Follistatin Is Associated with Bone Mineral Density in Lean Adolescent Girls with Increased Physical Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Bone Mineral Density and Body Composition Assessment
2.3. Resting Energy Expenditure Assessment
2.4. Blood Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baxter-Jones, A.D.G.; Faulkner, R.A.; Forwood, M.; Mirwald, R.I.; Bailey, D.A. Bone mineral accrual from 8 to 30 years of age: An estimation of peak bone mass. J. Bone Miner. Res. 2011, 26, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Jürimäe, J.; Gruodyte-Raciene, R.; Baxter-Jones, A.D.G. Effects of gymnastics activities on bone accrual during growth: A systematic review. J. Sports Sci. Med. 2018, 17, 245–258. [Google Scholar] [PubMed]
- Agostinete, R.R.; Maillane-Vanegas, S.; Lynch, K.R.; Turi-Lynch, B.; Coelho-E-Silva, M.J.; Campos, E.Z.; Cayres, S.U.; Araújo Fernandes, R. The impact of training load on bone mineral density in adolescent swimmers: A structural equation modeling approach. Ped. Exerc. Sci. 2017, 29, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, D.; Ubago-Guisado, E.; Baker, A.; Metcalf, B.S.; Fatouros, I.G.; Avloniti, A.; Knapp, K.M.; Moreno, L.A.; Williams, C.A.; Gracia-Marco, L. Determinants of bone outcomes in adolescent athletes at baseline: The PRO-BONE Study. Med. Sci. Sports Exerc. 2017, 59, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Maimoun, L.; Coste, O.; Mura, T.; Philibert, P.; Galtier, F.; Mariano-Goulart, D.; Paris, F.; Sultan, C. Specific bone mass acquisation in elite female athletes. J. Clin. Endocrinol. Metab. 2013, 98, 2844–2853. [Google Scholar] [CrossRef]
- Gruodyte, R.; Jürimäe, J.; Cicchella, A.; Stefanelli, C.; Pasariello, C.; Jürimäe, T. Adipocytokines and bone mineral density in adolescent female athletes. Acta Paediatr. 2010, 99, 1879–1884. [Google Scholar] [CrossRef]
- Jürimäe, J.; Karvelyte, V.; Remmel, L.; Tamm, A.L.; Purge, P.; Gruodyte-Raciene, R.; Kamandulis, S.; Maasalu, K.; Gracia-Marco, L.; Tillmann, V. Sclerostin, preadipocyte factor-1 and bone mineral values in eumenorrheic adolescent athletes with different training patterns. J. Bone Miner. Metab. 2021, 39, 245–252. [Google Scholar] [CrossRef]
- Evans, A.L.; Paggiosi, M.A.; Eastell, R.; Walsh, J.S. Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood. J. Bone Miner. Res. 2015, 30, 920–928. [Google Scholar] [CrossRef]
- Maimoun, L.; Mura, T.; Attalin, V.; Dupuy, A.M.; Cristol, J.P.; Avignon, A.; Mariano-Goulart, D.; Sultan, A. Modification of muscle-related hormones in women with obesity: Potential impact on bone metabolism. J. Clin. Med. 2020, 9, 1150. [Google Scholar] [CrossRef]
- Maimoun, L.; Mariano-Goulart, D.; Huguet, H.; Renard, E.; Lefebvre, P.; Picot, M.C.; Dupuy, A.M.; Cristol, J.P.; Courtet, P.; Boudousq, V.; et al. In patients with anorexia nervosa, myokine levels are altered but are not associated with bone mineral density loss and bone turnover alteration. Endocr. Connect. 2022, 11, e210488. [Google Scholar] [CrossRef]
- Kirk, B.; Feehan, J.; Lombardi, G.; Duque, G. Muscle, bone, and fat crosstalk: The biological role of myokines, osteokines, and adipokines. Curr. Osteop. Rep. 2020, 18, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Elliott, B.; Renshaw, D.; Getting, S.; Mackenzie, R. The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol. 2012, 205, 324–340. [Google Scholar] [CrossRef] [PubMed]
- Bialek, P.; Parkington, J.; Li, X.; Gavin, D.; Wallace, C.; Zhang, J.; Root, A.; Yan, G.; Warner, L.; Seeherman, H.J.; et al. A myostatin and activin decoy receptor enhances bone formation in mice. Bone 2014, 60, 162–171. [Google Scholar] [CrossRef]
- Houston, D.K.; Tooze, J.A.; Hausman, D.B.; Johnson, M.A.; Nicklas, B.J.; Miller, M.E.; Neiberg, R.H.; Marsh, A.P.; Newman, A.B.; Blair, S.N.; et al. Change in 25-Hydroxyvitamin D and physical performance in older adults. J. Gerontol. Ser. A 2011, 66, 430–436. [Google Scholar] [CrossRef]
- Campbell, W.; Johnson, C.; McCabe, G.; Carnell, N. Dietary protein requirements of younger and older adults. Am. J. Clin. Nutr. 2008, 88, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, M.; Lischka, J.; Schanzer, A.; de Gier, C.; Walleczek, N.K.; Greber-Platzer, S.; Zeyda, M. Plasma myostatin increases with age in male youth and negatively correlates with vitamin D in severe pediatric obesity. Nutrients 2022, 14, 2133. [Google Scholar] [CrossRef]
- Garcia, L.A.; King, K.K.; Ferrini, M.G.; Norris, C.K.; Artaza, J.N. 1,25(OH)2vitamin D3 stimulates myogenic differentation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology 2011, 152, 2976–2986. [Google Scholar] [CrossRef]
- Ewendt, F.; Feger, M.; Föller, M. Myostatin regulates the production of fibroblast growth factor 23 (FGF 23) in UMR106 osteoblast-like cells. Pflügers. Arch. 2021, 473, 969–976. [Google Scholar] [CrossRef]
- Owens, D.J.; Allison, R.; Close, G.L. Vitamin D and the athlete: Current perspectives and new challanges. Sports Med. 2018, 448 (Suppl. S1), 3–16. [Google Scholar] [CrossRef]
- Jakse, B.; Sekulic, D.; Jakse, B.; Cuk, I.; Sajber, D. Bone health among indoor female athletes and associated factors; a cross-sectional study. Res. Sports Med. 2020, 28, 314–323. [Google Scholar] [CrossRef]
- Eijken, M.; Swagemakers, S.; Koedam, M.; Steenbergen, C.; Derkx, P.; Uitterlinden, A.G.; van der Spek, P.J.; Visser, J.A.; de Jong, F.H.; Pols, H.A.P.; et al. The activin A-follistatin system: Potent regulator of human extracellular matrix mineralization. FASEB J. 2007, 11, 2949–2960. [Google Scholar] [CrossRef]
- Anastasilakis, A.D.; Polyzos, S.A.; Rodopaios, N.E.; Makras, P.; Kumar, A.; Kalra, B.; Mantzoros, C.S. Activins, follistatins and inhibins in postmenopausal osteoporosis: A proof of concept, case-control study. Metabolism 2023, 141, 155397. [Google Scholar] [CrossRef]
- Bowser, M.; Herberg, S.; Arounleut, P.; Shi, X.; Fulzele, S.; Hill, W.D.; Isales, C.M.; Hamrick, M.W. Effects of the activin A-myostatin-follistatin system on aging bone and muscle progenitor cells. Exp. Gerontol. 2013, 48, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Perakakis, N.; Upadhay, J.; Ghaly, W.; Chen, J.; Chrysafi, P.; Anastasilakis, A.D.; Mantzoros, C.S. Regulation of the activins-follistatins-inhibins axis by energy status: Impact on reproductive function. Metabolism 2018, 85, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Gilson, H.; Schakman, O.; Kalista, S.; Lause, P.; Tsuchida, K.; Thissen, J.P. Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E157–E164. [Google Scholar] [CrossRef] [PubMed]
- Jürimäe, J.; Vaiksaar, S.; Purge, P.; Tillmann, V. Irisin, fibroblast growth factor-21, and follistatin responses to endurance rowing training session in female rowers. Front. Physiol. 2021, 12, 689696. [Google Scholar] [CrossRef] [PubMed]
- Moragianni, V.A.; Aronis, K.N.; Chamberland, J.P.; Mantzoros, C.S. Short-term energy deprivation alerts activin a and follistatin but not inhibin B levels of lean healthy women in a leptin-independent manner. J. Clin. Endocrinol. Metab. 2011, 96, 3750–3758. [Google Scholar] [CrossRef]
- Braga, M.; Reddy, S.T.; Vergnes, L.; Pervin, S.; Grijalva, V.; Stout, D.; David, J.; Li, X.; Tomasian, V.; Reid, C.B.; et al. Follistatin promotes adipocyte differentation, browning, and energy metabolism. J. Lipid Res. 2014, 55, 375–384. [Google Scholar] [CrossRef]
- Perakakis, N.; Kokkinos, A.; Peradze, N.; Tentolouris, N.; Ghaly, W.; Tsilingiris, D.; Alexandrou, A.; Mantzoros, C.S. Follistatins in glucose regulation in healthy and obese individuals. Diabetes Obes. Metab. 2019, 21, 683–690. [Google Scholar] [CrossRef]
- Liu, Y.; Lehar, A.; Rydzik, R.; Chandok, H.; Lee, Y.S.; Youngstrom, D.W.; George, J.; Matzuk, M.M.; Germain-Lee, E.L.; Lee, S.J. Local versus systemic control of bone and skeletal muscle mass by components of the transforming growth factor-β signaling pathway. Proc. Natl. Acad. Sci. USA 2021, 118, e211140118. [Google Scholar] [CrossRef]
- Lodberg, A.; van der Eerden, B.C.J.; Boers-Sijmons, B.; Thomsen, J.S.; Bruel, A.; van Leeuwen, J.P.T.M.; Eijken, M. A follistatin-based molecule increases muscle and bone mass without affecting the red blood cell count in mice. FASEB J. 2019, 33, 6001–6010. [Google Scholar] [CrossRef]
- Vaiksaar, S.; Jürimäe, J.; Mäestu, J.; Purge, P.; Kalytka, S.; Shakhlina, L.; Jürimäe, T. No effect of menstrual cycle phase on fuel oxidation during exercise in rowers. Eur. J. Appl. Physiol. 2011, 111, 1027–1034. [Google Scholar] [CrossRef]
- De Souza, M.J.; West, S.L.; Jamal, S.A.; Hawker, G.A.; Grundberg, C.M.; Williams, N.I. The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone 2008, 43, 140–148. [Google Scholar] [CrossRef]
- Jürimäe, J.; Remmel, L.; Tamm, A.L.; Purge, P.; Maasalu, K.; Tillmann, V. Associations of circulating irisin and fibroblast growth factor-21 levels with measures of energy homeostasis in highly trained adolescent rhythmic gymnasts. J. Clin. Med. 2022, 11, 7450. [Google Scholar] [CrossRef]
- Weir, J.V.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diab. Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Lawson, E.A.; Ackerman, K.E.; Slattery, M.; Marengi, D.A.; Clarker, H.; Misra, M. Oxytocin secretion is related to measures of energy homeostasis in young amenorrheic athletes. J. Clin. Endocrinol. Metab. 2014, 99, E881–E885. [Google Scholar] [CrossRef] [PubMed]
- Kaji, H. Effects of myokines on bone. BoneKey Rep. 2016, 5, 826. [Google Scholar] [CrossRef]
- Bagheri, R.; Moghadam, B.H.; Church, D.D.; Tinsley, G.M.; Eskandari, M.; Moghadam, B.H.; Motevalli, M.; Baker, J.S.; Robergs, R.A.; Wong, A. The effects of concurrent training order on body composition and serum concentrations of follistatin, myostatin and GDF11 in sarcopenic elderly men. Exp. Gerontol. 2020, 133, 110869. [Google Scholar] [CrossRef]
- Miyamoto, T.; Carrero, J.J.; Qureshi, A.R.; Anderstam, B.; Heimbürger, O.; Barany, P.; Lindholm, B.; Stenvinkel, P. Circulating follistatin in patients with chronic kidney disease: Implications for muscle strength, bone mineral density, inflammation, and survival. Clin. J. Am. Soc. Nephrol. 2011, 6, 1001–1008. [Google Scholar] [CrossRef]
- Chan, A.S.M.; McGregor, N.E.; Poulton, I.J.; Hardee, J.P.; Cho, E.H.J.; Martin, T.J.; Gregorevic, P.; Sims, N.A.; Lynch, G.S. Bone geometry is altered by follistatin-induced muscle growth in young adult male mice. JBMR Plus 2021, 5, e10477. [Google Scholar] [CrossRef] [PubMed]
- Juliusson, P.B.; Bruserud, I.S.; Bakken Oehme, N.H.; Madsen, A.; Forthun, I.H.; Balthasar, M.; Rosendahl, K.; Viste, K.; Jugessur, A.; Schell, L.M.; et al. Deep phenotyping of pubertal development in Norwegian children: The Bergen Growth Study 2. Ann. Hum. Biol. 2023, 50, 226–235. [Google Scholar] [CrossRef] [PubMed]
Variables | Mean (±SD) | Range |
---|---|---|
Age (years) | 16.2 ± 1.3 | 14.0–18.0 |
Age at menarche (years) | 13.0 ± 1.1 | 11.0–15.0 |
Height (cm) | 167.6 ± 5.0 | 158.1–179.4 |
Body mass (kg) | 58.1 ± 6.7 | 40.0–74.8 |
BMI (kg/m2) | 20.6 ± 1.9 | 16.5–24.9 |
Body fat% | 24.1 ± 6.7 | 11.9–34.8 |
Body fat mass (kg) | 13.9 ± 4.3 | 7.1–28.3 |
Lean body mass (kg) | 41.5 ± 4.3 | 31.3–52.8 |
REE (kcal/day) | 1518 ± 203 | 1022–1807 |
WB BMC (kg) | 2.5 ± 0.3 | 1.8–3.6 |
WB aBMD (g/cm2) | 1.17 ± 0.08 | 0.92–1.38 |
LS aBMD (g/cm2) | 1.29 ± 0.16 | 0.86–1.72 |
Leptin (ng/mL) | 2.2 ± 1.8 | 0.9–9.9 |
Insulin (µIU/mL) | 6.8 ± 2.8 | 2.2–12.7 |
Glucose (mmol/L) | 4.6 ± 0.4 | 3.3–5.6 |
HOMA-IR | 1.4 ± 0.6 | 0.4–2.9 |
Follistatin (pg/mL) | 1275.1 ± 263.1 | 881.4–1888.2 |
Variables | Bivariate Correlation Coefficients | Partial Correlation Coefficients |
---|---|---|
Fat mass (kg) | 0.21 * | - |
Lean body mass (kg) | 0.29 * | - |
WB BMC (kg) | 0.33 * | 0.13 |
WB aBMD (g/cm2) | 0.23 * | 0.09 |
LS aBMD (g/cm2) | 0.29 * | 0.21 * |
Leptin (ng/mL) | 0.08 | 0.06 |
Insulin (µIU/mL) | 0.13 | 0.09 |
Glucose (mmol/L) | 0.10 | 0.13 |
HOMA-IR | 0.15 | 0.12 |
REE (kcal/day) | 0.29 * | 0.21 * |
Variables a | Β Coefficient ± SE | p-Value | Partial R2 |
---|---|---|---|
WB BMC (R2 = 0.40; p < 0.0001) | |||
LBM | 0.041 ± 0.007 | <0.0001 | 0.22 |
FM | 0.035 ± 0.007 | <0.0001 | 0.18 |
WB aBMD (R2 = 0.16; p < 0.0001) | |||
LBM | 0.007 ± 0.002 | <0.0001 | 0.12 |
FM | 0.004 ± 0.002 | 0.027 | 0.04 |
LS aBMD (R2 = 0.15; p < 0.0001) | |||
LBM | 0.011 ± 0.004 | 0.005 | 0.12 |
Follistatin | 0.001 ± 0.001 | 0.049 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jürimäe, J.; Remmel, L.; Tamm, A.-L.; Purge, P.; Maasalu, K.; Tillmann, V. Follistatin Is Associated with Bone Mineral Density in Lean Adolescent Girls with Increased Physical Activity. Children 2023, 10, 1226. https://doi.org/10.3390/children10071226
Jürimäe J, Remmel L, Tamm A-L, Purge P, Maasalu K, Tillmann V. Follistatin Is Associated with Bone Mineral Density in Lean Adolescent Girls with Increased Physical Activity. Children. 2023; 10(7):1226. https://doi.org/10.3390/children10071226
Chicago/Turabian StyleJürimäe, Jaak, Liina Remmel, Anna-Liisa Tamm, Priit Purge, Katre Maasalu, and Vallo Tillmann. 2023. "Follistatin Is Associated with Bone Mineral Density in Lean Adolescent Girls with Increased Physical Activity" Children 10, no. 7: 1226. https://doi.org/10.3390/children10071226
APA StyleJürimäe, J., Remmel, L., Tamm, A. -L., Purge, P., Maasalu, K., & Tillmann, V. (2023). Follistatin Is Associated with Bone Mineral Density in Lean Adolescent Girls with Increased Physical Activity. Children, 10(7), 1226. https://doi.org/10.3390/children10071226