Analysis of Clinical Symptoms and Biochemical Parameters in Odontogenic Cellulitis of the Head and Neck Region in Children
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nair, P.N. Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit. Rev. Oral Biol. Med. 2004, 15, 348–381. [Google Scholar] [CrossRef] [Green Version]
- Bali, R.K.; Sharma, P.; Gaba, S.; Kaur, A.; Ghanghas, P. A review of complications of odontogenic infections. Natl. J. Maxillofac. Surg. 2015, 6, 136–143. [Google Scholar] [CrossRef]
- Han, X.; An, J.; Zhang, Y.; Gong, X.; He, Y. Risk Factors for Life-Threatening Complications of Maxillofacial Space Infection. J. Craniofac. Surg. 2016, 27, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Giunta Crescente, C.; Soto de Facchin, M.; Acevedo Rodríguez, A.M. Medical-dental considerations in the care of children with facial cellulitis of odontogenic origin. A disease of interest for pediatricians and pediatric dentists. Arch. Argent Pediatr. 2018, 116, 548–553. [Google Scholar] [CrossRef]
- Biasotto, M.; Pellis, T.; Cadenaro, M.; Bevilacqua, L.; Berlot, G.; Di Lenarda, R. Odontogenic infections and descending necrotising mediastinitis: Case report and review of the literature. Int. Dent. J. 2004, 54, 97–102. [Google Scholar] [CrossRef]
- Gonzalez, L.P.; Pignaton, W.; Kusano, P.S.; Módolo, N.S.; Braz, J.R.; Braz, L.G. Anesthesia-related mortality in pediatric patients: A systematic review. Clinics 2012, 67, 381–387. [Google Scholar] [CrossRef]
- da Fonseca, M.A.; Nelson, T. The use of general anesthesia in behavior management. In Behavior Management in Dentistry for Children, 2nd ed.; Wright, G.Z., Kupietzky, A., Eds.; John Wiley & Sons: Chichester, UK, 2014; pp. 185–195. [Google Scholar]
- Perina, V.; Szaraz, D.; Harazim, H.; Urik, M.; Klabusayova, E. Paediatric Deep Neck Infection-The Risk of Needing Intensive Care. Children 2022, 9, 979. [Google Scholar] [CrossRef]
- Orzechowska-Wylęgała, B.; Wylęgała, A.; Buliński, M.; Niedzielska, I.; Madej, A. Pharmacoeconomic analysis of antibiotic therapy in maxillofacial surgery. BDJ Open. 2017, 3, 17002. [Google Scholar] [CrossRef] [Green Version]
- Wylęgała, A.; Paluch, M.; Orzechowska-Wylęgała, B.; Galicka-Brzezina, A.; Chyrek, K.; Madej, A. Pharmacoeconomic analysis of antibiotic therapy in surgical site infections. Int. J. Clin. Pharmacol. Ther. 2019, 57, 429–436. [Google Scholar] [CrossRef]
- Unkel, J.H.; McKibben, D.H.; Fenton, S.J.; Nazif, M.M.; Moursi, A.; Schuit, K. Comparison of odontogenic and nonodontogenic facial cellulitis in a pediatric hospital population. Pediatr. Dent. 1997, 19, 476–479. [Google Scholar]
- Biederman, G.R.; Dodson, T.B. Epidemiologic review of facial infections in hospitalized pediatric patients. J. Oral Maxillofac. Surg. 1994, 52, 1042–1045. [Google Scholar] [CrossRef]
- Lin, Y.T.; Lu, P.W. Retrospective study of pediatric facial cellulitis of odontogenic origin. Pediatr. Infect. Dis. J. 2006, 25, 339–342. [Google Scholar] [CrossRef]
- Doll, C.; Carl, F.; Neumann, K.; Voss, J.O.; Hartwig, S.; Waluga, R.; Heiland, M.; Raguse, J.D. Odontogenic Abscess-Related Emergency Hospital Admissions: A Retrospective Data Analysis of 120 Children and Young People Requiring Surgical Drainage. Biomed. Res. Int. 2018, 2018, 3504727. [Google Scholar] [CrossRef] [Green Version]
- Pepys, M.B.; Booth, S.E.; Tennent, G.A.; Butler, P.J.; Williams, D.G. Binding of pentraxins to different nuclear structures: C-reactive protein binds to small nuclear ribonucleoprotein particles, serum amyloid P component binds to chromatin and nucleoli. Clin. Exp. Immunol. 1994, 97, 152–157. [Google Scholar] [CrossRef]
- Ylijoki, S.; Suuronen, R.; Jousimies-Somer, H.; Meurman, J.H.; Lindqvist, C. Differences between patients with or without the need for intensive care due to severe odontogenic infections. J. Oral Maxillofac. Surg. 2001, 59, 867–873. [Google Scholar] [CrossRef]
- Stathopoulos, P.; Igoumenakis, D.; Shuttleworth, J.; Smith, W.; Ameerally, P. Predictive factors of hospital stay in patients with odontogenic maxillofacial infections: The role of C-reactive protein. Br. J. Oral Maxillofac. Surg. 2017, 55, 367–370. [Google Scholar] [CrossRef]
- Sharma, A.; Giraddi, G.; Krishnan, G.; Shahi, A.K. Efficacy of Serum Prealbumin and CRP Levels as Monitoring Tools for Patients with Fascial Space Infections of Odontogenic Origin: A Clinicobiochemical Study. J. Maxillofac. Oral Surg. 2014, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pinilla, J.C.; Hayes, P.; Laverty, W.; Arnold, C.; Laxdal, V. The C-reactive protein to prealbumin ratio correlates with the severity of multiple organ dysfunction. Surgery 1998, 124, 799–806. [Google Scholar] [CrossRef]
- Bègue, L.; Schlund, M.; Raoul, G.; Ferri, J.; Lauwers, L.; Nicot, R. Biological factors predicting the length of hospital stay in odontogenic cellulitis. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, 303–308. [Google Scholar] [CrossRef]
- Heim, N.; Wiedemeyer, V.; Reich, R.H.; Martini, M. The role of C-reactive protein and white blood cell count in the prediction of length of stay in hospital and severity of odontogenic abscess. J. Craniomaxillofac. Surg. 2018, 46, 2220–2226. [Google Scholar] [CrossRef]
- Ren, Y.F.; Malmstrom, H.S. Rapid quantitative determination of C-reactive protein at chair side in dental emergency patients. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 104, 49–55. [Google Scholar] [CrossRef]
- Aminzadeh, Z.; Parsa, E. Relationship between Age and Peripheral White Blood Cell Count in Patients with Sepsis. Int. J. Prev. Med. 2011, 2, 238–242. [Google Scholar]
- Boucher, N.E., Jr.; Hanrahan, J.J.; Kihara, F.Y. Occurrence of C-reactive protein in oral disease. J. Dent. Res. 1967, 46, 624. [Google Scholar] [CrossRef]
- Kaur, A.; Sandhu, A.; Kaur, T.; Bhullar, R.S.; Dhawan, A.; Kaur, J. Correlation Between Clinical Course and Biochemical Analysis in Odontogenic Space Infections. J. Maxillofac. Oral Surg. 2019, 18, 203–209. [Google Scholar] [CrossRef]
- Bagul, R.; Chandan, S.; Sane, V.D.; Patil, S.; Yadav, D. Comparative Evaluation of C-Reactive Protein and WBC Count in Fascial Space Infections of Odontogenic Origin. J. Maxillofac. Oral Surg. 2017, 16, 238–242. [Google Scholar] [CrossRef]
- Peters, E.S.; Fong, B.; Wormuth, D.W.; Sonis, S.T. Risk factors affecting hospital length of stay in patients with odontogenic maxillofacial infections. J. Oral Maxillofac. Surg. 1996, 54, 1386–1392. [Google Scholar] [CrossRef]
- Wang, J.; Ahani, A.; Pogrel, M.A. A five-year retrospective study of odontogenic maxillofacial infections in a large urban public hospital. Int. J. Oral Maxillofac. Surg. 2005, 34, 646–649. [Google Scholar] [CrossRef]
- Huang, Z.; Fu, Z.; Huang, W.; Huang, K. Prognostic value of neutrophil-to-lymphocyte ratio in sepsis: A meta-analysis. Am. J. Emerg. Med. 2020, 38, 641–647. [Google Scholar] [CrossRef]
- Dogruel, F.; Gonen, Z.B.; Gunay-Canpolat, D.; Zararsiz, G.; Alkan, A. The Neutrophil-to-Lymphocyte ratio as a marker of recovery status in patients with severe dental infection. Med. Oral Patol. Oral Cir. Bucal. 2017, 22, 440–445. [Google Scholar] [CrossRef]
- Gallagher, N.; Collyer, J.; Bowe, C.M. Neutrophil to lymphocyte ratio as a prognostic marker of deep neck space infections secondary to odontogenic infection. Br. J. Oral Maxillofac. Surg. 2021, 59, 228–232. [Google Scholar] [CrossRef]
- Evans, D.C.; Corkins, M.R.; Malone, A.; Miller, S.; Mogensen, K.M.; Guenter, P.; Jensen, G.L.; the ASPEN Malnutrition Committee. The Use of Visceral Proteins as Nutrition Markers: An ASPEN Position Paper. Nutr. Clin. Pract. 2021, 36, 22–28. [Google Scholar] [CrossRef]
- Cunningham, L.L., Jr.; Madsen, M.J.; Van Sickels, J.E. Using prealbumin as an inflammatory marker for patients with deep space infections of odontogenic origin. J. Oral Maxillofac. Surg. 2006, 64, 375–378. [Google Scholar] [CrossRef]
- Adeosun, P.O.; Fatusi, O.A.; Adedeji, T.A. Assessment of Severity of Illness and Monitoring Response to Treatment of Odontogenic Space Infection Using Serum Prealbumin. J. Maxillofac. Oral Surg. 2019, 18, 106–111. [Google Scholar] [CrossRef]
- Johnson, E.D.; Schell, J.C.; Rodgers, G.M. The D-dimer assay. Am. J. Hematol. 2019, 94, 833–839. [Google Scholar] [CrossRef]
- Sánchez-Siles, M.; Rosa-Salazar, V.; Salazar-Sánchez, N.; Camacho-Alonso, F. Periodontal disease as a risk factor of recurrence of venous thromboembolic disease: A prospective study. Acta Odontol. Scand. 2015, 73, 8–13. [Google Scholar] [CrossRef]
- Ramseier, C.A.; Kinney, J.S.; Herr, A.; Braun, T.; Sugai, J.V.; Shelburne, C.A.; Rayburn, L.A.; Tran, H.M.; Singh, A.K.; Giannobile, W.V. Identification of pathogen and host-response markers correlated with periodontal disease. J. Periodontol. 2009, 80, 436–446. [Google Scholar] [CrossRef]
- Levi, M.; van der Poll, T.; Büller, H.R. Bidirectional relation between inflammation and coagulation. Circulation 2004, 109, 2698–2704. [Google Scholar] [CrossRef]
Number | CRP | WBC Count | D-Dimer | Prealbumin | NLR Ratio |
---|---|---|---|---|---|
1 | 32.2 | 5.39 | 618 | 0.14 | 2.5 |
2 | 166.60 | 11.5 | 1051 | 0.13 | 7.5 |
3 | 112 | 12.5 | 1167 | 0.15 | 6.2 |
4 | 129.6 | 13.66 | 1138 | 0.09 | 9.8 |
5 | 26.7 | 14.3 | 1038 | 0.08 | 3.4 |
6 | 102.2 | 14.2 | 1207 | 0.09 | 8.25 |
7 | 3 | 6.4 | 417 | 0.16 | 1.1 |
8 | 12.9 | 12 | 540 | 0.13 | 8.1 |
9 | 13.3 | 6.4 | 1599 | 0.11 | 7.1 |
10 | 44.7 | 10.24 | 2180 | 0.12 | 6.6 |
11 | 40 | 10.22 | 246 | 0.14 | 3.8 |
12 | 33.8 | 15.3 | 390 | 0.13 | 4.2 |
13 | 45.1 | 8.5 | 511 | 0.15 | 2.5 |
14 | 11 | 6.37 | 179 | 0.15 | 2.7 |
15 | 34.1 | 16.1 | 795 | 0.1 | 3.5 |
16 | 40 | 13.4 | 466 | 0.1 | 3.4 |
17 | 147.9 | 22.6 | 2797 | 0.13 | 23.7 |
18 | 121.6 | 14.2 | 12,958 | 0.13 | 41.1 |
19 | 98 | 11.3 | 453 | 0.15 | 5.2 |
20 | 70 | 12.5 | 671 | 0.14 | 2.15 |
Number | CRP | WBC Count | D-Dimer | Prealbumin | NRL Ratio |
---|---|---|---|---|---|
1 | 2.2 | 8.52 | 544 | 0.26 | 1.7 |
2 | 2.4 | 9.3 | 560 | 0.25 | 2.1 |
3 | 3.1 | 9.69 | 98 | 0.24 | 2.5 |
4 | 1.9 | 9.32 | 64 | 0.18 | 0.6 |
5 | 0.4 | 4.2 | 14 | 0.2 | 1.5 |
6 | 4.7 | 6.58 | 35 | 0.2 | 1 |
7 | 0 | 5.9 | 47 | 0.26 | 1.3 |
8 | 3.4 | 6.46 | 466 | 0.21 | 0.8 |
9 | 0.7 | 8.56 | 21 | 0.16 | 3.5 |
10 | 0.3 | 4.83 | 167 | 0.26 | 1.5 |
11 | 0.3 | 5.99 | 199 | 0.23 | 1 |
12 | 1.6 | 6 | 680 | 0.26 | 1.9 |
13 | 2.5 | 4.2 | 182 | 0.18 | 1.2 |
14 | 0 | 5.9 | 359 | 0.21 | 1.7 |
15 | 0.6 | 4.23 | 319 | 0.28 | 1.3 |
16 | 0.9 | 5.8 | 189 | 0.19 | 2.6 |
17 | 0.7 | 5.5 | 158 | 0.24 | 2.6 |
18 | 1.1 | 6.1 | 236 | 0.19 | 2.9 |
19 | 0.3 | 4.7 | 141 | 0.18 | 1.8 |
20 | 3.4 | 6.7 | 278 | 0.2 | 2.0 |
Parameter | SS + CS | SS | CS | p Value |
---|---|---|---|---|
CRP | 32.9 ± 46.7 | 64.2 ± 49.0 | 1.5 ± 1.3 | <0.001 |
WBC Count | 9.1 ±4.1 | 11.9 ± 4.0 | 6.4 ± 1.7 | <0.001 |
NLR | 4.7 ± 7.0 | 7.6 ± 9.0 | 1.8 ± 0.7 | 0.007 |
D-dimer | 879.4 ± 2019.3 | 1521.0 ± 2701.1 | 237.8 ± 189.8 | 0.046 |
Prealbumin | 0.2 ± 0.1 | 0.1 ± 0.0 | 0.2 ± 0.0 | <0.001 |
Hospitalization | 2.1 ± 2.1 | 4.0 ± 2.6 | 1.0 ± 0.0 | <0.001 |
Parameter | CRP | WBC | NLR | D-dimer | Prealbumin |
---|---|---|---|---|---|
CRP | 1.00 | ||||
WBC Count | 0.43 | 1.00 | |||
NLR | 0.57 * | 0.45 | 1.00 | ||
D-dimer | 0.55 * | 0.39 | 0.67 * | 1.00 | |
Prealbumin | −0.14 | −0.58 * | −0.45 * | −0.49 * | 1.00 |
Number | Trismus [mm] | Extraoral Swelling [mm] | Intraoral Swelling | Length of Hospitalization | Number of Anatomic Spaces Involved |
---|---|---|---|---|---|
1 | 25 | 12 | + | 4 | 2 |
2 | 19 | 24 | + | 3 | 2 |
3 | − | 12 | + | 6 | 2 |
4 | 22 | 22 | + | 5 | 1 |
5 | − | 10 | + | 2 | 2 |
6 | 27 | 19 | + | 3 | 3 |
7 | 29 | 14 | + | 1 | 1 |
8 | 20 | 17 | + | 4 | 2 |
9 | − | 16 | + | 2 | 1 |
10 | 24 | 20 | + | 1 | 3 |
11 | − | 0 | − | 4 | 0 |
12 | − | 0 | − | 3 | 0 |
13 | − | 0 | + | 3 | 2 |
14 | − | 0 | + | 1 | 2 |
15 | 28 | 18 | + | 5 | 1 |
16 | − | 0 | + | 1 | 1 |
17 | 22 | 26 | + | 10 | 3 |
18 | 23 | 23 | + | 7 | 3 |
19 | 25 | 20 | + | 1 | 1 |
20 | − | 0 | + | 1 | 2 |
Parameter | Trismus | Extraoral Swelling | Length of Hospitalization | Number of Anatomic Spaces Involved |
---|---|---|---|---|
CRP | −0.43 | 0.56 * | 0.44 (p = 0.054) | 0.36 |
WBC Count | −0.16 | 0.29 | 0.44 (p = 0.05) | 0.12 |
NLR | −0.63 * | 0.76 * | 0.56 * | 0.34 |
D-dimer | −0.44 * | 0.7 * | 0.44 (0.055) | 0.64 * |
Prealbumin | 0.19 | −0.29 | −0.15 | −0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Słotwińska-Pawlaczyk, A.; Orzechowska-Wylęgała, B.; Latusek, K.; Roszkowska, A.M. Analysis of Clinical Symptoms and Biochemical Parameters in Odontogenic Cellulitis of the Head and Neck Region in Children. Children 2023, 10, 172. https://doi.org/10.3390/children10010172
Słotwińska-Pawlaczyk A, Orzechowska-Wylęgała B, Latusek K, Roszkowska AM. Analysis of Clinical Symptoms and Biochemical Parameters in Odontogenic Cellulitis of the Head and Neck Region in Children. Children. 2023; 10(1):172. https://doi.org/10.3390/children10010172
Chicago/Turabian StyleSłotwińska-Pawlaczyk, Adrianna, Bogusława Orzechowska-Wylęgała, Katarzyna Latusek, and Anna Maria Roszkowska. 2023. "Analysis of Clinical Symptoms and Biochemical Parameters in Odontogenic Cellulitis of the Head and Neck Region in Children" Children 10, no. 1: 172. https://doi.org/10.3390/children10010172
APA StyleSłotwińska-Pawlaczyk, A., Orzechowska-Wylęgała, B., Latusek, K., & Roszkowska, A. M. (2023). Analysis of Clinical Symptoms and Biochemical Parameters in Odontogenic Cellulitis of the Head and Neck Region in Children. Children, 10(1), 172. https://doi.org/10.3390/children10010172