Candidate Genes Encoding Dopamine Receptors as Predictors of the Risk of Antipsychotic-Induced Parkinsonism and Tardive Dyskinesia in Schizophrenic Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Antipsychotic-Induced Parkinsonism
3.1.1. DRD2 Gene
3.1.2. DRD3 Gene
3.2. Antipsychotic-Induced Tardive Dyskinesia
3.2.1. DRD1 Gene
3.2.2. DRD2 Gene
3.2.3. DRD3 Gene
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vaiman, E.E.; Shnayder, N.A.; Neznanov, N.G.; Nasyrova, R.F. Drug-induced parkinsonism. Soc. Clin. Psychiatry 2021, 31, 96–103. [Google Scholar]
- Friedman, J.H. Viewpoint: Challenges in our understanding of neuroleptic induced parkinsonism. Parkinsonism Relat. Disord. 2014, 20, 1325–1328. [Google Scholar] [CrossRef]
- Hill, A.L.; Sun, B.; McDonnel, D.P. Incidences of extrapyramidal symptoms in patients with schizophrenia after treatment Hill with long-acting injection (Depot) or oral formulations of olanzapine. Clin. Schizophr. Relat. Psychoses 2014, 7, 216e22. [Google Scholar] [CrossRef]
- Muscettola, G.; Barbato, G.; Pampallona, S.; Cassielo, M.; Bollini, P. Extrapyramidal syndromes in neuroleptic-treated patients: Prevalence, risk factors, and association with tardive dyskinesia. J. Clin. Psychopharmacol. 1999, 19, 203e8. [Google Scholar] [CrossRef]
- Weiden, P.J.; Mann, J.J.; Haas, G.; Mattson, M.; Frances, A. Clinical non-recognition of neuroleptic induced movement disorders: A cautionary study. Am. J. Psychiatry 1987, 144, 1148e53. [Google Scholar] [CrossRef]
- Vaiman, E.E.; Shnayder, N.A.; Neznanov, N.G.; Nasyrova, R.F. Antipsychotic-induced tardive dyskinesia as a serious adverse effect in the psychopharmacotherapy of schizophrenia. Neurol. Neuropsychiatry Psychosom. 2019, 11, 4–13. [Google Scholar] [CrossRef]
- Shnayder, N.A.; Vaiman, E.E.; Neznanov, N.G.; Nasyrova, R.F. Pharmacogenetics of Antipsychotic-Induced Extrapyramidal Disorders; DEAN Publishing House: London, UK, 2021; p. 288. [Google Scholar]
- Vayman, E.E.; Shnayder, N.A.; Neznanov, N.G.; Nasyrova, R.F. Pathophysiological mechanisms underlying antipsychotic-induced tardive dyskinesia. Bull. Sib. Med. 2019, 18, 169–184. [Google Scholar] [CrossRef]
- Nyberg, S.; Dencker, S.J.; Malm, U.; Dahl, M.L.; Svenson, J.O.; Halldin, C.; Naskashima, Y.; Farde, L. D(2)- and 5-HT(2) receptor occupancy in high-dose neuroleptic-treated patients. Int. J. Neuropsychopharmacol. 1998, 1, 95–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crocker, A.D.; Hemsley, K.M. An animal model of extrapyramidal side effects induced by antipsychotic drugs: Relationship with D2 dopamine receptor occupancy. Prog. Neuropsychopharmacol. Biol. Psychiatry 2001, 25, 573–590. [Google Scholar] [CrossRef]
- Powell, A.; Gallur, L.; Koopowitz, L.; Hayes, M.W. Parkinsonism in the psychiatric setting: An update on clinical differentiation and management. BMJ Neurol. Open 2020, 2, e000034. [Google Scholar] [CrossRef] [PubMed]
- Kapur, S.; Seeman, P. Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics? A new hypothesis. Am. J. Psychiatry 2001, 158, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Hirose, G. Drug induced parkinsonism. J. Neurol. 2006, 253, iii22–iii24. [Google Scholar] [CrossRef]
- Salamone, J.D.; Betz, A.J.; Ishiwari, K.; Felsted, J.; Madson, L.; Mirante, B.; Clark, K.; Font, L.; Korbey, S.; Sager, T.N.; et al. Tremorolytic effects of adenosine A2A antagonists: Implications for parkinsonism. Front. Biosci. 2008, 13, 3594–3605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohno, Y.; Shimizu, S.; Tokudome, K. Pathophysiological roles of serotonergic system in regulating extrapyramidal motor functions. Biol. Pharm. Bull. 2013, 36, 1396–1400. [Google Scholar] [CrossRef] [Green Version]
- Ebmeier, K.P.; O’Brien, J.T.; Taylor, J.P. Psychiatry of Parkinson’s Disease. Adv. Biol. Psychiatry 2012, 12. [Google Scholar] [CrossRef] [Green Version]
- Sandyk, R.; Kay, S.R.; Gillman, M.A. The role of melatonin in the antipsychotic and motor-side effects of neuroleptics: A hypothesis. Int. J. Neurosci. 1992, 64, 203–207. [Google Scholar] [CrossRef]
- Mena, M.A.; de Yébenes, J.G. Drug-induced parkinsonism. Expert Opin. Drug Saf. 2006, 5, 759–771. [Google Scholar] [CrossRef]
- Peterson, A.L. A review of vitamin D and Parkinson’s disease. Maturitas 2014, 78, 40–44. [Google Scholar] [CrossRef]
- Kalgutkar, A.S.; Taylor, T.J.; Venkatakrishnan, K.; Isin, E.M. Assessment of the contributions of CYP3A4 and CYP3A5 in the metabolism of the antipsychotic agent haloperidol to its potentially neurotoxic pyridinium metabolite and effect of antidepressants on the bioactivation pathway. Drug Metab. Dispos. 2003, 31, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Ellison, G.; Johansson, P.; Levin, E.; See, R.; Gunne, L. Chronic neuroleptics alter the effects of the D1 agonist SK&F 38393 and the D2 agonist LY171555 on oral movements in rats. Psychopharmacology 1988, 96, 253–257. [Google Scholar]
- Takano, A.; Suhara, T.; Kusumi, I.; Takahashi, Y.; Asai, Y.; Yasuno, F.; Ichimiya, T.; Inoue, M.; Sudo, Y.; Koyama, T. Time course of dopamine D2 receptor occupancy by clozapine with medium and high plasma concentrations. Prog. Neuropsychopharmacol. Biol. Psychiatry 2006, 30, 75–81. [Google Scholar] [CrossRef]
- Sanyal, S.; Van Tol, H.H. Review the role of dopamine D4 receptors in schizophrenia and antipsychotic action. J. Psychiatr. Res. 1997, 31, 219–232. [Google Scholar] [CrossRef]
- Ossowska, K. Neuronal basis of neuroleptic-induced extrapyramidal side effects. Pol. J. Pharmacol. 2002, 54, 299–312. [Google Scholar] [PubMed]
- Cornett, E.M.; Novitch, M.; Kaye, A.D.; Kata, V.; Kaye, A.M. Medication-induced tardive dyskinesia: A review and update. Ochsner. J. 2017, 17, 162–174. [Google Scholar] [PubMed]
- Weiner, W.J. Drug-Induced Movement Disorders. Encyclopedia of Movement Disorders; Academic Press: Cambridge, MA, USA, 2010; pp. 340–347. [Google Scholar] [CrossRef]
- De Keyser, J. Excitotoxic mechanisms may be involved in the pathophysiology of tardive dyskinesia. Clin. Neuropharmacol. 1991, 14, 562–565. [Google Scholar] [CrossRef] [PubMed]
- Ando, K. Test methods for predicting tardive toxicity of therapeutic drugs using laboratory animals. J. Toxicol. Sci. 1996, 21, 105–107. [Google Scholar] [CrossRef]
- Miller, R.; Chouinard, G. Loss of striatal cholinergic neurons as a basis for tardive and L-dopa-induced dyskinesias, neuroleptic-induced supersensitivity psychosis and refractory schizophrenia. Biol. Psychiatry 1993, 34, 713–738. [Google Scholar] [CrossRef]
- Gunne, L.M.; Bachus, S.E.; Gale, K. Oral movements induced by interference with nigral GABA neurotransmission: Relationship to tardive dyskinesias. Exp. Neurol. 1988, 100, 459–469. [Google Scholar] [CrossRef]
- Andreassen, O.A.; Jorgensen, H.A. Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats. Implications for tardive dyskinesia? Prog. Neurobiol. 2000, 61, 525–541. [Google Scholar] [CrossRef]
- Tepper, J.M.; Lee, C.R. GABAergic control of substantia nigral dopaminergic neurons. Prog. Brain Res. 2007, 160, 189–208. [Google Scholar]
- Sagara, Y. lnduction of reactive oxygen species in neurons by haloperidol. J. Neurochern. 1998, 71, 1002–1012. [Google Scholar] [CrossRef]
- Stoessl, A.J.; Polanski, E.; Frydryszak, H. The opiate antagonist naloxone suppresses a rodent model of tardive dyskinesia. Mov. Disord. 1993, 8, 445–452. [Google Scholar] [CrossRef]
- Cadet, J.L.; Kahler, L.A. Free radical mechanisms in schizophrenia and tardive dyskinesia. Neurosci. Biobehav. Rev. 1994, 18, 457–467. [Google Scholar] [CrossRef]
- Arai, M.; Miyashita, M.; Kobori, A.; Toriumi, K.; Horiuchi, Y.; Itokawa, M. Carbonyl stress and schizophrenia. Psychiatry Clin. Neurosci. 2014, 68, 655–665. [Google Scholar] [CrossRef]
- Itokawa, M.; Arai, M.; Ichikawa, T.; Miyashita, M.; Okazaki, Y. Studies on pathophysiology of schizophrenia with a rare variant as a clue. Brain Nerve 2011, 63, 223–231. [Google Scholar]
- Calarge, C.A.; Murry, D.J.; Ziegler, E.E.; Arnold, L.E. Serum ferritin, weight gain, disruptive behavior, and extrapyramidal symptoms in risperidone-treated youth. J. Child. Adolesc. Psychopharmacol. 2016, 26, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Ohnuma, T.; Nishimon, S.; Takeda, M.; Sannohe, T.; Katsuta, N.; Arai, H. Carbonyl stress and microinflammation-related molecules as potential biomarkers in schizophrenia. Front Psychiatry 2018, 13, 82. [Google Scholar] [CrossRef]
- Tan, Y.L.; Zhou, D.F.; Zhang, X.Y. Decreased plasma brain-derived neurotrophic factor levels in schizophrenic patients with tardive dyskinesia: Association with dyskinetic movements. Schizophr. Res. 2005, 74, 263–270. [Google Scholar] [CrossRef]
- Bakker, P.R.; Bakker, E.; Amin, N.; van Duijn, C.M.; van Os, J.; van Harten, P.N. Candidate gene-based association study of antipsychotic-induced movement disorders in long-stay psychiatric patients: A prospective study. PLoS ONE 2012, 7, e36561. [Google Scholar] [CrossRef] [Green Version]
- Knol, W.; van Marum, R.J.; Jansen, P.A.; Strengman, E.; Al Hadithy, A.F.; Wilffert, B.; Schobben, A.F.; Ophoff, R.A.; Egberts, T.C. Genetic variation and the risk of haloperidol-related parkinsonism in elderly patients: A candidate gene approach. J. Clin. Psychopharmacol. 2013, 33, 405–410. [Google Scholar] [CrossRef]
- Koning, J.P.; Vehof, J.; Burger, H.; Wilffert, B.; Al Hadithy, A.; Alizadeh, B.; van Harten, P.N.; Snieder, H. Genetic Risk and Outcome in Psychosis (GROUP) investigators. Association of two DRD2 gene polymorphisms with acute and tardive antipsychotic-induced movement disorders in young Caucasian patients. Psychopharmacology 2012, 219, 727–736. [Google Scholar] [CrossRef]
- Turčin, A.; Dolžan, V.; Porcelli, S.; Serretti, A.; Plesničar, B.K. Adenosine Hypothesis of Antipsychotic Drugs Revisited: Pharmacogenomics Variation in Nonacute Schizophrenia. OMICS 2016, 20, 283–289. [Google Scholar] [CrossRef]
- Al Hadithy, A.F.; Wilffert, B.; Stewart, R.E.; Looman, N.M.; Bruggeman, R.; Brouwers, J.R.; Matroos, G.E.; van Os, J.; Hoek, H.W.; van Harten, P.N. Pharmacogenetics of parkinsonism, rigidity, rest tremor, and bradykinesia in African-Caribbean inpatients: Differences in association with dopamine and serotonin receptors. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Khublarova, L.A.; Zakharov, D.V.; Mikhaylov, V.A. Stratification of the risk of developing tardive drug-induced complications. Rev. Psychiatry Med. Psychol. 2017, 4, 111–114. [Google Scholar]
- Divac, N.; Prostran, M.; Jakovcevski, I.; Cerovac, N. Second-generation antipsychotics and extrapyramidal adverse effects. Biomed. Res. Int. 2014, 2014, 656370. [Google Scholar] [CrossRef] [Green Version]
- Mas, S.; Gassó, P.; Lafuente, A. Applicability of gene expression and systems biology to develop pharmacogenetic predictors; antipsychotic-induced extrapyramidal symptoms as an example. Pharmacogenomics 2015, 16, 1975–1988. [Google Scholar] [CrossRef] [PubMed]
- Vaiman, E.E.; Shnayder, N.A.; Neznanov, N.G.; Nasyrova, R.F. Candidate genes involved in the development of antipsychotic-induced tardive dyskinesia in patients with schizophrenia. Neuromuscul. Dis. 2020, 10, 10–26. [Google Scholar] [CrossRef]
- Nasyrova, R.F.; Schnaider, N.A.; Mironov, K.O.; Shipulin, G.A.; Dribnokhodova, O.P.; Golosov, E.A.; Tolmachev, M.Y.; Andreev, B.V.; Kurylev, A.A.; Akhmetova, L.S.; et al. Pharmacogenetics of schizophrenia in real clinical practice: A clinical case. Neurol. Neuropsychiatry Psychosom. 2018, 10, 88–93. [Google Scholar] [CrossRef]
- Gunes, A.; Scordo, M.G.; Jaanson, P.; Dahl, M.L. Serotonin and dopamine receptor gene polymorphisms and the risk of extrapyramidal side effects in perphenazine- treated schizophrenic patients. Psychopharmacology 2007, 190, 479–484. [Google Scholar] [CrossRef]
- Güzey, C.; Scordo, M.G.; Spina, E.; Landsem, V.M.; Spigset, O. Antipsychotic-induced extrapyramidal symptoms in patients with schizophrenia: Associations with dopamine and serotonin receptor and transporter polymorphisms. Eur. J. Clin. Pharmacol. 2007, 63, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Gassó, P.; Mas, S.; Oliveira, C.; Bioque, M.; Parellada, E.; Bernardo, M.; Trias, G.; Comeche, J.; Lafuente, A. Searching for functional SNPs or rare variants in exonic regions of DRD3 in risperidone-treated patients. Eur. Neuropsychopharmacol. 2011, 21, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Lai, I.C.; Mo, G.H.; Chen, M.L.; Wang, Y.C.; Chen, J.Y.; Liao, D.L.; Bai, Y.M.; Lin, C.C.; Chen, T.T.; Liou, Y.J. Analysis of genetic variations in the dopamine D1 receptor (DRD1) gene and antipsychotics-induced tardive dyskinesia in schizophrenia. Eur. J. Clin. Pharmacol. 2011, 67, 383–388. [Google Scholar] [CrossRef]
- Avinun, R.; Nevo, A.; Radtke, S.R.; Brigidi, B.D.; Hariri, A.R. Divergence of an association between depressive symptoms and a dopamine polygenic score in Caucasians and Asians. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 270, 229–235. [Google Scholar] [CrossRef]
- Park, Y.M.; Kang, S.G.; Choi, J.E.; Kim, Y.K.; Kim, S.H.; Park, J.Y.; Kim, L.; Lee, H.J. No Evidence for an association between dopamine D2 receptor polymorphisms and tardive dyskinesia in Korean schizophrenia patients. Psychiatry Investig. 2011, 8, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Zai, C.C.; Maes, M.S.; Tiwari, A.K.; Zai, G.C.; Remington, G.; Kennedy, J.L. Genetics of tardive dyskinesia: Promising leads and ways forward. J. Neurol. Sci. 2018, 389, 28–34. [Google Scholar] [CrossRef]
- Funahashi, Y.; Yoshino, Y.; Yamazaki, K.; Ozaki, Y.; Mori, Y.; Mori, T.; Ochi, S.; Iga, J.I.; Ueno, S.I. Analysis of methylation and -141C Ins/Del polymorphisms of the dopamine receptor D2 gene in patients with schizophrenia. Psychiatry Res. 2019, 278, 135–140. [Google Scholar] [CrossRef]
- Liou, Y.J.; Wang, Y.C.; Chen, J.Y.; Chen, M.L.; Chen, T.T.; Bai, Y.M.; Lin, C.C.; Liao, D.L.; Lai, I.C. The coding-synonymous polymorphism rs1045280 (Ser280Ser) in beta-arrestin 2 (ARRB2) gene is associated with tardive dyskinesia in Chinese patients with schizophrenia. Eur. J. Neurol. 2008, 15, 1406–1408. [Google Scholar] [CrossRef] [PubMed]
- Liou, Y.J.; Liao, D.L.; Chen, J.Y.; Wang, Y.C.; Lin, C.C.; Bai, Y.M.; Yu, S.C.; Lin, M.W.; Lai, I.C. Association analysis of the dopamine D3 receptor gene ser9gly and brain-derived neurotrophic factor gene val66met polymorphisms with antipsychotic-induced persistent tardive dyskinesia and clinical expression in Chinese schizophrenic patients. Neuromolecul. Med. 2004, 5, 243–251. [Google Scholar] [CrossRef]
- Vaiman, E.E.; Tolmachev, M.Y.U.; Akhmetova, L.S.H.; Shnayder, N.A.; Nasyrova, R.F. Role of rs1800955 polymorphism of DRD4 gene promoter in development of antipsychotic-induced extrapyramidal disorders. Transbaikal Med. Bull. 2019, 1, 14–24. [Google Scholar]
- Neville, M.J.; Johnstone, E.C.; Walton, R.T. Identification and characterization of ANKK1: A novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum. Mutat. 2004, 23, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Usiello, A.; Baik, J.H.; Rougé-Pont, F.; Picetti, R.; Dierich, A.; LeMeur, M.; Piazza, P.V.; Borrelli, E. Distinct functions of the two isoforms of dopamine D2 receptors. Nature 2000, 408, 199–203. [Google Scholar] [CrossRef]
- Vaiman, E.E.; Shnayder, N.A.; Neznanov, N.G.; Nasyrova, R.F. Diagnostic methods for drug-induced parkinsonism: A review of Russian and foreign literature. Sib. Her. Psychiatry Addict. Psychiatry 2020, 4, 64–72. [Google Scholar] [CrossRef]
- Dolzan, V.; Plesnicar, B.K.; Serretti, A.; Mandelli, L.; Zalar, B.; Koprivsek, J.; Breskvar, K. Polymorphisms in dopamine receptor DRD1 and DRD2 genes and psychopathological and extrapyramidal symptoms in patients on long-term antipsychotic treatment. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144, 809–815. [Google Scholar] [CrossRef]
- Greenbaum, L.; Lerer, B. Pharmacogenetics of antipsychotic-induced movement disorders as a resource for better understanding Parkinson’s disease modifier genes. Front. Neurol. 2015, 6, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gassó, P.; Mas, S.; Bernardo, M.; Alvarez, S.; Parellada, E.; Lafuente, A. A common variant in DRD3 gene is associated with risperidone-induced extrapyramidal symptoms. Pharm. J. 2009, 9, 404–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanning, R.K.; Zai, C.C.; Müller, D.J. Pharmacogenetics of tardive dyskinesia: An updated review of the literature. Pharmacogenomics 2016, 17, 1339–1351. [Google Scholar] [CrossRef]
- Zai, C.C.; Lee, F.H.; Tiwari, A.K.; Lu, J.Y.; de Luca, V.; Maes, M.S.; Herbert, D.; Shahmirian, A.; Cheema, S.Y.; Zai, G.C.; et al. Investigation of the HSPG2 gene in tardive dyskinesia—New data and meta-analysis. Front. Pharmacol. 2018, 9, 974. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.J.; Zai, C.C.; Sicard, M.; Remington, E.; Souza, R.P.; Tiwari, A.K.; Hwang, R.; Likhodi, O.; Shaikh, S.; Freeman, N.; et al. Systematic analysis of dopamine receptor genes (DRD1-DRD5) in antipsychotic-induced weight gain. Pharm. J. 2012, 12, 156–164. [Google Scholar] [CrossRef]
- Zai, C.C.; Hwang, R.W.; De Luca, V.; Müller, D.J.; King, N.; Zai, G.C.; Remington, G.; Meltzer, H.Y.; Lieberman, J.A.; Potkin, S.G.; et al. Association study of tardive dyskinesia and twelve DRD2 polymorphisms in schizophrenia patients. Int. J. Neuropsychopharmacol. 2007, 10, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Segman, R.H.; Goltser, T.; Heresco-Levy, U.; Finkel, B.; Shalem, R.; Schlafman, M.; Yakir, A.; Greenberg, D.; Strous, R.; Lerner, A.; et al. Association of dopaminergic and serotonergic genes with tardive dyskinesia in patients with chronic schizophrenia. Pharm. J. 2003, 3, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Crisafulli, C.; Drago, A.; Sidoti, A.; Serretti, A. A Genetic dissection of antipsychotic induced movement disorders. Curr. Med. Chem. 2013, 20, 312–330. [Google Scholar] [PubMed]
- Sokoloff, P.; Giros, B.; Martres, M.P.; Bouthenet, M.L.; Schwartz, J.C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 1990, 347, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Holmans, P. Statistical methods for pathway analysis of genome-wide data for association with complex genetic traits. Adv. Genet. 2010, 72, 141–179. [Google Scholar] [CrossRef] [PubMed]
- Steen, V.M.; Løvlie, R.; MacEwan, T.; McCreadie, R.G. Dopamine D3-receptor gene variant and susceptibility to tardive dyskinesia in schizophrenic patients. Mol. Psychiatry. 1997, 2, 139–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerer, B.; Segman, R.H.; Fangerau, H.; Daly, A.K.; Basile, V.S.; Cavallaro, R.; Aschauer, H.N.; McCreadie, R.G.; Ohlraun, S.; Ferrier, N.; et al. Pharmacogenetics of tardive dyskinesia: Combined analysis of 780 patients supports associateion with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology 2002, 27, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Basile, V.S.; Masellis, M.; Badri, F.; Paterson, A.D.; Meltzer, H.Y.; Lieberman, J.A.; Potkin, S.G.; Macciardi, F.; Kennedy, J.L. Association of the MscI polymorphism of the dopamine D3 receptor gene with tardive dyskinesia in schizophrenia. Neuropsychopharmacology 1999, 21, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Segman, R.; Neeman, T.; Heresco-Levy, U.; Finkel, B.; Karagichev, L.; Schlafman, M.; Dorevitch, A.; Yakir, A.; Lerner, A.; Shelevoy, A.; et al. Genotypic association between the dopamine D3 receptor and tardive dyskinesia in chronic schizophrenia. Mol. Psychiatry 1999, 4, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Neznanov, N.G. A paradigm shift to treat psychoneurological disorders. Pers. Psychiatry Neurol. 2021, 1, 1–2. [Google Scholar]
- Abdolmaleky, H.M.; Thiagalingam, S.; Wilcox, M. Genetics and epigenetics in major psychiatric disorders: Dilemmas, achievements, applications, and future scope. Am. J. Pharm. 2005, 5, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Crowley, J.J.; Kim, Y.; Szatkiewicz, J.P.; Pratt, A.L.; Quackenbush, C.R.; Adkins, D.E.; van den Oord, E.; Bogue, M.A.; Yang, H.; Wang, W.; et al. Genome-wide association mapping of loci for antipsychotic-induced extrapyramidal symptoms in mice. Mamm. Genome 2012, 23, 322–335. [Google Scholar] [CrossRef] [Green Version]
- Vaiman, E.E.; Novitsky, M.A.; Nasyrova, R.F. Pharmacogenetics of chlorpromazine and its role in the development of antipsychotic-induced parkinsonism. Pers. Psychiatry Neurol. 2021, 1, 11–17. [Google Scholar] [CrossRef]
- Greenbaum, L.; Smith, R.C.; Lorberboym, M.; Alkelai, A.; Zozulinsky, P.; Lifschytz, T.; Kohn, Y.; Djaldetti, R.; Lerer, B. Association of the ZFPM2 gene with antipsychotic-induced parkinsonism in schizophrenia patients. Psychopharmacology 2012, 220, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Alkelai, A.; Greenbaum, L.; Rigbi, A.; Kanyas, K.; Lerer, B. Genome-wide association study of antipsychotic-induced parkinsonism severity among schizophrenia patients. Psychopharmacology 2009, 206, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, A.; Kanapin, A.; Samsonova, A.; Fedorenko, O.Y.; Kornetova, E.G.; Nurgaliev, T.; Mazo, G.E.; Semke, A.V.; Kibitov, A.O.; Bokhan, N.A.; et al. A genome-wide association study identifies a gene network associated with paranoid schizophrenia and antipsychotics-induced tardive dyskinesia. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2021, 105, 110134. [Google Scholar] [CrossRef]
- Lim, K.; Lam, M.; Zai, C.; Tay, J.; Karlsson, N.; Deshpande, S.N.; Thelma, B.K.; Ozaki, N.; Inada, T.; Sim, K.; et al. Genome wide study of tardive dyskinesia in schizophrenia. Transl. Psychiatry 2021, 11, 351. [Google Scholar] [CrossRef]
- Arinami, T.; Inada, T. Genome-wide association analyses for neuroleptic-induced tardive dyskinesia. Nihon Shinkei Seishin Yakurigaku Zasshi 2011, 31, 155–162. [Google Scholar]
- Aberg, K.; Adkins, D.E.; Bukszár, J.; Webb, B.T.; Caroff, S.N.; Miller, D.D.; Sebat, J.; Stroup, S.; Fanous, A.H.; Vladimirov, V.I.; et al. Genome wide association study of movement-related adverse antipsychotic effects. Biol. Psychiatry 2010, 67, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Inada, T.; Koga, M.; Ishiguro, H.; Horiuchi, Y.; Syu, A.; Yoshio, T.; Takahashi, N.; Ozaki, N.; Arinami, T. Pathway-based association analysis of genome-wide screening data suggest that genes associated with the gamma-aminobutyric acid receptor signaling pathway are involved in neuroleptic-induced, treatment-resistant tardive dyskinesia. Pharmacogenet. Genom. 2008, 18, 317–323. [Google Scholar] [CrossRef]
Theory | Year | |
---|---|---|
Dopamine D2 receptor blockade | 1983 | [9] |
Oversaturation (“clogging”) of type D2 striatal dopaminergic receptors | 1988 | [10] |
Influence of the basal ganglia of the thalamocortical motor loop | 2000 | [11,12] |
“Fast-off-D2” theory | 2010 | [13] |
Role of adenosine receptors | 2014 | [14] |
Blockade of the serotonergic system | 2002 | [15] |
Cholinergic theory | 2005 | [16] |
Melatonin theory | 1983 | [17] |
Oxidative stress theory | 1994 | [18] |
The role of vitamin D3 | 2009 | [19] |
Genetic theory | 2011 | [20] |
Theory | Year | - |
---|---|---|
Effect on dopaminergic receptors | - | - |
Changes in the activity of type D1 dopamine receptors | 1983 | [21] |
Oversaturation (“clogging”) of type D2 striatal dophinergic receptors | 1988 | [22] |
Increased affinity of dopamine D4 receptors | 1993 | [23] |
Involvement of neural pathways | 2002 | [24] |
Disruption of dopaminergic neurotransmission | 2002 | [25] |
Dopamine hypersensitivity | 2002 | [26] |
Effects on dopaminergic neurons | - | - |
Excitotoxicity | 1988 | [27] |
Toxic damage to dopaminergic neurons | 1996 | [28] |
Effect on neurons of the basal ganglia | - | - |
Effect on muscarinic, cholinergic receptors in the striatum | 1974 | [29] |
Decreased activity of glutamic acid decarboxylase in substantia nigra | 1988 | [30] |
Violation of the activity of the pathways of the basal gangliaChanges in the activity of striatal efferent pathways | 2000 | [31] |
Increase/decrease of GABAergic neurons of the substantia nigra | 2007 | [32] |
Other theories of antipsychotic-induced tardive dyskinesia | - | - |
Activation of estrogen receptors | 1981 | [33] |
Disruption of melatonin metabolism | 1983 | [17] |
Disruption of the endogenous opioid system | 1993 | [34] |
Oxidative stress | 1994 | [35] |
Blockade of serotonergic 5-HT2 receptors | 2002 | [24] |
Decreased pyridoxine levels | 2005 | [36] |
Genetic predisposition | 2011 | [37] |
Interaction of antipsychotics with a cerebral microelement–iron | 2013 | [38] |
Carbonyl stress and immune inflammation | 2018 | [39] |
Role of neurotrophic factor | 2005 | [40] |
Gene | Protein | Locus | SNV | Effect of SNV | p-Criterion | Sample of Patients (n) | Ethnicity | Authors |
---|---|---|---|---|---|---|---|---|
DRD2 | Dopamine receptor type 2 | 11q23.2 | rs1799732 (141CIns/Del) | Associates with risk of muscle rigidity of men | p = 0.0039 | 126 | Africans | [45] |
Not associated with the risk of developing AIP | p > 0.05 | 209 | - | [41] | ||||
150 | - | [42] | ||||||
402 | - | [43] | ||||||
47 | - | [51] | ||||||
rs1800497 (C/T) | Polymorphism TaqIA carriage is associated with the risk of developing AIP | p = 0.04 | 119 | Italians | [52] | |||
Not associated with the risk of developing AIP | p > 0.05 | 402 | - | [43] | ||||
47 | - | [51] | ||||||
209 | - | [41] | ||||||
rs6275 (C/T) | Associated with AP-induced resting tremor | p = 0.0140 | 209 | Dutch | [41] | |||
rs1800498 (T/C) | Not associated with the risk of developing AIP | p > 0.05 | 402 | - | [43] | |||
rs1076560 (C/A) | 209 | - | [41] | |||||
rs6277 (T/C) | ||||||||
402 | - | [43] | ||||||
rs6275 (C/T) | 209 | - | [41] | |||||
rs1801028 (C/G) | ||||||||
DRD3 | Dopamine receptor type 3 | 3q13.31 | rs167771 (G/A) | Associated with the risk of developing AIP | p = 0.00010 | 126 | Italians | [53] |
rs6280 (T/C) | Not associated with the risk of developing AIP | p > 0.05 | 150 | - | [42] | |||
47 | - | [51] | ||||||
321 | - | [53] | ||||||
402 | - | [43] | ||||||
rs3732783 (T/C) | 321 | [53] | ||||||
rs324026 (C/T) | ||||||||
rs2134655 (A/G) | ||||||||
rs9828406 (A/G) |
Gene | Protein | Locus | SNV | Effect of SNV | p-Criterion | Sample of Patients (n) | Ethnicity | Authors |
---|---|---|---|---|---|---|---|---|
DRD1 | Dopamine receptor type 1 | 5q35.2 | rs4532 (A/G) | Associated with the risk of developing AITD | p = 0.02 | 836 | Asians | [54,55] |
DRD2 | Dopamine receptor type 2 | 11q23.2 | rs6277 (C/T) | Associated with the risk of developing AITD (allele C) | p < 0.05 | 402 | Dutch and Belgians | [43] |
rs6275 (C/T) | Associated with the risk of developing AITD (allele T) | |||||||
Not associated with the risk of developing AITD | p > 0.05 | 263 | - | [56] | ||||
rs1800497 (C/T) | Polymorphism TaqIA carriage is associated with the risk of developing AITD | p < 0.05 | 206 | Americans | [57] | |||
Not associated with the risk of developing AITD | p > 0.05 | 402 | - | [43] | ||||
263 | - | [56] | ||||||
rs1079597 (A/G) | Polymorphism TaqIB carriage is associated with the risk of developing AITD | p < 0.05 | 369 | Americans | [58] | |||
rs1799732 (141CIns/Del) | Associated with the risk of developing AITD | p < 0.001 | 100 | Japaneese | [59] | |||
p = 0.001 | 402 | Dutch and Belgians | [43] | |||||
rs1800498 (T/C) | Not associated with the risk of developing AITD | p > 0.05 | 263 | - | [56] | |||
402 | - | [43] | ||||||
rs1801028 (C/G) | 263 | - | [56] | |||||
rs1045280 (C/T) | Associated with the risk of developing AITD | p = 0.025 | 381 | Chineese | [60] | |||
DRD3 | Dopamine receptor type 3 | 3q13.31 | rs6280 (C/T) | Not associated with the risk of developing AITD | p = 0.021 | 216 | Chinese | [61] |
p > 0.05 | 836 | - | [55,58] | |||||
p > 0.05 | 402 | - | [43] | |||||
rs905568 (C/G) | Associated with the risk of developing AITD | p < 0.05 | 171 | Americans | [55,58] | |||
rs9817063 (T/C) | Not associated with the risk of developing AITD | p > 0.05 | 168 | - | [56] | |||
rs2134655 (G/A) | ||||||||
rs963468 (G/A) | ||||||||
rs324035 (C/A) | ||||||||
rs3773678 (C/T) | ||||||||
rs167771 (A/G) | ||||||||
rs11721264 (G/A) | ||||||||
rs167770 (A/G) | ||||||||
rs9633291 (T/G) | ||||||||
rs1800828 (G/C) | ||||||||
DRD4 | Dopamine receptor type 4 | 11p15. 5 | rs3758653 (T/C) | |||||
rs1800955 (T/C) | 56 | - | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaiman, E.E.; Shnayder, N.A.; Novitsky, M.A.; Dobrodeeva, V.S.; Goncharova, P.S.; Bochanova, E.N.; Sapronova, M.R.; Popova, T.E.; Tappakhov, A.A.; Nasyrova, R.F. Candidate Genes Encoding Dopamine Receptors as Predictors of the Risk of Antipsychotic-Induced Parkinsonism and Tardive Dyskinesia in Schizophrenic Patients. Biomedicines 2021, 9, 879. https://doi.org/10.3390/biomedicines9080879
Vaiman EE, Shnayder NA, Novitsky MA, Dobrodeeva VS, Goncharova PS, Bochanova EN, Sapronova MR, Popova TE, Tappakhov AA, Nasyrova RF. Candidate Genes Encoding Dopamine Receptors as Predictors of the Risk of Antipsychotic-Induced Parkinsonism and Tardive Dyskinesia in Schizophrenic Patients. Biomedicines. 2021; 9(8):879. https://doi.org/10.3390/biomedicines9080879
Chicago/Turabian StyleVaiman, Elena E., Natalia A. Shnayder, Maxim A. Novitsky, Vera S. Dobrodeeva, Polina S. Goncharova, Elena N. Bochanova, Margarita R. Sapronova, Tatiana E. Popova, Alexey A. Tappakhov, and Regina F. Nasyrova. 2021. "Candidate Genes Encoding Dopamine Receptors as Predictors of the Risk of Antipsychotic-Induced Parkinsonism and Tardive Dyskinesia in Schizophrenic Patients" Biomedicines 9, no. 8: 879. https://doi.org/10.3390/biomedicines9080879
APA StyleVaiman, E. E., Shnayder, N. A., Novitsky, M. A., Dobrodeeva, V. S., Goncharova, P. S., Bochanova, E. N., Sapronova, M. R., Popova, T. E., Tappakhov, A. A., & Nasyrova, R. F. (2021). Candidate Genes Encoding Dopamine Receptors as Predictors of the Risk of Antipsychotic-Induced Parkinsonism and Tardive Dyskinesia in Schizophrenic Patients. Biomedicines, 9(8), 879. https://doi.org/10.3390/biomedicines9080879