Tranexamic Acid in Hip Reconstructions in Children with Cerebral Palsy: A Double-Blind Randomized Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Methodological Criteria
2.4. Risks and Benefits
2.5. Statistical Analysis
3. Results
3.1. Blood Loss
3.2. Drop in Hemoglobin Concentration
3.3. Complications
3.4. Hospital Internment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Majid, I.; Alshryda, S.; Somanchi, B.; Morakis, E.; Foster, A. The Value of Tranexamic Acid in Reducing Blood Loss following Hip Reconstruction in Children with Cerebral Palsy. J. Blood Transfus. 2015, 2015, 827027. [Google Scholar] [CrossRef] [PubMed]
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev. Med. Child Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Dhawale, A.A.; Shah, S.A.; Sponseller, P.D.; Bastrom, T.; Neiss, G.; Yorgova, P.; Newton, P.O.; Yaszay, B.; Abel, M.F.; Shufflebarger, H.; et al. Are antifibrinolytics helpful in decreasing blood loss and transfusions during spinal fusion surgery in children with cerebral palsy scoliosis? Spine 2012, 37, E549–E555. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, F.; Zurakowski, D.; Sethna, N.F. Tranexamic acid diminishes intraoperative blood loss and transfusion in spinal fusions for Duchenne muscular dystrophy scoliosis. Spine 2007, 32, 2278–2283. [Google Scholar] [CrossRef] [PubMed]
- Kasimian, S.; Skaggs, D.L.; Sankar, W.N.; Farlo, J.; Goodarzi, M.; Tolo, V.T. Aprotinin in pediatric neuromuscular scoliosis surgery. Eur. Spine J. 2008, 17, 1671–1675. [Google Scholar] [CrossRef]
- Thompson, G.H.; Florentino-Pineda, I.; Poe-Kochert, C.; Armstrong, D.G.; Son-Hing, J. Role of amicar in surgery for neuromuscular scoliosis. Spine 2008, 33, 2623–2629. [Google Scholar] [CrossRef]
- Jain, A.; Sponseller, P.D.; Shah, S.A.; Yaszay, B.; Njoku, D.B.; Miyanji, F.; Newton, P.O.; Bastrom, T.P.; Marks, M.C.; Harms Study Group. Incidence of and Risk Factors for Loss of 1 Blood Volume During Spinal Fusion Surgery in Patients With Cerebral Palsy. J. Pediatr. Orthop. 2017, 37, e484–e487. [Google Scholar] [CrossRef] [PubMed]
- Sadigurski, D.; Andion, D.; Boureau, P.; Ferreira, M.C.; Carneiro, R.J.F.; Colavolpe, P.O. Effect of tranexamic acid on bleeding control intotal knee arthroplasty. Acta Ortop. Bras. 2016, 24, 131–136.9. [Google Scholar] [CrossRef]
- Melo, G.L.R.; Lages, D.S.; Madureira Junior, J.L.; Pellucci, G.P.; Pellucci, J.W.J. O uso do ácido tranexâmico em pacientes submetidos a artroplastia total primária do quadril: Uma avaliac¸ão do seu impacto em diferentes protocolos de administração. Rev. Bras. Ortop. 2017, 52, 34–39. [Google Scholar] [CrossRef]
- Gilley, M.; Beno, S. Damage control resuscitation in pediatric trauma. Curr. Opin. Pediatr. 2018, 30, 338–343. [Google Scholar] [CrossRef]
- Faraoni, D.; Goobie, S.M. The efficacy of antifibrinolytic drugs in children undergoing noncardiac surgery: A systematic review of the literature. Anesth. Analg. 2014, 118, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.J.; Johnson, C.C.; Goobie, S.M.; Nami, N.; Wetzler, J.A.; Sponseller, P.D.; Frank, S.M. High-dose Versus Low-dose Tranexamic Acid to Reduce Transfusion Requirements in Pediatric Scoliosis Surgery. J. Pediatr. Orthop. 2017, 37, e552–e557. [Google Scholar] [CrossRef] [PubMed]
- Alix-Séguin, L.; Lodé, N.; Orliaguet, G.; Chamorro, E.; Kerroué, F.; Lorge, C.; Moreira, A. And if it happened to children? Adapting medical care during terrorist attacks with multiple pediatric victims. Arch. Pediatr. 2017, 24, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Alshryda, S.; Sukeik, M.; Sarda, P.; Blenkinsopp, J.; Haddad, F.S.; Mason, J.M. A systematic review and meta-analysis of the topical administration of tranexamic acid in total hip and knee replacement. Bone Jt. J. 2014, 96-B, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, J.P.F.; Badaro, B.S.; Balbino, J.R.M.; Danieli, M.V.; Queiroz, A.O.; Cataneo, D.C. Application of Tranexamic Acid in Total Knee Arthroplasty—Prospective Randomized Trial. Open Orthop. J. 2017, 11, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.M.; Barros, A.G.C.; Naves, C.D.; Gomes, N.L.; Lobo, J.C.; Schettino, L.C.V.; Silva, L.E.C.T. Use of tranexamic acid for controlling bleeding in thoracolumbar scoliosis surgery with posterior instrumentation. Rev. Bras. Ortop. 2015, 50, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Li, H.; Wang, D.; He, X.; Zhang, C.; Yang, P. Systematic review and meta-analysis of perioperative intravenous tranexamic acid use in spinal surgery. PLoS ONE 2013, 8, e55436. [Google Scholar] [CrossRef]
- Mu, X.; Wei, J.; Wang, C.; Ou, Y.; Yin, D.; Liang, B.; Qiu, D.; Li, Z. Intravenous Administration of Tranexamic Acid Significantly Reduces Visible and Hidden Blood Loss Compared with Its Topical Administration for Double-Segment Posterior Lumbar Interbody Fusion: A Single-Center, Placebo-Controlled, Randomized Trial. World Neurosurg. 2019, 122, e821–e827. [Google Scholar] [CrossRef]
- Masrouha, K.Z.; Shabin, Z.M.; Bhutada, K.; Sala, D.A.; Godfried, D.H.; Karamitopoulos, M.S. Impact of tranexamic acid on blood loss and transfusion rate in children with cerebral palsy undergoing hip reconstruction with two or more osteotomies. Eur. J. Orthop. Surg. Traumatol 2022, 32, 287–291. [Google Scholar] [CrossRef]
- Lins, L.A.M.; Miller, P.E.; Samineni, A.B.; Watkins, C.J.; Matheney, T.H.; Snyder, B.D.; Shore, B.J.M. The Use of Tranexamic Acid (TXA) in Neuromuscular Hip Reconstruction: Can We Alter the Need for Blood Transfusion? J. Pediatric. Orthop. 2020, 40, e766–e771. [Google Scholar] [CrossRef]
- Lonstein, J.E.; Koop, S.E.; Novachek, T.F.; Perra, J.H. Results and complications after spinal fusion for neuromuscular scoliosis in cerebral palsy and static encephalopathy using Luque Galveston instrumentation: Experience in 93 patients. Spine 2012, 37, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Neilipovitz, D.T.; Murto, K.; Hall, L.; Barrowman, N.J.; Splinter, W.M. A randomized trial of tranexamic acid to reduce blood transfusion for scoliosis surgery. Anesth. Analg 2001, 93, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Samdani, A.F.; Belin, E.J.; Bennett, J.T.; Miyanji, F.; Pahys, J.M.; Shah, S.A.; Newton, P.O.; Betz, R.R.; Cahill, P.J.; Sponseller, P.D. Major perioperative complications after spine surgery in patients with cerebral palsy: Assessment of risk factors. Eur. Spine J. 2016, 25, 795–800. [Google Scholar] [CrossRef]
- Sherrod, B.A.; Baker, D.K.; Gilbert, S.R. Blood Transfusion Incidence, Risk Factors, and Associated Complications in Surgical Treatment of Hip Dysplasia. J. Pediatr. Orthop. 2018, 38, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Canavese, F.; De Coulon, G. Percutaneous pelvic osteotomy in non ambulatory cerebral palsy patients. Orthop. Traumatol. Surg. Res. 2014, 100, 329–332. [Google Scholar] [CrossRef] [PubMed]
- TRANSAMIN: Ácido Tranexâmico; Medicine Leaflet; Hypofarma: São Paulo, Brazil, 2013.
- Kauvar, D.S.; Lefering, R.; Wade, C.E. Impact of hemorrhage on trauma outcome: An overview of epidemiology, clinical presentations, and therapeutic considerations. J. Trauma. 2006, 60, S3–S11. [Google Scholar] [CrossRef]
- Zekcer, A.; Del Priori, R.; Tieppo, C.; da Silva, R.S.; Severino, N.R. Estudo comparativo com uso do ácido tranexâmico tópico e intravenoso em relação à perda sanguínea na artroplastia total do joelho. Rev. Bras. Ortop. 2017, 52, 589–595. [Google Scholar] [CrossRef]
- Almeida, M.D.C.; Albuquerque, R.P.; Palhares, G.M.; Almeida, J.P.C.; Barretto, J.M.; Cavanellas, N. Avaliação do uso do ácido tranexâmico em artroplastia total do joelho. Rev. Bras. Ortop. 2018, 53, 761–767. [Google Scholar] [CrossRef]
Average | Median | SD | CV | Min | Max | N | CI | p | ||
---|---|---|---|---|---|---|---|---|---|---|
Weight | TXA | 22.62 | 22.00 | 7.26 | 32% | 9.0 | 37.0 | 21 | 3.11 | 0.014 |
Control | 31.80 | 30.50 | 12.42 | 39% | 18.0 | 50.0 | 10 | 7.70 | ||
Age | TXA | 10.27 | 10.50 | 2.57 | 25% | 5.3 | 14.7 | 21 | 1.10 | 0.721 |
Control | 10.69 | 9.71 | 3.92 | 37% | 5.4 | 18.0 | 10 | 2.43 |
Average | Median | SD | CV | Min | Max | N | CI | p | ||
---|---|---|---|---|---|---|---|---|---|---|
Bleeding (intraoperative) | TXA | 194 | 180 | 90 | 46% | 95 | 470 | 21 | 38 | 0.002 |
Control | 313 | 285 | 92 | 29% | 220 | 530 | 10 | 57 | ||
Bleeding (postoperative) | TXA | 96.8 | 105.5 | 42.2 | 44% | 30.0 | 150.0 | 10 | 26.2 | 0.498 |
Control | 115.0 | 120.0 | 70.3 | 61% | 20.0 | 265.0 | 9 | 45.9 |
Average | Median | SD | CV | Min | Max | N | CI | p | ||
---|---|---|---|---|---|---|---|---|---|---|
Hb Pre | TXA | 12.59 | 12.40 | 1.14 | 9% | 10.7 | 14.7 | 21 | 0.49 | 0.365 |
Control | 12.95 | 12.95 | 0.68 | 5% | 12.1 | 14.1 | 10 | 0.42 | ||
Hb Post | TXA | 10.21 | 10.10 | 1.19 | 12% | 8.3 | 13.1 | 21 | 0.51 | 0.310 |
Control | 9.78 | 9.70 | 0.80 | 8% | 8.9 | 11.1 | 10 | 0.49 | ||
Hb Variation | TXA | −2.38 | −2.30 | 1.15 | −48% | −4.9 | 0.0 | 21 | 0.49 | 0.070 |
Control | −3.17 | −3.15 | 0.95 | −30% | −4.3 | −1.1 | 10 | 0.59 | ||
Hb Efficiency | TXA | −18.7% | −18.8% | 8.3% | −45% | −37.1% | 0.0% | 21 | 3.6% | 0.074 |
Control | −24.3% | −25.2% | 6.9% | −28% | −31.8% | −9.0% | 10 | 4.3% |
Average | Median | SD | CV | Min | Max | N | CI | p | ||
---|---|---|---|---|---|---|---|---|---|---|
Days at UCI | TXA | 1.43 | 1.00 | 0.81 | 57% | 1.0 | 4.0 | 21 | 0.35 | 0.098 |
Control | 3.20 | 1.00 | 4.69 | 146% | 1.0 | 16.0 | 10 | 2.90 | ||
Total days hospitalization | TXA | 3.71 | 3.00 | 1.35 | 36% | 2.0 | 7.0 | 21 | 0.58 | 0.049 |
Control | 5.90 | 4.00 | 4.56 | 77% | 3.0 | 18.0 | 10 | 2.82 |
Hb | All Sample | Without Transfusion Sample |
---|---|---|
Average | 12.71 | 12.73 |
Standard deviation | 1.014 | 1.124 |
N | 31 | 22 |
Difference | 0.464 | 0.610 |
Power | 72.2% | 72.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuccon, A.; Rogério Cardozo Kanaji, P.; Serafini Barcellos, D.; Zabulon, S.; de Oliveira Saraiva, A.; Yoshi de Freitas, T.A. Tranexamic Acid in Hip Reconstructions in Children with Cerebral Palsy: A Double-Blind Randomized Controlled Clinical Trial. Children 2023, 10, 1931. https://doi.org/10.3390/children10121931
Zuccon A, Rogério Cardozo Kanaji P, Serafini Barcellos D, Zabulon S, de Oliveira Saraiva A, Yoshi de Freitas TA. Tranexamic Acid in Hip Reconstructions in Children with Cerebral Palsy: A Double-Blind Randomized Controlled Clinical Trial. Children. 2023; 10(12):1931. https://doi.org/10.3390/children10121931
Chicago/Turabian StyleZuccon, Alexandre, Paulo Rogério Cardozo Kanaji, Dávia Serafini Barcellos, Saulo Zabulon, Ageu de Oliveira Saraiva, and Thaila Andressa Yoshi de Freitas. 2023. "Tranexamic Acid in Hip Reconstructions in Children with Cerebral Palsy: A Double-Blind Randomized Controlled Clinical Trial" Children 10, no. 12: 1931. https://doi.org/10.3390/children10121931
APA StyleZuccon, A., Rogério Cardozo Kanaji, P., Serafini Barcellos, D., Zabulon, S., de Oliveira Saraiva, A., & Yoshi de Freitas, T. A. (2023). Tranexamic Acid in Hip Reconstructions in Children with Cerebral Palsy: A Double-Blind Randomized Controlled Clinical Trial. Children, 10(12), 1931. https://doi.org/10.3390/children10121931