Screening of the Drug-Induced Effects of Prostaglandin EP2 and FP Agonists on 3D Cultures of Dexamethasone-Treated Human Trabecular Meshwork Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. 2D and 3D Spheroid Cultures of Human Trabecular Meshwork (HTM) Cells
2.2. Measurements of 2D HTM Monolayers by Transendothelial Electron Resistance (TEER) and Fluorescein Isothiocyanate (FITC)-Dextran Permeability
2.3. Measurement of the Physical Properties, Size and Solidity of 3D Spheroids
2.4. Quantitative PCR
2.5. Statistical Analysis
3. Results
3.1. Drug- Induced Effects of PGF2α and the SELECTIVE EP2 Agonist, Omidenepag (OMD), on Monolayers of DEX-Treated HTM Cells
3.2. Drug-Induced Effects of PGF2α and the Selective EP2 Agonist, Omidenepag (OMD), on the Physical Properties, Size and Stiffness of the 3D DEX-Treated HTM Spheroids
3.3. Drug-Induced Effects of PGF2α and the Selective EP2 Agonist, Omidenepag (OMD), on Gene Expressions of ECM and Their Regulator of the 2D and 3D DEX-Treated HTM Cells
3.4. Drug-Induced Effects of PGF2α and the Selective EP2 agonist, Omidenepag (OMD), on the Gene Expression of ER Stress-Related Genes of 2D and 3D DEX-Treated HTM Cells
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quigley, H.A. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Caprioli, J.; Coleman, A.L. Blood Pressure, Perfusion Pressure, and Glaucoma. Am. J. Ophthalmol. 2010, 149, 704–712. [Google Scholar] [CrossRef]
- Weinreb, R.N.; Khaw, P.T. Primary open-angle glaucoma. Lancet 2004, 363, 1711–1720. [Google Scholar] [CrossRef]
- Gabelt, B.T.; Gottanka, J.; Lütjen-Drecoll, E.; Kaufman, P.L. Aqueous Humor Dynamics and Trabecular Meshwork and Anterior Ciliary Muscle Morphologic Changes with Age in Rhesus Monkeys. Investig. Opthalmol. Vis. Sci. 2003, 44, 2118–2125. [Google Scholar] [CrossRef]
- Filla, M.S.; Liu, X.; Nguyen, T.D.; Polansky, J.R.; Brandt, C.R.; Kaufman, P.L.; Peters, D.M. In vitro localization of TIGR/MYOC in trabecular meshwork extracellular matrix and binding to fibronectin. Investig. Ophthalmol. Vis. Sci. 2002, 43, 151–161. [Google Scholar]
- van der Valk, R.; Webers, C.A.; Schouten, J.S.; Zeegers, M.P.; Hendrikse, F.; Prins, M.H. Intraocular Pressure–Lowering Effects of All Commonly Used Glaucoma Drugs: A Meta-analysis of Randomized Clinical Trials. Ophthalmology 2005, 112, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition—Chapter 3: Treatment principles and optionsSupported by the EGS Foundation. Br. J. Ophthalmol. 2017, 101, 130–195. [CrossRef] [PubMed] [Green Version]
- Stolz, J.; Alm, A. Latanoprost in the treatment of glaucoma. Clin. Ophthalmol. 2014, 8, 1967–1985. [Google Scholar] [CrossRef] [Green Version]
- Ota, T.; Aihara, M.; Narumiya, S.; Araie, M. The Effects of Prostaglandin Analogues on IOP in Prostanoid FP-Receptor-Deficient Mice. Investig. Opthalmol. Vis. Sci. 2005, 46, 4159–4163. [Google Scholar] [CrossRef] [Green Version]
- Aihara, M.; Lu, F.; Kawata, H.; Tanaka, Y.; Yamamura, K.; Odani-Kawabata, N.; Shams, N.K. Pharmacokinetics, Safety, and Intraocular Pressure-Lowering Profile of Omidenepag Isopropyl, a Selective, Nonprostaglandin, Prostanoid EP2 Receptor Agonist, in Healthy Japanese and Caucasian Volunteers (Phase I Study). J. Ocul. Pharmacol. Ther. 2019, 35, 542–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aihara, M.; Lu, F.; Kawata, H.; Iwata, A.; Odani-Kawabata, N.; Shams, N.K. Omidenepag Isopropyl Versus Latanoprost in Primary Open-Angle Glaucoma and Ocular Hypertension. Am. J. Ophthalmol. 2020, 220, 53–63. [Google Scholar] [CrossRef]
- Impagnatiello, F.; Bastia, E.; Almirante, N.; Brambilla, S.; Duquesroix, B.; Kothe, A.C.; Bergamini, M.V.W. Prostaglandin analogues and nitric oxide contribution in the treatment of ocular hypertension and glaucoma. Br. J. Pharmacol. 2019, 176, 1079–1089. [Google Scholar] [CrossRef]
- Fuwa, M.; Toris, C.B.; Fan, S.; Taniguchi, T.; Ichikawa, M.; Odani-Kawabata, N.; Iwamura, R.; Yoneda, K.; Matsugi, T.; Shams, N.K.; et al. Effects of a Novel Selective EP2 Receptor Agonist, Omidenepag Isopropyl, on Aqueous Humor Dynamics in Laser-Induced Ocular Hypertensive Monkeys. J. Ocul. Pharmacol. Ther. 2018, 34, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Alm, A.; Grierson, I.; Shields, M.B. Side Effects Associated with Prostaglandin Analog Therapy. Surv. Ophthalmol. 2008, 53, S93–S105. [Google Scholar] [CrossRef] [PubMed]
- Nakakura, S.; Terao, E.; Nagatomi, N.; Matsuo, N.; Shimizu, Y.; Tabuchi, H.; Kiuchi, Y. Cross-Sectional Study of the Association between a Deepening of the Upper Eyelid Sulcus-Like Appearance and Wide-Open Eyes. PLoS ONE 2014, 9, e96249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, M.; Lee, N.; Lefebvre, D.; Kronberg, B.; Loomis, S.; Brauner, S.C.; Turalba, A.; Rhee, D.J.; Freitag, S.K.; Pasquale, L.R. A Cross-Sectional Survey of the Association between Bilateral Topical Prostaglandin Analogue Use and Ocular Adnexal Features. PLoS ONE 2013, 8, e61638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ida, Y.; Hikage, F.; Itoh, K.; Ida, H.; Ohguro, H. Prostaglandin F2α agonist-induced suppression of 3T3-L1 cell adipogenesis affects spatial formation of extra-cellular matrix. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Itoh, K.; Hikage, F.; Ida, Y.; Ohguro, H. Prostaglandin F2α Agonists Negatively Modulate the Size of 3D Organoids from Primary Human Orbital Fibroblasts. Investig. Opthalmol. Vis. Sci. 2020, 61, 13. [Google Scholar] [CrossRef] [PubMed]
- Ota, C.; Ida, Y.; Ohguro, H.; Hikage, F. ROCK inhibitors beneficially alter the spatial configuration of TGFβ2-treated 3D organoids from a human trabecular meshwork (HTM). Sci. Rep. 2020, 10, 20292. [Google Scholar] [CrossRef]
- Kersey, J.P.; Broadway, D.C. Corticosteroid-induced glaucoma: A review of the literature. Eye 2005, 20, 407–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R., 3rd; Rhee, D.J. Corticosteroid-induced ocular hypertension and glaucoma: A brief review and update of the literature. Curr. Opin. Ophthalmol. 2006, 17, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Tamm, E.; Fuchshofer, R. What Increases Outflow Resistance in Primary Open-angle Glaucoma? Surv. Ophthalmol. 2007, 52, S101–S104. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.C.; Peters, D.M.; Kaufman, P.L. Recent developments in understanding the pathophysiology of elevated intraocular pressure. Curr. Opin. Ophthalmol. 2006, 17, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Ohta, M.; Inoue, T.; Mizuno, K.; Isobe, T.; Tanabe, S.; Tanihara, H. Effects of K-115 (Ripasudil), a novel ROCK inhibitor, on trabecular meshwork and Schlemm’s canal endothelial cells. Sci. Rep. 2016, 6, 19640. [Google Scholar] [CrossRef]
- Hikage, F.; Atkins, S.; Kahana, A.; Smith, T.J.; Chun, T.-H. HIF2A–LOX Pathway Promotes Fibrotic Tissue Remodeling in Thyroid-Associated Orbitopathy. Endocrinology 2019, 160, 20–35. [Google Scholar] [CrossRef] [Green Version]
- Wiggs, J.L. Glaucoma Genes and Mechanisms. Prog. Mol. Biol. Transl. Sci. 2015, 134, 315–342. [Google Scholar] [CrossRef]
- Joe, M.K.; Sohn, S.; Hur, W.; Moon, Y.; Choi, Y.R.; Kee, C. Accumulation of mutant myocilins in ER leads to ER stress and potential cytotoxicity in human trabecular meshwork cells. Biochem. Biophys. Res. Commun. 2003, 312, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Zode, G.S.; Sharma, A.B.; Lin, X.; Searby, C.; Bugge, K.; Kim, G.H.; Clark, A.F.; Sheffield, V.C. Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma. J. Clin. Investig. 2014, 124, 1956–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, J.C.; Bhattacharya, S.K.; Clark, A.F.; Zode, G.S. Increased Endoplasmic Reticulum Stress in Human Glaucomatous Trabecular Meshwork Cells and Tissues. Investig. Opthalmol. Vis. Sci. 2015, 56, 3860–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, M.A.; Ayroles, J.F.; Yamamoto, A.; Morozova, T.V.; West, S.A.; Magwire, M.M.; Mackay, T.F.C.; Anholt, R.R.H. Overexpression of Myocilin in the Drosophila Eye Activates the Unfolded Protein Response: Implications for Glaucoma. PLOS ONE 2009, 4, e4216. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Eglen, R.M. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discov. Adv. Life Sci. R&D 2017, 22, 456–472. [Google Scholar] [CrossRef] [Green Version]
- Breslin, S.; O’Driscoll, L. Three-dimensional cell culture: The missing link in drug discovery. Drug Discov. Today 2013, 18, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Lin, C.; Cheng, J.; Su, J.; Zhao, H.; Liu, T.; Wen, X.; Zhao, P. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing. PLOS ONE 2015, 10, e0130348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katt, M.E.; Placone, A.L.; Wong, A.D.; Xu, Z.S.; Searson, P.C. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Front. Bioeng. Biotechnol. 2016, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Valadez, A.V.; Zuo, P.; Nie, Z. Microfluidic 3D cell culture: Potential application for tissue-based bioassays. Bioanalysis 2012, 4, 1509–1525. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wei, X.; Zeng, R.; Xu, F.; Li, X. Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Futur. Sci. OA 2017, 3, FSO187. [Google Scholar] [CrossRef] [Green Version]
- Torrejon, K.Y.; Papke, E.L.; Halman, J.R.; Bergkvist, M.; Danias, J.; Sharfstein, S.; Xie, Y. TGFβ2-induced outflow alterations in a bioengineered trabecular meshwork are offset by a rho-associated kinase inhibitor. Sci. Rep. 2016, 6, 38319. [Google Scholar] [CrossRef] [Green Version]
- Huh, D.; Hamilton, G.A.; Ingber, D.E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011, 21, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Vernazza, S.; Tirendi, S.; Scarfì, S.; Passalacqua, M.; Oddone, F.; Traverso, C.E.; Rizzato, I.; Bassi, A.M.; Saccà, S. 2D- and 3D-cultures of human trabecular meshwork cells: A preliminary assessment of an in vitro model for glaucoma study. PLOS ONE 2019, 14, e0221942. [Google Scholar] [CrossRef]
- Kalouche, G.; Beguier, F.; Bakria, M.; Parsadaniantz, S.M.; Leriche, C.; Debeir, T.; Rostene, W.; Baudouin, C.; Vigé, X. Activation of Prostaglandin FP and EP2 Receptors Differently Modulates Myofibroblast Transition in a Model of Adult Primary Human Trabecular Meshwork Cells. Investig. Opthalmol. Vis. Sci. 2016, 57, 1816–1825. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, S.F.E.; Drecoll, E.; Lütjen-Drecoll, E.; Toris, C.B.; Krauss, A.H.-P.; Kharlamb, A.; Nieves, A.; Guerra, T.; Woodward, D.F. The Prostanoid EP2Receptor Agonist Butaprost Increases Uveoscleral Outflow in the Cynomolgus Monkey. Investig. Opthalmol. Vis. Sci. 2006, 47, 4042–4049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, M.; Krauss, A.H.-P.; Woodward, D.F.; Lütjen-Drecoll, E. Morphological Changes in the Anterior Eye Segment after Long-Term Treatment with Different Receptor Selective Prostaglandin Agonists and a Prostamide. Investig. Opthalmol. Vis. Sci. 2003, 44, 4419–4426. [Google Scholar] [CrossRef] [Green Version]
- El-Shabrawi, Y.; Eckhardt, M.; Berghold, A.; Faulborn, J.; Auboeck, L.; Mangge, H.; Ardjomand, N. Synthesis pattern of matrix metalloproteinases (MMPs) and inhibitors (TIMPs) in human explant organ cultures after treatment with latanoprost and dexamethasone. Eye 2000, 14, 375–383. [Google Scholar] [CrossRef]
- Gaton, D.D. Increased Matrix Metalloproteinases 1, 2, and 3 in the Monkey Uveoscleral Outflow Pathway After Topical Prostaglandin F2α–Isopropyl Ester Treatment. Arch. Ophthalmol. 2001, 119, 1165–1170. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Lindsey, J.D.; Marchenko, G.; Marchenko, N.; Angert, M.; Strongin, A. Prostaglandin FP Agonists Alter Metalloproteinase Gene Expression in Sclera. Investig. Opthalmol. Vis. Sci. 2004, 45, 4368–4377. [Google Scholar] [CrossRef]
- Lim, K.S.; Nau, C.B.; O’Byrne, M.M.; Hodge, D.O.; Toris, C.B.; McLaren, J.W.; Johnson, D.H. Mechanism of Action of Bimatoprost, Latanoprost, and Travoprost in Healthy Subjects: A Crossover Study. Ophthalmology 2008, 115, 790–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toris, C.B.; Gabelt, B.T.; Kaufman, P.L. Update on the Mechanism of Action of Topical Prostaglandins for Intraocular Pressure Reduction. Surv. Ophthalmol. 2008, 53, S107–S120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlötzer-Schrehardt, U.; Zenkel, M.; Nüsing, R.M. Expression and localization of FP and EP prostanoid receptor subtypes in human ocular tissues. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1475–1487. [Google Scholar]
- Biswas, S.; Bhattacherjee, P.; Paterson, C.A. Prostaglandin E2 receptor subtypes, EP1, EP2, EP3 and EP4 in human and mouse ocular tissues—A comparative immunohistochemical study. Prostaglandins Leukot. Essent. Fat. Acids 2004, 71, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Hirata, T.; Narumiya, S. Prostanoid Receptors. Chem. Rev. 2011, 111, 6209–6230. [Google Scholar] [CrossRef] [PubMed]
- Kaddour-Djebbar, I.; Ansari, H.; Akhtar, R.; Abdel-Latif, A. Species differences in the effects of prostanoids on MAP kinase phosphorylation, myosin light chain phosphorylation and contraction in bovine and cat iris sphincter smooth muscle. Prostaglandins, Leukot. Essent. Fat. Acids 2005, 72, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Poyer, J.F.; Millar, C.; Kaufman, P.L. Prostaglandin F2 alpha effects on isolated rhesus monkey ciliary muscle. Investig. Ophthalmol. Vis. Sci. 1995, 36, 2461–2465. [Google Scholar]
- Vysniauskiene, I.; Allemann, R.; Flammer, J.; Haefliger, I.O. Vasoactive Responses of U46619, PGF2, Latanoprost, and Travoprost in Isolated Porcine Ciliary Arteries. Investig. Opthalmol. Vis. Sci. 2006, 47, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Krauss, A.H.-P.; Wiederholt, M.; Sturm, A.; Woodward, D.F. Prostaglandin Effects on the Contractility of Bovine Trabecular Meshwork and Ciliary Muscle. Exp. Eye Res. 1997, 64, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W.; Woodward, D.F.; Stamer, W.D. Differential Effects of Prostaglandin E2-Sensitive Receptors on Contractility of Human Ocular Cells That Regulate Conventional Outflow. Investig. Opthalmol. Vis. Sci. 2013, 54, 4782–4790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oga, T.; Matsuoka, T.; Yao, C.; Nonomura, K.; Kitaoka, S.; Sakata, D.; Kita, Y.; Tanizawa, K.; Taguchi, Y.; Chin, K.; et al. Prostaglandin F2α receptor signaling facilitates bleomycin-induced pulmonary fibrosis independently of transforming growth factor-β. Nat. Med. 2009, 15, 1426–1430. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.B.; Ballinger, M.; White, E.; Green, M.E.; Herrygers, A.B.; Wilke, C.A.; Toews, G.B.; Peters-Golden, M. Bleomycin-Induced E Prostanoid Receptor Changes Alter Fibroblast Responses to Prostaglandin E2. J. Immunol. 2005, 174, 5644–5649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, W.-Y.; Liu, L.; Wang, Z.-H.; Tang, M.-X.; Ti, Y.; Han, L.; Zhang, L.; Zhang, Y.; Zhong, M.; Zhang, W. FP-receptor gene silencing ameliorates myocardial fibrosis and protects from diabetic cardiomyopathy. J. Mol. Med. 2014, 92, 629–640. [Google Scholar] [CrossRef]
- Mori, S.; Kiuchi, S.; Ouchi, A.; Hase, T.; Murase, T. Characteristic Expression of Extracellular Matrix in Subcutaneous Adipose Tissue Development and Adipogenesis; Comparison with Visceral Adipose Tissue. Int. J. Biol. Sci. 2014, 10, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Kadler, K.E.; Hill, A.; Laird, E. Collagen fibrillogenesis: Fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol. 2008, 20, 495–501. [Google Scholar] [CrossRef]
- Okada, M.; Yamawaki, H. A current perspective of canstatin, a fragment of type IV collagen alpha 2 chain. J. Pharmacol. Sci. 2019, 139, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.R.; Weinstein, B.I.; Schwartz, J.; Ritch, R.; Gordon, G.G.; Southren, A.L. Human trabecular meshwork cells in culture: Morphology and extracellular matrix components. Investig. Ophthalmol. Vis. Sci. 1987, 28, 1655–1660. [Google Scholar]
- Feng, H.; Danfelter, M.; Strömqvist, B.; Heinegård, D. Extracellular Matrix in Disc Degeneration. J. Bone Jt. Surg.-Am. Vol. 2006, 88, 25–29. [Google Scholar] [CrossRef]
- Zollinger, A.J.; Smith, M.L. Fibronectin, the extracellular glue. Matrix Biol. 2017, 60–61, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Fleenor, D.L.; Shepard, A.R.; Hellberg, P.E.; Jacobson, N.; Pang, I.-H.; Clark, A.F. TGFβ2-Induced Changes in Human Trabecular Meshwork: Implications for Intraocular Pressure. Investig. Opthalmol. Vis. Sci. 2006, 47, 226–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchshofer, R.; Kuespert, S.; Junglas, B.; Tamm, E.R. The Prostaglandin F2α Analog Fluprostenol Attenuates the Fibrotic Effects of Connective Tissue Growth Factor on Human Trabecular Meshwork Cells. J. Ocul. Pharmacol. Ther. 2014, 30, 237–245. [Google Scholar] [CrossRef]
- Chai, F.; Luo, R.; Li, Y.; Bai, Y.; He, Y.; Wei, Y.; Yan, Z.; Ge, J.; Zhuo, Y. Down-regulation of GRP78 in human glaucomatous trabecular meshwork cells. Mol. Vis. 2010, 16, 1122–1131. [Google Scholar] [PubMed]
- Ida, Y.; Hikage, F.; Ohguro, H. ROCK inhibitors enhance the production of large lipid-enriched 3D organoids of 3T3-L1 cells. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ida, Y.; Hikage, F.; Umetsu, A.; Ida, H.; Ohguro, H. Omidenepag, a non-prostanoid EP2 receptor agonist, induces enlargement of the 3D organoid of 3T3-L1 cells. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.; Cassidy, P.; O’Callaghan, J.; Crosbie, D.E.; Humphries, P. Manipulating ocular endothelial tight junctions: Applications in treatment of retinal disease pathology and ocular hypertension. Prog. Retin. Eye Res. 2018, 62, 120–133. [Google Scholar] [CrossRef]
- Yanar, F.; Mosayyebi, A.; Nastruzzi, C.; Carugo, D.; Zhang, X. Continuous-Flow Production of Liposomes with a Millireactor under Varying Fluidic Conditions. Pharmaceutics 2020, 12, 1001. [Google Scholar] [CrossRef] [PubMed]
Sequence | Exon Location | RefSeq Number | ||
---|---|---|---|---|
human RPLP0 | Probe Primer2 Primer1 | 5′-/56-FAM/CCCTGTCTT/ZEN/CCCTGGGCATCAC/3IABkFQ/-3′ 5′-TCGTCTTTAAACCCTGCGTG-3′ 5′-TGTCTGCTCCCACAATGAAAC-3′ | 2-3 | NM_001002 |
human COL1A1 | Probe Primer2 Primer1 | 5′-/56-FAM/TCGAGGGCC/ZEN/AAGACGAAGACATC/3IABkFQ/-3′ 5′-GACATGTTCAGCTTTGTGGAC-3′ 5′-TTCTGTACGCAGGTGATTGG-3′ | 1-2 | NM_000088 |
human COL6A1 | Primer2 Primer1 | 5′-CCTCGTGGACAAAGTCAAGT-3′ 5′-GTGAGGCCTTGGATGATCTC-3′ | 2-3 | NM_001848 |
human FN1 | Primer2 Primer1 | 5′-CGTCCTAAAGACTCCATGATCTG-3′ 5′-ACCAATCTTGTAGGACTGACC-3′ | 3-4 | NM_212482 |
human αSMA | Probe Primer2 Primer1 | 5′-/56-FAM/AGACCCTGT/ZEN/TCCAGCCATCCTTC/3IABkFQ/-3′ 5′-AGAGTTACGAGTTGCCTGATG-3′ 5′-CTGTTGTAGGTGGTTTCATGGA-3′ | 8-9 | NM_001613 |
human Perk | Forward Reverse | 5′-ACGATGAGACAGAGTTGCGAC-3′ 5′-AATCCCACTGCTTTTTACCATGA-3′ | NM_004836 | |
human Atf6a | Forward Reverse | 5′-TCAGACAGTACCAACGCTTATGC-3′ 5′-GTTGTACCACAGTAGGCTGAGA-3 | NM_007348 | |
human Ire1a | Forward Reverse | 5′-TTTGGAAGTACCAGCACAGTG-3′ 5′-TGCCATCATTAGGATCTGGGA-3′ | NM_001433 | |
human Grp78 | Forward Reverse | 5′-CATCACGCCGTCCTATGTCG-3′ 5′-CGTCAAAGACCGTGTTCTCG-3′ | NM_005347 | |
human Grp94 | Forward Reverse | 5′-CTGGGACTGGGAACTTATGAATG-3′ 5′-TCCATATTCGTCAAACAGACCAC-3′ | NM_003299 | |
human Chop | Forward Reverse | 5′-GGAGAACCAGGAAACGGAAAC-3′ 5′-TCTCCTTCATGCGCTGCTTT-3′ | NM_004083 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, M.; Ida, Y.; Furuhashi, M.; Tsugeno, Y.; Ohguro, H.; Hikage, F. Screening of the Drug-Induced Effects of Prostaglandin EP2 and FP Agonists on 3D Cultures of Dexamethasone-Treated Human Trabecular Meshwork Cells. Biomedicines 2021, 9, 930. https://doi.org/10.3390/biomedicines9080930
Watanabe M, Ida Y, Furuhashi M, Tsugeno Y, Ohguro H, Hikage F. Screening of the Drug-Induced Effects of Prostaglandin EP2 and FP Agonists on 3D Cultures of Dexamethasone-Treated Human Trabecular Meshwork Cells. Biomedicines. 2021; 9(8):930. https://doi.org/10.3390/biomedicines9080930
Chicago/Turabian StyleWatanabe, Megumi, Yosuke Ida, Masato Furuhashi, Yuri Tsugeno, Hiroshi Ohguro, and Fumihito Hikage. 2021. "Screening of the Drug-Induced Effects of Prostaglandin EP2 and FP Agonists on 3D Cultures of Dexamethasone-Treated Human Trabecular Meshwork Cells" Biomedicines 9, no. 8: 930. https://doi.org/10.3390/biomedicines9080930
APA StyleWatanabe, M., Ida, Y., Furuhashi, M., Tsugeno, Y., Ohguro, H., & Hikage, F. (2021). Screening of the Drug-Induced Effects of Prostaglandin EP2 and FP Agonists on 3D Cultures of Dexamethasone-Treated Human Trabecular Meshwork Cells. Biomedicines, 9(8), 930. https://doi.org/10.3390/biomedicines9080930