP_060417.4 | 6 | c.1037insA * | p.(Q347Afs*33) | 13 | |
6 | c.1046C>T | p.(T349I) | F1, F3, F8 | - | |
6 | c.1088_1089del | p.(L363Pfs*16) | G1 | CinVar ID 1017655 dbSNP-rs761752580 | |
8 | c.1771C>T | p.(P591S) | G1 | - | |
13 | c.2326C>T * | p.(R776C) | 13 |
Chromosomal Position | Family | ||||
---|---|---|---|---|---|
Marker | bp * | cm ** | F1 | F3 | F8 |
D18S1104 | 21,579,772 | 42.72 | 4/6 | 2/5 | - |
D18S1107 | 24,548,186 | 45.83 | 2/3 | 3/1 | - |
D18S56 | 30,715,573 | 52.48 *** | 2 2 | 2/4 | - |
D18S456 | 33,582,802 | 55.42 | 2 2 | 2 2 | - |
c.1046C>T | 36,205,105 | 57.33 *** | T T | T T | T T |
c.1072 A >G # | 36,205,131 | idem | G G | G G | G G |
c.1164 G>A ## | 36,205,223 | idem | G G | G G | G G |
(GT)n -IVS12 | 36,254,460 | idem | 5 5 | 5 5 | - |
D18S1093 | 36,439,598 | 57.50 | 4/1 | 1 1 | - |
Marker | Chromosomal Position | Case | ||
---|---|---|---|---|
bp * | cM ** | F2 V-2/V-3 | IJ | |
D2S165 | 28,380,642 | 50.07 *** | 4 7 | 6 6 |
D2S170 | 28,991,010 | 50.94 | 3 5 | 4 4 |
D2S146 | 29,369,271 | 51.48 | 6 6 | 1 1 |
D2S375 | 30,737,968 | - | 3 2 | 3 3 |
D2S400 | 30,920,642 | 54.55 | 3 1 | 5 5 |
D2S2255 | 31,000,369 | 54.66 | 2 5 | 2 2 |
D2S2283 | 31,211,672 | 55.03 | 1 1 | 3 3 |
D2S352 | 31,278,307 | 55.21 | 5 5 | 5 5 |
D2S2203-XDH | 31,384,160 | 55.37 | 3 3 | 3 3 |
D2S2351 | 31,861,912 | - | 3 3 | 2 2 |
D2S2325 | 32,930,450 | - | 5 5 | 2 2 |
D2S2347 | 33,151,729 | 56.05 | 4 4 | 3 3 |
D2S367 | 34,216,223 | 57.89 | 3 3 | 7 7 |
D2S2374 | 35,484,977 | 60.08 | 5 3 | 2 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peretz, H.; Lagziel, A.; Bittner, F.; Kabha, M.; Shtauber-Naamati, M.; Zhuravel, V.; Usher, S.; Rump, S.; Wollers, S.; Bork, B.; et al. Classical Xanthinuria in Nine Israeli Families and Two Isolated Cases from Germany: Molecular, Biochemical and Population Genetics Aspects. Biomedicines 2021, 9, 788. https://doi.org/10.3390/biomedicines9070788
Peretz H, Lagziel A, Bittner F, Kabha M, Shtauber-Naamati M, Zhuravel V, Usher S, Rump S, Wollers S, Bork B, et al. Classical Xanthinuria in Nine Israeli Families and Two Isolated Cases from Germany: Molecular, Biochemical and Population Genetics Aspects. Biomedicines. 2021; 9(7):788. https://doi.org/10.3390/biomedicines9070788
Chicago/Turabian StylePeretz, Hava, Ayala Lagziel, Florian Bittner, Mustafa Kabha, Meirav Shtauber-Naamati, Vicki Zhuravel, Sali Usher, Steffen Rump, Silke Wollers, Bettina Bork, and et al. 2021. "Classical Xanthinuria in Nine Israeli Families and Two Isolated Cases from Germany: Molecular, Biochemical and Population Genetics Aspects" Biomedicines 9, no. 7: 788. https://doi.org/10.3390/biomedicines9070788
APA StylePeretz, H., Lagziel, A., Bittner, F., Kabha, M., Shtauber-Naamati, M., Zhuravel, V., Usher, S., Rump, S., Wollers, S., Bork, B., Mandel, H., Falik-Zaccai, T., Kalfon, L., Graessler, J., Zeharia, A., Heib, N., Shalev, H., Landau, D., & Levartovsky, D. (2021). Classical Xanthinuria in Nine Israeli Families and Two Isolated Cases from Germany: Molecular, Biochemical and Population Genetics Aspects. Biomedicines, 9(7), 788. https://doi.org/10.3390/biomedicines9070788