Evaluation of Beta-Defensin 1 and Mannose-Binding Lectin 2 Polymorphisms in Children with Dental Caries Compared to Caries-Free Controls: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Quality Assessment
2.3. Eligibility Criteria
2.4. Data Extraction
2.5. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Characteristics of the Studies
3.3. Quality Assessment
3.4. Meta-Analysis
3.5. Subgroup Analysis
3.6. Sensitivity Analysis
3.7. Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, N.; Zhu, H.; Chen, Y.; Jiang, W.; Lin, X.; Tu, Y.; Chen, D.; Chen, H. Dental caries and associated factors in 3 to 5-year-old children in Zhejiang Province, China: An epidemiological survey. BMC Oral Health 2019, 19, 9. [Google Scholar] [CrossRef] [Green Version]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef]
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Prim. 2017, 3, 17030. [Google Scholar] [CrossRef] [Green Version]
- Escoffié-Ramirez, M.; Ávila-Burgos, L.; Baena-Santillan, E.S.; Aguilar-Ayala, F.; Lara-Carrillo, E.; Minaya-Sánchez, M.; Mendoza-Rodríguez, M.; Márquez-Corona, M.d.L.; Medina-Solís, C.E. Factors associated with dental pain in Mexican schoolchildren aged 6 to 12 years. BioMed Res. Int. 2017, 2017, 7431301. [Google Scholar] [CrossRef] [Green Version]
- Nomura, Y.; Maung, K.; Kay Khine, E.M.; Sint, K.M.; Lin, M.P.; Win Myint, M.K.; Aung, T.; Sogabe, K.; Otsuka, R.; Okada, A. Prevalence of dental caries in 5-and 6-year-old Myanmar children. Int. J. Dent. 2019, 2019, 5948379. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kumar, A.; Badiyani, B.; Kumar, A.; Basak, D.; Ismail, M.B. Oral health impact, dental caries experience, and associated factors in 12–15-year-old school children in India. Int. J. Adolesc. Med. Health 2017, 29, 20150041. [Google Scholar] [CrossRef]
- Wen, P.Y.F.; Chen, M.X.; Zhong, Y.J.; Dong, Q.Q.; Wong, H.M. Global Burden and Inequality of Dental Caries, 1990 to 2019. J Dent. Res. 2022, 101, 392–399. [Google Scholar] [CrossRef]
- Kirthiga, M.; Murugan, M.; Saikia, A.; Kirubakaran, R. Risk factors for early childhood caries: A systematic review and meta-analysis of case control and cohort studies. Pediatr. Dent. 2019, 41, 95–112. [Google Scholar]
- Ledder, R.G.; Kampoo, K.; Teanpaisan, R.; McBain, A.J. Oral microbiota in severe early childhood caries in Thai children and their families: A pilot study. Front. Microbiol. 2018, 9, 2420. [Google Scholar] [CrossRef]
- Kesim, S.; Çiçek, B.; Aral, C.A.; Öztürk, A.; Mazicioğlu, M.M.; Kurtoğlu, S. Oral health, obesity status and nutritional habits in Turkish children and adolescents: An epidemiological study. Balk. Med. J. 2016, 33, 364–372. [Google Scholar] [CrossRef]
- Leong, P.M.; Gussy, M.G.; Barrow, S.Y.L.; de Silva-Sanigorski, A.; Waters, E. A systematic review of risk factors during first year of life for early childhood caries. Int. J. Paediatr. Dent. 2013, 23, 235–250. [Google Scholar] [CrossRef]
- Tham, R.; Bowatte, G.; Dharmage, S.C.; Tan, D.J.; Lau, M.X.; Dai, X.; Allen, K.J.; Lodge, C.J. Breastfeeding and the risk of dental caries: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 62–84. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Namdev, R.; Bodh, M.; Dutta, S.; Singhal, P.; Kumar, A. Social and behavioral determinants for early childhood caries among preschool children in India. J. Dent. Res. Dent. Clin. Dent. Prospect. 2015, 9, 115. [Google Scholar] [CrossRef] [PubMed]
- Abbasoğlu, Z.; Tanboğa, İ.; Küchler, E.C.; Deeley, K.; Weber, M.; Kaspar, C.; Korachi, M.; Vieira, A.R. Early childhood caries is associated with genetic variants in enamel formation and immune response genes. Caries Res. 2015, 49, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, R.; Jahedi, S.; Mozaffari, H.R.; Imani, M.M.; Sadeghi, M.; Golshah, A.; Moradpoor, H.; Safaei, M. Association of LTF, ENAM, and AMELX polymorphisms with dental caries susceptibility: A meta-analysis. BMC Oral Health 2020, 20, 132. [Google Scholar] [CrossRef]
- Sadeghi, M.; Golshah, A.; Godiny, M.; Sharifi, R.; Khavid, A.; Nikkerdar, N.; Tadakamadla, S.K. The Most Common Vitamin D Receptor Polymorphisms (ApaI, FokI, TaqI, BsmI, and BglI) in Children with Dental Caries: A Systematic Review and Meta-Analysis. Children 2021, 8, 302. [Google Scholar] [CrossRef] [PubMed]
- Chisini, L.A.; Cademartori, M.G.; Conde, M.C.M.; Costa, F.D.S.; Salvi, L.C.; Tovo-Rodrigues, L.; Correa, M.B. Single nucleotide polymorphisms of taste genes and caries: A systematic review and meta-analysis. Acta Odontol. Scand. 2021, 79, 147–155. [Google Scholar] [CrossRef]
- Valore, E.V.; Park, C.H.; Quayle, A.J.; Wiles, K.R.; McCray, P.B., Jr.; Ganz, T. Human beta-defensin-1: An antimicrobial peptide of urogenital tissues. J. Clin. Investig. 1998, 101, 1633–1642. [Google Scholar] [CrossRef] [Green Version]
- Hatipoğlu, Ö.; Saydam, F. Association between rs11362 polymorphism in the beta-defensin 1 (DEFB1) gene and dental caries: A meta-analysis. J. Oral Biosci. 2020, 62, 272–279. [Google Scholar] [CrossRef]
- Huttner, K.M.; Bevins, C.L. Antimicrobial peptides as mediators of epithelial host defense. Pediatr. Res. 1999, 45, 785–794. [Google Scholar] [CrossRef]
- Sahasrabudhe, K.; Kimball, J.; Morton, T.; Weinberg, A.; Dale, B. Expression of the antimicrobial peptide, human β-defensin 1, in duct cells of minor salivary glands and detection in saliva. J. Dent. Res. 2000, 79, 1669–1674. [Google Scholar] [CrossRef] [PubMed]
- Mathews, M.; Jia, H.P.; Guthmiller, J.M.; Losh, G.; Graham, S.; Johnson, G.K.; Tack, B.F.; McCray, P.B., Jr. Production of β-defensin antimicrobial peptides by the oral mucosa and salivary glands. Infect. Immun. 1999, 67, 2740–2745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, A.R.; Modesto, A.; Marazita, M.L. Caries: Review of human genetics research. Caries Res. 2014, 48, 491–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piekoszewska-Ziętek, P.; Turska-Szybka, A.; Olczak-Kowalczyk, D. Single nucleotide polymorphism in the aetiology of caries: Systematic literature review. Caries Res. 2017, 51, 425–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, T. Evolution of the lectin–complement pathway and its role in innate immunity. Nat. Rev. Immunol. 2002, 2, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.W. The role of mannose-binding lectin in health and disease. Mol. Immunol. 2003, 40, 423–429. [Google Scholar] [CrossRef]
- Alyousef, Y.M.; Borgio, J.F.; AbdulAzeez, S.; Al-Masoud, N.; Al-Ali, A.A.; Al-Shwaimi, E.; Al-Ali, A.K. Association of MBL2 gene polymorphism with dental caries in Saudi children. Caries Res. 2017, 51, 12–16. [Google Scholar] [CrossRef]
- Chisini, L.A.; Cademartori, M.G.; Conde, M.C.M.; Costa, F.D.S.; Tovo-Rodrigues, L.; Carvalho, R.V.d.; Demarco, F.F.; Correa, M.B. Genes and SNPs in the pathway of immune response and caries risk: A systematic review and meta-analysis. Biofouling 2020, 36, 1100–1116. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, W.; Lin, X.; Zhu, H.; Zhou, N.; Chen, Y.; Wu, W.; Zhang, D.; Chen, H. Dental Caries Status and Caries Risk Factors in Students Ages 12-14 Years in Zhejiang, China. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 3670–3678. [Google Scholar] [CrossRef]
- Mwakayoka, H.; Masalu, J.R.; Namakuka Kikwilu, E. Dental Caries and Associated Factors in Children Aged 2–4 Years Old in Mbeya City, Tanzania. J. Dent. 2017, 18, 104–111. [Google Scholar]
- Krustrup, U.; Petersen, P.E. Dental caries prevalence among adults in Denmark--the impact of socio-demographic factors and use of oral health services. Community Dent. Health 2007, 24, 225–232. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.L.; Thayer, K.A.; Bero, L.; Bruce, N.; Falck-Ytter, Y.; Ghersi, D.; Guyatt, G.; Hooijmans, C.; Langendam, M.; Mandrioli, D. GRADE: Assessing the quality of evidence in environmental and occupational health. Environ. Int. 2016, 92, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.L.; Thayer, K.A.; Santesso, N.; Holloway, A.C.; Blain, R.; Eftim, S.E.; Goldstone, A.E.; Ross, P.; Guyatt, G.; Schünemann, H.J. Evaluation of the risk of bias in non-randomized studies of interventions (ROBINS-I) and the ‘target experiment’ concept in studies of exposures: Rationale and preliminary instrument development. Environ. Int. 2018, 120, 382–387. [Google Scholar] [CrossRef]
- Mantel, N.; Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 1959, 22, 719–748. [Google Scholar]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- De Oliveira, D.S.B.; Segato, R.A.B.; Oliveira, S.; Dutra, A.L.T.; Dos Santos, A.S.; Praxedes, A.D.N.; Belém, L.C.; Antunes, L.A.; Lips, A.; Nelson-Filho, P. Association between genetic polymorphisms in DEFB1 and microRNA202 with caries in two groups of Brazilian children. Arch. Oral Biol. 2018, 92, 1–7. [Google Scholar] [CrossRef]
- Hu, X.-P.; Zhou, H.-j.; Li, Z.-Q.; Song, T.-Z.; Zhu, Y.-Y. Lack of associations between lactoferrin (LTF) and mannose-binding lectin 2 (MBL2) gene polymorphism and dental caries susceptibility. J. Int. Med. Res. 2020, 48, 0300060520943428. [Google Scholar] [CrossRef]
- Lips, A.; Antunes, L.S.; Antunes, L.A.; de Abreu, J.G.B.; Barreiros, D.; de Oliveira, D.S.B.; Batista, A.C.; Nelson-Filho, P.; da Silva, L.A.B.; da Silva, R.A.B. Genetic polymorphisms in DEFB1 and miRNA202 are involved in salivary human β-defensin 1 levels and caries experience in children. Caries Res. 2017, 51, 209–215. [Google Scholar] [CrossRef]
- Mubayrik, A.F.B.; Deeley, K.; Patir, A.; Koruyucu, M.; Seymen, F.; Vieira, A. Polymorphisms in the antimicrobial peptide DEFB1 are not associated with caries in primary dentition. JPDA 2014, 23, 66. [Google Scholar]
- Pehlivan, S.; Sipahi, M.; Ozkinay, F.; Pehlivan, M.; Koturoglu, G.; Alpoz, A.R. Might there be a link between mannose-binding lectin polymorphism and dental caries? Mol. Immunol. 2005, 42, 1125–1127. [Google Scholar] [CrossRef]
- Shimomura-Kuroki, J.; Nashida, T.; Miyagawa, Y.; Sekimoto, T. The role of genetic factors in the outbreak mechanism of dental caries. J. Clin. Pediatr. Dent. 2018, 42, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, W.; Qin, M. Mannose-binding lectin gene polymorphisms are not associated with susceptibility to severe early childhood caries. Hum. Immunol. 2013, 74, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Opal, S.; Garg, S.; Jain, J.; Walia, I. Genetic factors affecting dental caries risk. Aust. Dent. J. 2015, 60, 2–11. [Google Scholar] [CrossRef]
- Werneck, R.; Mira, M.; Trevilatto, P. A critical review: An overview of genetic influence on dental caries. Oral Dis. 2010, 16, 613–623. [Google Scholar] [CrossRef]
- Strużycka, I. The oral microbiome in dental caries. Pol. J. Microbiol. 2014, 63, 127. [Google Scholar] [CrossRef] [PubMed]
- Cavallari, T.; Arima, L.Y.; Ferrasa, A.; Moysés, S.J.; Moysés, S.T.; Herai, R.H.; Werneck, R.I. Dental caries: Genetic and protein interactions. Arch. Oral Biol. 2019, 108, 104522. [Google Scholar] [CrossRef]
- Petersen, P.E. The World Oral Health Report 2003: Continuous improvement of oral health in the 21st century–the approach of the WHO Global Oral Health Programme. Community Dent. Oral Epidemiol. 2003, 31, 3–24. [Google Scholar] [CrossRef]
- Santosh, A.B.R.; Boyd, D.; Laxminarayana, K.K. Clinical outline of oral diseases. Dent. Clin. 2020, 64, 1–10. [Google Scholar]
- Wright, J.T. The role of Genetics in Caries Risk and Resistance. Dimensions of Dental Hygiene. 2019. Available online: https://dimensionsofdentalhygiene.com/article/geneticscaries-risk (accessed on 3 December 2022).
- Wang, X.; Willing, M.C.; Marazita, M.L.; Wendell, S.; Warren, J.J.; Broffitt, B.; Smith, B.; Busch, T.; Lidral, A.C.; Levy, S.M. Genetic and environmental factors associated with dental caries in children: The Iowa Fluoride Study. Caries Res. 2012, 46, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Olszowski, T.; Adler, G.; Janiszewska-Olszowska, J.; Safranow, K.; Kaczmarczyk, M. MBL2, MASP2, AMELX, and ENAM gene polymorphisms and dental caries in Polish children. Oral Dis. 2012, 18, 389–395. [Google Scholar] [CrossRef]
- Kunin, A.A.; Evdokimova, A.Y.; Moiseeva, N.S. Age-related differences of tooth enamel morphochemistry in health and dental caries. EPMA J. 2015, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Jia, P.; Cuenco, K.T.; Feingold, E.; Marazita, M.L.; Wang, L.; Zhao, Z. Multi-dimensional prioritization of dental caries candidate genes and its enriched dense network modules. PloS ONE 2013, 8, e76666. [Google Scholar] [CrossRef] [Green Version]
- Leone, C.W.; Oppenheim, F.G. Physical and chemical aspects of saliva as indicators of risk for dental caries in humans. J. Dent. Educ. 2001, 65, 1054–1062. [Google Scholar] [CrossRef]
- Lenander-Lumikari, M.; Loimaranta, V. Saliva and dental caries. Adv. Dent. Res. 2000, 14, 40–47. [Google Scholar] [CrossRef]
- Sharifi, R.; Tabarzadi, M.F.; Choubsaz, P.; Sadeghi, M.; Tadakamadla, J.; Brand, S.; Sadeghi-Bahmani, D. Evaluation of Serum and Salivary Iron and Ferritin Levels in Children with Dental Caries: A Meta-Analysis and Trial Sequential Analysis. Children 2021, 8, 1034. [Google Scholar] [CrossRef]
- Drummond, A.M.; Ferreira, E.F.; Gomes, V.E.; Marcenes, W. Inequality of Experience of Dental Caries between Different Ethnic Groups of Brazilians Aged 15 to 19 Years. PLoS ONE 2015, 10, e0145553. [Google Scholar] [CrossRef]
- Matsuo, G.; Rozier, R.G.; Kranz, A.M. Dental Caries: Racial and Ethnic Disparities Among North Carolina Kindergarten Students. Am. J. Public Health 2015, 105, 2503–2509. [Google Scholar] [CrossRef]
- Cakan, D.G.; Ulkur, F.; Taner, T. The genetic basis of dental anomalies and its relation to orthodontics. Eur. J. Dent. 2013, 7, S143–S147. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Shaffer, J.R.; Weyant, R.J.; Cuenco, K.T.; DeSensi, R.S.; Crout, R.; McNeil, D.W.; Marazita, M.L. Genes and their effects on dental caries may differ between primary and permanent dentitions. Caries Res 2010, 44, 277–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunsche, A.; Açil, Y.; Siebert, R.; Harder, J.; Schröder, J.M.; Jepsen, S. Expression profile of human defensins and antimicrobial proteins in oral tissues. J. Oral Pathol. Med. 2001, 30, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Gursoy, U.K.; Könönen, E. Understanding the roles of gingival beta-defensins. J. Oral Microbiol. 2012, 4, 15127. [Google Scholar] [CrossRef]
- Rivas-Santiago, B.; Serrano, C.J.; Enciso-Moreno, J.A. Susceptibility to infectious diseases based on antimicrobial peptide production. Infect. Immun. 2009, 77, 4690–4695. [Google Scholar] [CrossRef] [Green Version]
- Dale, B.A.; Tao, R.; Kimball, J.R.; Jurevic, R.J. Oral antimicrobial peptides and biological control of caries. BMC Oral Health 2006, 6, S13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, D.H.; Martin, J.T. Common dental infections in the primary care setting. Am. Fam. Physician 2008, 77, 797–802. [Google Scholar]
- Caufield, P.W.; Griffen, A.L. Dental caries: An infectious and transmissible disease. Pediatr. Clin. N. Am. 2000, 47, 1001–1019. [Google Scholar] [CrossRef]
- Islam, B.; Khan, S.N.; Khan, A.U. Dental caries: From infection to prevention. Med. Sci. Monit. 2007, 13, RA196. [Google Scholar] [PubMed]
- Ezekowitz, R.A. Role of the mannose-binding lectin in innate immunity. J. Infect. Dis. 2003, 187, S335–S339. [Google Scholar] [CrossRef]
- Garred, P. Mannose-binding lectin genetics: From A to Z. Biochem. Soc. Trans. 2008, 36, 1461–1466. [Google Scholar] [CrossRef]
- Holanda, K.; Lucena-Araujo, A.R.; Quintas, A.; Mendonca, T.; Lima, A.; Vasconcelos, L.R.; Moura, P.; Cavalcanti, M.; Machado, C.; Araujo, A.S. Mannose-binding lectin 2 (MBL2) gene polymorphisms do not influence frequency of infections in chronic lymphocytic leukemia patients. Rev. Bras. Hematol. Hemoter. 2014, 36, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Eisen, D.P.; Minchinton, R.M. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin. Infect. Dis. 2003, 37, 1496–1505. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.Y.; Yin, I.X.; Wu, W.K.K.; Li, Q.-L.; Mei, M.L.; Chu, C.H. Antimicrobial peptides for the prevention and treatment of dental caries: A concise review. Arch. Oral Biol. 2021, 122, 105022. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Jia, L.; Zhang, Q.; Zhou, X.; Liu, Z.; Li, B.; Zhu, Z.; Wang, F.; Yu, C.; Zhang, Q. A novel antimicrobial peptide against dental-caries-associated bacteria. Anaerobe 2017, 47, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Pepperney, A.; Chikindas, M.L. Antibacterial peptides: Opportunities for the prevention and treatment of dental caries. Probiotics Antimicrob. Proteins 2011, 3, 68–96. [Google Scholar] [CrossRef] [PubMed]
- Goeke, J.E.; Kist, S.; Schubert, S.; Hickel, R.; Huth, K.C.; Kollmuss, M. Sensitivity of caries pathogens to antimicrobial peptides related to caries risk. Clin. Oral Investig. 2018, 22, 2519–2525. [Google Scholar] [CrossRef]
- Tao, R.; Jurevic, R.J.; Coulton, K.K.; Tsutsui, M.T.; Roberts, M.C.; Kimball, J.R.; Wells, N.; Berndt, J.; Dale, B.A. Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob. Agents Chemother. 2005, 49, 3883–3888. [Google Scholar] [CrossRef]
- Vitorino, R.; Lobo, M.J.C.; Duarte, J.R.; Ferrer-Correia, A.J.; Domingues, P.M.; Amado, F.M. The role of salivary peptides in dental caries. Biomed. Chromatogr. 2005, 19, 214–222. [Google Scholar] [CrossRef]
First Author, Publication Year | Country | Ethnicity | No. of Cases | No. of Controls | Age Range, Years | Investigated Dentition | Caries Index (Control; Case) | Polymorphisms |
---|---|---|---|---|---|---|---|---|
Pehlivan, 2005 [43] | Turkey | Caucasian | 42 | 40 | < 18 | Deciduous | dmft (0; NR) | MBL2 rs1800450 |
Mubayrik, 2014 [42] | Turkey | Caucasian | 87 | 74 | 2 to 6 | Deciduous | dmft (0; ≥1) | DEFB1 rs11362 DEFB1 rs1800972 |
Yang, 2013 [45] | China | Asian | 70 | 70 | 1 to 5 | Deciduous | dmft (0; ≥1) | MBL2 rs1800450 |
Abbasoğlu, 2015 [14] | Turkey | Caucasian | 136 | 123 | 2 to 5 | Deciduous | dmft (0; ≥1) | DEFB1 rs11362 DEFB1 rs1800972 |
Alyousef, 2017 [27] | Saudi Arabia | Caucasian | 204 | 200 | 5 to 13 | Permanent | DMFT (0; NR) | MBL2 rs7096206 |
Lips, 2017 [41] | Brazil | Mixed | 87 | 81 | 2 to 12 | Mixed | DMFT/dmft (0; ≥4) | DEFB1 rs11362 DEFB1 rs1799946 |
de Oliveira, 2018 [39] | Brazil | Mixed | 117 | 78 | 10 to 12 | Deciduous | DMFT/dmft (0; ≥1) | DEFB1 rs11362 |
118 | 78 | Permanent | ||||||
265 | 49 | Mixed | ||||||
117 | 78 | 6 to 12 | Deciduous | DEFB1 rs1799946 | ||||
118 | 78 | Permanent | ||||||
265 | 49 | Mixed | ||||||
Shimomura-Kuroki, 2018 [44] | Japan | Asian | 53 | 28 | 3 to 11 | Mixed | DMFT/dmft (0; ≥1) | MBL2 rs7096206 |
Hu, 2020 [40] | China | Asian | 198 | 162 | 12 to 15 | Permanent | DMFT (0; ≥1) | MBL2 rs7096206 |
First Author, Publication Year | Representativeness of Cases | Source of Controls | Hardy–Weinberg Equilibrium in Controls | Genotyping Examination | Association Assessment | Total Score |
---|---|---|---|---|---|---|
Pehlivan, 2005 [43] | * | * * | ** | - | * * | 7 |
Mubayrik, 2014 [42] | * | * | * * | - | * * | 6 |
Yang, 2013 [45] | * | * | * | - | * * | 5 |
Abbasoğlu, 2015 [14] | * | * * | * | - | * * | 6 |
Alyousef, 2017 [27] | * | * | ** | - | * * | 6 |
Lips, 2017 [41] | * | * * | * | - | * * | 6 |
de Oliveira, 2018 [39] | * | * * | * | - | * * | 6 |
Shimomura-Kuroki, 2018 [44] | * | * | ** | - | * * | 6 |
Hu, 2020 [40] | * | * | ** | - | * * | 6 |
Variable | Model, N | OR | 95%CI | p-Value | I2, % |
---|---|---|---|---|---|
Ethnicity | |||||
Caucasian | Allelic (1) | 1.520 | 0.972, 2.376 | 0.066 | - |
Homozygous (2) | 1.000 | 0.571, 1.751 | 1.000 | 0 | |
Heterozygous (2) | 0.882 | 0.567, 1.372 | 0.578 | 0 | |
Dominant (1) | 0.930 | 0.511, 1.693 | 0.812 | - | |
Recessive (1) | 1.400 | 0.623, 3.146 | 0.415 | - | |
Mixed | Allelic (4) | 1.157 | 0.964, 1.432 | 0.111 | 0 |
Homozygous (4) | 1.360 | 0.928, 1.993 | 0.115 | 0 | |
Heterozygous (4) | 1.368 | 0.994, 1.883 | 0.055 | 0 | |
Dominant (4) | 1.396 | 1.038, 1.878 | 0.028 | 0 | |
Recessive (4) | 1.182 | 0.877, 1.594 | 0.272 | 0 | |
Dentition | |||||
Deciduous | Allelic (2) | 1.368 | 1.010, 1.854 | 0.043 | 0 |
Homozygous (3) | 1.113 | 0.701, 1.768 | 0.649 | 0 | |
Heterozygous (3) | 1.036 | 0.722, 1.489 | 0.846 | 0 | |
Dominant (2) | 1.159 | 0.762, 1.762 | 0.490 | 1.3 | |
Recessive (2) | 1.267 | 0.728, 2.203 | 0.403 | 0 | |
Permanent | Allelic (1) | 0.990 | 0.578, 1.695 | 0.971 | - |
Homozygous (1) | 1.470 | 0.650, 3.322 | 0.354 | - | |
Heterozygous (1) | 1.440 | 0.766, 2.706 | 0.257 | - | |
Dominant (1) | 1.450 | 0.808, 2.603 | 0.213 | - | |
Recessive (1) | 1.210 | 0.571, 2.564 | 0.619 | - | |
Mixed | Allelic (2) | 1.191 | 0.929, 1.527 | 0.167 | 0 |
Homozygous (2) | 1.304 | 0.784, 2.170 | 0.307 | 0 | |
Heterozygous (2) | 1.296 | 0.819, 2.049 | 0.268 | 35.8 | |
Dominant (2) | 1.351 | 0.882, 2.068 | 0.166 | 16.8 | |
Recessive (2) | 1.181 | 0.824, 1.694 | 0.365 | 0 | |
Sample size | |||||
≥200 | Allelic (1) | 1.430 | 0.893, 2.289 | 0.136 | - |
Homozygous (2) | 1.094 | 0.614, 1.948 | 0.760 | 17.6 | |
Heterozygous (2) | 1.239 | 0.786, 1.953 | 0.356 | 49.7 | |
Dominant (1) | 1.760 | 0.932, 3.325 | 0.082 | - | |
Recessive (1) | 1.240 | 0.511, 3.007 | 0.634 | - | |
<200 | Allelic (4) | 1.193 | 0.980, 1.451 | 0.078 | 0 |
Homozygous (4) | 1.298 | 0.890, 1.893 | 0.175 | 0 | |
Heterozygous (4) | 1.148 | 0.837, 1.573 | 0.392 | 0 | |
Dominant (4) | 1.206 | 0.900, 1.617 | 0.209 | 0 | |
Recessive (4) | 1.203 | 0.895, 1.617 | 0.220 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemati, G.; Imani, M.M.; Choubsaz, P.; Inchingolo, F.; Sharifi, R.; Sadeghi, M.; Tadakamadla, S.K. Evaluation of Beta-Defensin 1 and Mannose-Binding Lectin 2 Polymorphisms in Children with Dental Caries Compared to Caries-Free Controls: A Systematic Review and Meta-Analysis. Children 2023, 10, 232. https://doi.org/10.3390/children10020232
Hemati G, Imani MM, Choubsaz P, Inchingolo F, Sharifi R, Sadeghi M, Tadakamadla SK. Evaluation of Beta-Defensin 1 and Mannose-Binding Lectin 2 Polymorphisms in Children with Dental Caries Compared to Caries-Free Controls: A Systematic Review and Meta-Analysis. Children. 2023; 10(2):232. https://doi.org/10.3390/children10020232
Chicago/Turabian StyleHemati, Ghazal, Mohammad Moslem Imani, Parsia Choubsaz, Francesco Inchingolo, Roohollah Sharifi, Masoud Sadeghi, and Santosh Kumar Tadakamadla. 2023. "Evaluation of Beta-Defensin 1 and Mannose-Binding Lectin 2 Polymorphisms in Children with Dental Caries Compared to Caries-Free Controls: A Systematic Review and Meta-Analysis" Children 10, no. 2: 232. https://doi.org/10.3390/children10020232
APA StyleHemati, G., Imani, M. M., Choubsaz, P., Inchingolo, F., Sharifi, R., Sadeghi, M., & Tadakamadla, S. K. (2023). Evaluation of Beta-Defensin 1 and Mannose-Binding Lectin 2 Polymorphisms in Children with Dental Caries Compared to Caries-Free Controls: A Systematic Review and Meta-Analysis. Children, 10(2), 232. https://doi.org/10.3390/children10020232