Circulating Nitric Oxide and Metabolic Syndrome in Arab Children and Adolescents: A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometrics and Biochemical Analyses
2.3. Definition of Pediatric MetS
- Hypertriglyceridemia, defined as triglyceride levels ≥ 1.1 mmol/L.
- Low HDL-C < 1.3 mmol/L (for boys 15–19 years, HDL-C < 1.17 mmol/L).
- Elevated fasting blood glucose ≥ 6.1 mmol/L.
- Central obesity, defined as >75th percentile of waist circumference based on age and gender.
- Elevated blood pressure, defined as systolic or diastolic blood pressure (mmHg), which is >90th percentile for age, sex and height.
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef] [PubMed]
- Lotti, F.; Marchiani, S.; Corona, G.; Maggi, M. Metabolic Syndrome and Reproduction. Int. J. Mol. Sci. 2021, 22, 1988. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, M.D. Assessing and Managing the Metabolic Syndrome in Children and Adolescents. Nutrients 2019, 11, 1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weihe, P.; Weihrauch-Blüher, S. Metabolic Syndrome in Children and Adolescents: Diagnostic Criteria, Therapeutic Options and Perspectives. Curr. Obes. Rep. 2019, 8, 472–479. [Google Scholar] [CrossRef]
- Expert Panel on Detection, E.; Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA J. Am. Med. Assoc. 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- De Ferranti, S.D.; Osganian, S.K. Epidemiology of paediatric metabolic syndrome and type 2 diabetes mellitus. Diabetes Vasc. Dis. Res. 2007, 4, 285–296. [Google Scholar] [CrossRef]
- Sen, Y.; Kandemir, N.; Alikasifoglu, A.; Gonc, N.; Ozon, A. Prevalence and Risk Factors of Metabolic Syndrome in Obese Children and Adolescents: The Role of the Severity of Obesity. Eur. J. Pediatr. 2008, 167, 1183–1189. [Google Scholar] [CrossRef]
- Amer, O.E.; Sabico, S.; Khattak, M.N.K.; Alnaami, A.M.; Aljohani, N.J.; Alfawaz, H.; AlHameidi, A.; Al-Daghri, N.M. Increasing Prevalence of Pediatric Metabolic Syndrome and Its Components among Arab Youth: A Time-Series Study from 2010–2019. Children 2021, 8, 1129. [Google Scholar] [CrossRef]
- Al-Rubeaan, K.; Bawazeer, N.; Al Farsi, Y.; Youssef, A.M.; Al-Yahya, A.A.; AlQumaidi, H.; Al-Malki, B.M.; Naji, K.A.; Al-Shehri, K.; Al Rumaih, F.I. Prevalence of Metabolic Syndrome in Saudi Arabia—A Cross Sectional Study. BMC Endocr. Disord. 2018, 18, 16. [Google Scholar] [CrossRef]
- Morrison, J.A.; Friedman, L.A.; Gray-McGuire, C. Metabolic Syndrome in Childhood Predicts Adult Cardiovascular Disease 25 Years Later: The Princeton Lipid Research Clinics Follow-up Study. Pediatrics 2007, 120, 340–345. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Pang, D.; Randhawa, G.; Pappas, Y. Development and Validation of a Simple Risk Model for Predicting Metabolic Syndrome (MetS) in Midlife: A Cohort Study. Diabetes Metab. Syndr. Obes. 2022, 6, 1051–1075. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Al-Attas, O.S.; Alokail, M.S.; Alkharfy, K.M.; Yakout, S.M.; Sabico, S.B.; Gibson, G.C.; Chrousos, G.P.; Kumar, S. Parent-offspring transmission of adipocytokine levels and their associations with metabolic traits. PLoS ONE 2011, 6, e18182. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Li, S.; Liu, Y.; Guo, Y.; Fernandez, C.; Bazzano, L.; He, J.; Chen, W. Associations Between Life-Course Lipid Trajectories and Subclinical Atherosclerosis in Midlife. JAMA Netw. Open 2022, 3, e2234862. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Weitzberg, E. Nitric oxide signaling in health and disease. Cell 2022, 4, 185, 2853–2878. [Google Scholar] [CrossRef]
- Khan, B.V.; Harrison, D.G.; Olbrych, M.T.; Alexander, R.W.; Medford, R.M. Nitric Oxide Regulates Vascular Cell Adhesion Molecule 1 Gene Expression and Redox-Sensitive Transcriptional Events in Human Vascular Endothelial Cells. Proc. Natl. Acad. Sci. USA 1996, 93, 9114–9119. [Google Scholar] [CrossRef] [Green Version]
- Gudi, T.; Hong, G.K.; Vaandrager, A.B.; Lohmann, S.M.; Pilz, R.B. Nitric Oxide and CGMP Regulate Gene Expression in Neuronal and Glial Cells by Activating Type II CGMP-Dependent Protein Kinase. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1999, 13, 2143–2152. [Google Scholar] [CrossRef] [Green Version]
- Pantopoulos, K.; Hentze, M.W. Nitric Oxide Signaling to Iron-Regulatory Protein: Direct Control of Ferritin MRNA Translation and Transferrin Receptor MRNA Stability in Transfected Fibroblasts. Proc. Natl. Acad. Sci. USA 1995, 92, 1267–1271. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hill, P.; Haile, D.J. Role of the Ferroportin Iron-Responsive Element in Iron and Nitric Oxide Dependent Gene Regulation. Blood Cells Mol. Dis. 2002, 29, 315–326. [Google Scholar] [CrossRef]
- Reijrink, M.; De Boer, S.A.; Van Roon, A.M.; Slart, R.H.J.A.; Fernandez, B.O.; Feelisch, M.; Heerspink, H.J.L.; Van Goor, H.; Hillebrands, J.-L.; Mulder, D.J. Plasma Nitrate Levels Are Related to Metabolic Syndrome and Are Not Altered by Treatment with DPP-4 Inhibitor Linagliptin: A Randomised, Placebo-Controlled Trial in Patients with Early Type 2 Diabetes Mellitus. Antioxidants 2021, 10, 1548. [Google Scholar] [CrossRef]
- Akram, F.; Fuchs, D.; Daue, M.; Nijjar, G.; Ryan, A.; Benros, M.E.; Okusaga, O.; Baca-Garcia, E.; Brenner, L.A.; Lowry, C.A.; et al. Association of plasma nitrite levels with obesity and metabolic syndrome in the Old Order Amish. Obes. Sci. Pract. 2018, 4, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Caimi, G.; Lo Presti, R.; Montana, M.; Noto, D.; Canino, B.; Averna, M.R.; Hopps, E. Lipid peroxidation, nitric oxide metabolites, and their ratio in a group of subjects with metabolic syndrome. Oxid. Med. Cell Longev. 2014, 2014, 824756. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W. Enhanced Nitric Oxide Production Is Closely Associated with Serum Lipid Concentrations in Adolescents. Clin. Chim. Acta Int. J. Clin. Chem. 2004, 347, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Gruber, H.-J.; Mayer, C.; Mangge, H.; Fauler, G.; Grandits, N.; Wilders-Truschnig, M. Obesity Reduces the Bioavailability of Nitric Oxide in Juveniles. Int. J. Obes. 2008, 32, 826–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, H.-C.; Lin, S.-C.; Wang, Y.-M. The Relationship among Serum Cytokines, Chemokine, Nitric Oxide, and Leptin in Children with Type 1 Diabetes Mellitus. Clin. Biochem. 2004, 37, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Muniyappa, R.; Chen, H.; Montagnani, M.; Sherman, A.; Quon, M.J. Endothelial dysfunction due to selective insulin resistance in vascular endothelium: Insights from mechanistic modeling. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E629–E646. [Google Scholar] [CrossRef]
- Perreault, M.; Marette, A. Targeted Disruption of Inducible Nitric Oxide Synthase Protects against Obesity-Linked Insulin Resistance in Muscle. Nat. Med. 2001, 7, 1138–1143. [Google Scholar] [CrossRef]
- Colasanti, M.; Suzuki, H. The Dual Personality of NO. Trends Pharmacol. Sci. 2000, 21, 249–252. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Rahman, S.; Sabico, S.; Yakout, S.; Wani, K.; Al-Attas, O.S.; Saravanan, P.; Tripathi, G.; McTernan, P.G.; Alokail, M.S. Association of Vitamin B12 with Pro-Inflammatory Cytokines and Biochemical Markers Related to Cardiometabolic Risk in Saudi Subjects. Nutrients 2016, 8, 460. [Google Scholar] [CrossRef] [Green Version]
- Tsikas, D. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the l-arginine/nitric oxide area of research. J. Chromatogr. B. 2007, 851, 51–70. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Sabico, S.; Al-Saleh, Y.; Al-Attas, O.S.; Alnaami, A.M.; AlRehaili, M.M.; Al-Harbi, M.; Alfawaz, H.; Chrousos, G.; Alokail, M.S. Calculated Adiposity and Lipid Indices in Healthy Arab Children as Influenced by Vitamin D Status. J. Clin. Lipidol. 2016, 10, 775–781. [Google Scholar] [CrossRef]
- de Ferranti, S.D.; Gauvreau, K.; Ludwig, D.S.; Neufeld, E.J.; Newburger, J.W.; Rifai, N. Prevalence of the Metabolic Syndrome in American Adolescents: Findings from the Third National Health and Nutrition Examination Survey. Circulation 2004, 110, 2494–2497. [Google Scholar] [CrossRef] [Green Version]
- Reisinger, C.; Nkeh-Chungag, B.N.; Fredriksen, P.M.; Goswami, N. The Prevalence of Pediatric Metabolic Syndrome-a Critical Look on the Discrepancies between Definitions and Its Clinical Importance. Int. J. Obes. 2021, 45, 12–24. [Google Scholar] [CrossRef]
- Higashino, H.; Miya, H.; Mukai, H.; Miya, Y. Serum Nitric Oxide Metabolite (NO(x)) Levels in Hypertensive Patients at Rest: A Comparison of Age, Gender, Blood Pressure and Complications Using Normotensive Controls. Clin. Exp. Pharmacol. Physiol. 2007, 34, 725–731. [Google Scholar] [CrossRef]
- Vanizor, B.; Orem, A.; Karahan, S.C.; Kiran, E.; Erem, C.; Aliyazicioğlu, R.; Uydu, H.A. Decreased Nitric Oxide End-Products and Its Relationship with High Density Lipoprotein and Oxidative Stress in People with Type 2 Diabetes without Complications. Diabetes Res. Clin. Pract. 2001, 54, 33–39. [Google Scholar] [CrossRef]
- Tanaka, S.; Yashiro, A.; Nakashima, Y.; Nanri, H.; Ikeda, M.; Kuroiwa, A. Plasma Nitrite/Nitrate Level Is Inversely Correlated with Plasma Low-Density Lipoprotein Cholesterol Level. Clin. Cardiol. 1997, 20, 361–365. [Google Scholar] [CrossRef]
- Elizalde, M.; Rydén, M.; van Harmelen, V.; Eneroth, P.; Gyllenhammar, H.; Holm, C.; Ramel, S.; Olund, A.; Arner, P.; Andersson, K. Expression of Nitric Oxide Synthases in Subcutaneous Adipose Tissue of Nonobese and Obese Humans. J. Lipid Res. 2000, 41, 1244–1251. [Google Scholar] [CrossRef]
- Andersson, K.; Gaudiot, N.; Ribiere, C.; Elizalde, M.; Giudicelli, Y.; Arner, P. A Nitric Oxide-Mediated Mechanism Regulates Lipolysis in Human Adipose Tissue in Vivo. Br. J. Pharmacol. 1999, 126, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.W.; Pai, S.H.; Kim, S.K.; Ito, M.; Park, C.S.; Cha, Y.N. Increases in Nitric Oxide Concentrations Correlate Strongly with Body Fat in Obese Humans. Clin. Chem. 2001, 47, 1106–1109. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, T.; Suchitra, M.M.; Pallavi, M.; LN Srinivasa Rao, P.V.; Sachan, A. Risk Factors for Cardiovascular Disease in Obese Children. Indian Pediatr. 2017, 15, 752–755. [Google Scholar] [CrossRef] [PubMed]
- Maejima, K.; Nakano, S.; Himeno, M.; Tsuda, S.; Makiishi, H.; Ito, T.; Nakagawa, A.; Kigoshi, T.; Ishibashi, T.; Nishio, M.; et al. Increased Basal Levels of Plasma Nitric Oxide in Type 2 Diabetic Subjects. Relationship to Microvascular Complications. J. Diabetes Complicat. 2001, 15, 135–143. [Google Scholar] [CrossRef]
- Hill, B.G.; Dranka, B.P.; Bailey, S.M.; Lancaster, J.R.; Darley-Usmar, V.M. What Part of NO Don’t You Understand? Some Answers to the Cardinal Questions in Nitric Oxide Biology. J. Biol. Chem. 2010, 285, 19699–19704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kone, B.C.; Kuncewicz, T.; Zhang, W.; Yu, Z.-Y. Protein Interactions with Nitric Oxide Synthases: Controlling the Right Time, the Right Place, and the Right Amount of Nitric Oxide. Am. J. Physiol. Ren. Physiol. 2003, 285, F178–F190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinert, H.; Pautz, A.; Linker, K.; Schwarz, P.M. Regulation of the Expression of Inducible Nitric Oxide Synthase. Eur. J. Pharmacol. 2004, 500, 255–266. [Google Scholar] [CrossRef]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W. Obesity Is Associated with Macrophage Accumulation in Adipose Tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef] [PubMed]
- Sugita, H.; Fujimoto, M.; Yasukawa, T.; Shimizu, N.; Sugita, M.; Yasuhara, S.; Martyn, J.A.; Kaneki, M. Inducible nitric-oxide synthase and NO donor induce insulin receptor substrate-1 degradation in skeletal muscle cells. J. Biol. Chem 2005, 280, 14203–14211. [Google Scholar] [PubMed] [Green Version]
- Mohammadi, M.; Gozashti, M.H.; Aghadavood, M.; Mehdizadeh, M.R.; Hayatbakhsh, M.M. Clinical Significance of Serum IL-6 and TNF-α Levels in Patients with Metabolic Syndrome. Rep. Biochem. Mol. Biol. 2017, 6, 74–79. [Google Scholar]
- Maruotti, N.; d’Onofrio, F.; Cantatore, F.P. Metabolic Syndrome and Chronic Arthritis: Effects of Anti-TNF-α Therapy. Clin. Exp. Med. 2015, 15, 433–438. [Google Scholar] [CrossRef]
- Barsacchi, R.; Perrotta, C.; Bulotta, S.; Moncada, S.; Borgese, N.; Clementi, E. Activation of Endothelial Nitric-Oxide Synthase by Tumor Necrosis Factor-α: A Novel Pathway Involving Sequential Activation of Neutral Sphingomyelinase, Phosphatidylinositol-3′ Kinase, and Akt. Mol. Pharmacol. 2003, 63, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Hertiš Petek, T.; Petek, T.; Močnik, M.; Marčun Varda, N. Systemic Inflammation, Oxidative Stress and Cardiovascular Health in Children and Adolescents: A Systematic Review. Antioxidants 2022, 11, 894. [Google Scholar] [CrossRef]
- Alchujyan, N.; Hovhannisyan, M.; Movsesyan, N.; Melkonyan, A.; Shaboyan, V.; Aghajanova, Y.; Minasyan, G.; Kevorkian, G. Sexual Dimorphism in Alternative Metabolic Pathways of L-Arginine in Circulating Leukocytes in Young People with Type 1 Diabetes Mellitus. Endocr. Res. 2021, 46, 149–159. [Google Scholar] [CrossRef]
- Ratajczak-Wrona, W.; Nowak, K.; Garley, M.; Tynecka, M.; Jablonska, E. Sex-specific differences in the regulation of inducible nitric oxide synthase by bisphenol A in neutrophils. Hum. Exp. Toxicol. 2019, 38, 239–246. [Google Scholar] [CrossRef]
- Gershoni, M.; Pietrokovski, S. The Landscape of Sex-Differential Transcriptome and Its Consequent Selection in Human Adults. BMC Biol. 2017, 15, 7. [Google Scholar] [CrossRef] [Green Version]
- Himeno, M.; Ishibashi, T.; Nakano, S.; Furuya, K.; Kigoshi, T.; Uchida, K.; Nishio, M. A Practical Procedure for Achieving a Steady State of NOx Concentration in Plasma: With Special Reference to the NOx Content of Japanese Daily Food. Tohoku, J. Exp. Med. 2003, 199, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Babateen, A.M.; Shannon, O.M.; O’Brien, G.M.; Okello, E.; Khan, A.A.; Rubele, S.; Wightman, E.; Smith, E.; McMahon, N.; Olgacer, D.; et al. Acceptability and Feasibility of a 13-Week Pilot Randomised Controlled Trial Testing the Effects of Incremental Doses of Beetroot Juice in Overweight and Obese Older Adults. Nutrients 2021, 13, 769. [Google Scholar] [CrossRef]
Parameter | All | All | p-Value Adjusted for Age, BMI and Sex | Girls | p-Value Adjusted for Age and BMI | Boys | p-Value Adjusted for BMI | |||
Non-MetS | MetS | Non-MetS | MetS | Non-MetS | MetS | |||||
N (Boys/Girls) | 740 (245/495) | 620 (202/418) | 120 (43/77) | 418 | 77 | 202 | 43 | |||
Age (years) | 14.2 ± 1.6 | 14.1 ± 1.6 | 14.7 ± 1.7 | 14.1 ± 1.7 | 15.1 ± 1.8 | 14.1 ± 1.0 | 14.1 ± 1.2 | 0.80 | ||
BMI (kg/m2) | 21.9 ± 4.8 | 21.3 ± 4.5 | 25.5 ± 4.7 | 20.8 ± 4.6 | 25.8 ± 4.7 | 22.1 ± 4.1 | 25.1 ± 4.7 | |||
BMI Z-Score | 0.00 ± 1.0 | −0.137 ± 0.94 | 0.753 ± 0.97 | <0.001 | −0.232 ± 0.97 | 0.810 ± 0.97 | <0.001 | 0.048 ± 0.87 | 0.669 ± 0.98 | <0.001 |
WC (cm) | 73.6 ± 11.7 | 71.5 ± 10.6 | 83.2 ± 11.9 | <0.001 | 72.0 ± 11.2 | 86.8 ± 12.2 | 0.051 | 70.9 ± 9.6 | 78.2 ± 9.7 | <0.001 |
SBP (mmHg) | 119.4 ± 14.0 | 117.2 ± 12.8 | 130.3 ± 14.4 | <0.001 | 118.9 ± 13.0 | 132.6 ± 14.7 | <0.001 | 113.6 ± 11.8 | 126.3 ± 13.2 | <0.001 |
DBP (mmHg) | 70.1 ± 9.8 | 69.3 ± 9.3 | 74.5 ± 10.9 | <0.001 | 68.3 ± 9.1 | 71.9 ± 10.1 | 0.004 | 71.2 ± 9.5 | 78.5 ± 11.1 | <0.001 |
TC (mmol/L) | 4.30 ± 1.03 | 4.29 ± 1.03 | 4.36 ± 1.01 | 0.53 | 4.43 ± 0.9 | 4.51 ± 0.9 | 0.85 | 4.01 ± 1.2 | 4.10 ± 1.1 | 0.84 |
Glucose (mmol/L) | 5.13 ± 0.72 | 5.10 ± 0.7 | 5.40 ± 0.90 | 0.002 | 5.2 ± 0.6 | 5.5 ± 0.7 | 0.05 | 4.9 ± 0.7 | 5.2 ± 1.0 | 0.02 |
HDL-c (mmol/L) | 1.18 ± 0.41 | 1.22 ± 0.42 | 0.97 ± 0.25 | <0.001 | 1.32 ± 0.5 | 1.01 ± 0.3 | <0.001 | 1.0 ± 0.2 | 0.92 ± 0.2 | 0.34 |
LDL-c (mmol/L) | 2.63 ± 0.79 | 2.59 ± 0.8 | 2.79 ± 0.9 | 0.05 | 2.62 ± 0.8 | 2.82 ± 0.9 | 0.16 | 2.54 ± 0.8 | 2.74 ± 0.9 | 0.20 |
TAG (mmol/L) # | 1.0 (0.8–1.4) | 0.97 (0.75–1.3) | 1.4 (1.1–1.8) | <0.001 | 0.97 (0.8–1.3) | 1.4 (1.1–1.7) | <0.001 | 0.98 (0.7–1.2) | 1.4 (1.2–1.8) | <0.001 |
NOx (µmol/L) # | 12.8 (5.7–26.4) | 11.9 (5.5–22.9) | 25.7 (10.1–46.2) | <0.001 | 8.7 (4.8–18.6) | 12.0 (6.7–30.6) | 0.002 | 18.9 (11.2–31.7) | 42.3 (31.4–62.9) | <0.001 |
Parameters | Odds Ratio (95% CI) | Age- and Sex-Adjusted Odds Ratio (95% CI) | ||
---|---|---|---|---|
MetS | ||||
T1 | 1 | 1 | ||
T2 | 1.41 (0.77–2.56) | 0.26 | 1.18 (0.63–2.22) | 0.61 |
T3 | 3.63 (2.12–6.19) | <0.001 | 3.84 (2.12–6.92) | <0.001 |
Waist (cm) | ||||
T1 | 1 | 1 | ||
T2 | 1.02 (0.63–1.65) | 0.93 | 1.04 (0.62–1.74) | 0.87 |
T3 | 1.61 (1.03–2.52) | 0.038 | 1.76 (1.07–2.91) | 0.026 |
Hypertension (mmHg) | ||||
T1 | 1 | 1 | ||
T2 | 1.14 (0.67–1.92) | 0.63 | 0.89 (0.51–1.56) | 0.68 |
T3 | 1.49 (0.90–2.46) | 0.120 | 1.46 (0.84–2.53) | 0.18 |
High Glucose (mmol/L) | ||||
T1 | 1 | 1 | ||
T2 | 1.38 (0.64–2.99) | 0.41 | 1.17 (0.53–2.61) | 0.70 |
T3 | 2.65 (1.31–5.32) | 0.006 | 2.48 (1.18–5.21) | 0.016 |
High TAG (mmol/L) | ||||
T1 | 1 | 1 | ||
T2 | 1.57 (1.07–2.32) | 0.02 | 1.41 (0.93–2.12) | 0.10 |
T3 | 2.33 (1.59–3.42) | <0.001 | 2.33 (1.54–3.53) | <0.001 |
Low HDL-C (mmol/L) | ||||
T1 | 1 | 1 | ||
T2 | 2.81 (1.92–4.10) | <0.001 | 2.62 (1.74–3.94) | <0.001 |
T3 | 7.77 (5.10–11.97) | <0.001 | 6.24 (3.93–9.87) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amer, O.E.; Sabico, S.; Khattak, M.N.K.; Al-Daghri, N.M. Circulating Nitric Oxide and Metabolic Syndrome in Arab Children and Adolescents: A Case–Control Study. Children 2023, 10, 210. https://doi.org/10.3390/children10020210
Amer OE, Sabico S, Khattak MNK, Al-Daghri NM. Circulating Nitric Oxide and Metabolic Syndrome in Arab Children and Adolescents: A Case–Control Study. Children. 2023; 10(2):210. https://doi.org/10.3390/children10020210
Chicago/Turabian StyleAmer, Osama E., Shaun Sabico, Malak N. K. Khattak, and Nasser M. Al-Daghri. 2023. "Circulating Nitric Oxide and Metabolic Syndrome in Arab Children and Adolescents: A Case–Control Study" Children 10, no. 2: 210. https://doi.org/10.3390/children10020210
APA StyleAmer, O. E., Sabico, S., Khattak, M. N. K., & Al-Daghri, N. M. (2023). Circulating Nitric Oxide and Metabolic Syndrome in Arab Children and Adolescents: A Case–Control Study. Children, 10(2), 210. https://doi.org/10.3390/children10020210