Persisting Gastrointestinal Symptoms in Children with SARS-CoV-2: Temporal Evolution over 18 Months and Possible Role of Lactoferrin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Setting
2.2. Inclusion and Exclusion Criteria
2.3. Primary and Secondary Outcomes
2.4. Statistical Analysis
3. Results
Study Population
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nalbandian, A.; Desai, A.D.; Wan, E.Y. Post-COVID-19 Condition. Annu. Rev. Med. 2023, 74, 55–64. [Google Scholar] [CrossRef]
- Huerne, K.; Filion, K.B.; Grad, R.; Ernst, P.; Gershon, A.S.; Eisenberg, M.J. Epidemiological and clinical perspectives of long COVID syndrome. Am. J. Med. Open 2023, 9, 100033. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-B.; Zeng, N.; Yuan, K.; Tian, S.-S.; Yang, Y.-B.; Gao, N.; Chen, X.; Zhang, A.-Y.; Kondratiuk, A.L.; Shi, P.-P.; et al. Prevalence and risk factor for long COVID in children and adolescents: A meta-analysis and systematic review. J. Infect. Public Health 2023, 16, 660–672. [Google Scholar] [CrossRef]
- Kumar, P.; Jat, K.R. Post-COVID-19 Sequelae in Children. Indian J. Pediatr. 2023, 90, 605–611. [Google Scholar] [CrossRef]
- Cotugno, N.; Amodio, D.; Buonsenso, D.; Palma, P. Susceptibility of SARS-CoV2 infection in children. Eur. J. Pediatr. 2023, 182, 4851–4857. [Google Scholar] [CrossRef] [PubMed]
- Meringer, H.; Wang, A.; Mehandru, S. The Pathogenesis of Gastrointestinal, Hepatic, and Pancreatic Injury in Acute and Long Coronavirus Disease 2019 Infection. Gastroenterol. Clin. N. Am. 2023, 52, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Morrone, M.C.; Patrono, C.; Santoro, M.G.; Schiaffino, S.; Remuzzi, G.; Bussolati, G.; Cappuccinelli, P. Long Covid: Where we stand and challenges ahead. Cell Death Differ. 2022, 29, 1891–1900. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Jarrott, B.; Head, R.; Pringle, K.G.; Lumbers, E.R.; Martin, J.H. “LONG COVID”—A hypothesis for understanding the biological basis and pharmacological treatment strategy. Pharmacol. Res. Perspect. 2022, 10, e00911. [Google Scholar] [CrossRef]
- Song, W.-J.; Hui, C.K.M.; Hull, J.H.; Birring, S.S.; McGarvey, L.; Mazzone, S.B.; Chung, K.F. Confronting COVID-19-associated cough and the post-COVID syndrome: Role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respir. Med. 2021, 9, 533–544. [Google Scholar] [CrossRef]
- Astin, R.; Banerjee, A.; Baker, M.R.; Dani, M.; Ford, E.; Hull, J.H.; Lim, P.B.; McNarry, M.; Morten, K.; O’Sullivan, O.; et al. Long COVID: Mechanisms, risk factors and recovery. Exp. Physiol. 2023, 108, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, L.; Wang, Y.; Dai, T.; Qin, Z.; Zhou, F.; Zhang, L. Alterations in microbiota of patients with COVID-19: Potential mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022, 7, 143. [Google Scholar] [CrossRef]
- Morello, R.; De Rose, C.; Cardinali, S.; Valentini, P.; Buonsenso, D. Lactoferrin as Possible Treatment for Chronic Gastrointestinal Symptoms in Children with Long COVID: Case Series and Literature Review. Children 2022, 9, 1446. [Google Scholar] [CrossRef] [PubMed]
- Buonsenso, D.; Di Gennaro, L.; De Rose, C.; Morello, R.; D’Ilario, F.; Zampino, G.; Piazza, M.; Boner, A.L.; Iraci, C.; O’Connell, S.; et al. Long-term outcomes of pediatric infections: From traditional infectious diseases to long Covid. Future Microbiol. 2022, 17, 551–571. [Google Scholar] [CrossRef]
- WHO. A Clinical Case Definition for Post COVID-19 Condition in Children and Adolescents by Expert Consensus, 16 February 2023. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post-COVID-19-condition-CA-Clinical-case-definition-2023-1 (accessed on 6 November 2023).
- Morello, R.; Mariani, F.; Mastrantoni, L.; De Rose, C.; Zampino, G.; Munblit, D.; Sigfrid, L.; Valentini, P.; Buonsenso, D. Risk factors for post-COVID-19 condition (Long Covid) in children: A prospective cohort study. EClinicalMedicine 2023, 59, 101961. [Google Scholar] [CrossRef] [PubMed]
- Hoxha, B.; Hodaj, A. Potential Role of Lactoferrin and Heparin in COVID-19: A Review. Eur. Sci. J. ESJ 2021, 17, 14. [Google Scholar] [CrossRef]
- Bolat, E.; Eker, F.; Kaplan, M.; Duman, H.; Arslan, A.; Saritaş, S.; Şahutoğlu, A.S.; Karav, S. Lactoferrin for COVID-19 prevention, treatment, and recovery. Front. Nutr. 2022, 9, 992733. [Google Scholar] [CrossRef]
- Zwirzitz, A.; Reiter, M.; Skrabana, R.; Ohradanova-Repic, A.; Majdic, O.; Gutekova, M.; Cehlar, O.; Petrovčíková, E.; Kutejova, E.; Stanek, G.; et al. Lactoferrin is a natural inhibitor of plasminogen activation. J. Biol. Chem. 2018, 293, 8600–8613. [Google Scholar] [CrossRef]
- Turner, S.; Khan, M.A.; Putrino, D.; Woodcock, A.; Kell, D.B.; Pretorius, E. Long COVID: Pathophysiological factors and abnormalities of coagulation. Trends Endocrinol. Metab. 2023, 34, 321–344. [Google Scholar] [CrossRef]
- Pretorius, E.; Vlok, M.; Venter, C.; Bezuidenhout, J.A.; Laubscher, G.J.; Steenkamp, J.; Kell, D.B. Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc. Diabetol. 2021, 20, 172. [Google Scholar] [CrossRef]
- Di Gennaro, L.; Valentini, P.; Sorrentino, S.; Ferretti, M.A.; De Candia, E.; Basso, M.; Lancellotti, S.; De Cristofaro, R.; De Rose, C.; Mariani, F.; et al. Extended coagulation profile of children with Long Covid: A prospective study. Sci. Rep. 2022, 12, 18392. [Google Scholar] [CrossRef]
- Buonsenso, D.; Martino, L.; Morello, R.; Mariani, F.; Fearnley, K.; Valentini, P. Viral persistence in children infected with SARS-CoV-2: Current evidence and future research strategies. Lancet Microbe 2023, 4, e745–e756. [Google Scholar] [CrossRef]
- Salaris, C.; Scarpa, M.; Elli, M.; Bertolini, A.; Guglielmetti, S.; Pregliasco, F.; Blandizzi, C.; Brun, P.; Castagliuolo, I. Protective Effects of Lactoferrin against SARS-CoV-2 Infection In Vitro. Nutrients 2021, 13, 328. [Google Scholar] [CrossRef]
- Matino, E.; Tavella, E.; Rizzi, M.; Avanzi, G.C.; Azzolina, D.; Battaglia, A.; Becco, P.; Bellan, M.; Bertinieri, G.; Bertoletti, M.; et al. Effect of Lactoferrin on Clinical Outcomes of Hospitalized Patients with COVID-19: The LAC Randomized Clinical Trial. Nutrients 2023, 15, 1285. [Google Scholar] [CrossRef]
- Parisi, G.F.; Carota, G.; Castracani, C.C.; Spampinato, M.; Manti, S.; Papale, M.; Di Rosa, M.; Barbagallo, I.; Leonardi, S. Nutraceuticals in the Prevention of Viral Infections, including COVID-19, among the Pediatric Population: A Review of the Literature. Int. J. Mol. Sci. 2021, 22, 2465. [Google Scholar] [CrossRef]
- Harvard Health Publishing. Can Long COVID Affect the Gut? Available online: https://www.health.harvard.edu/blog/can-long-covid-affect-the-gut-202303202903 (accessed on 9 January 2024).
- Einerhand, A.W.C.; van Loo-Bouwman, C.A.; Weiss, G.A.; Wang, C.; Ba, G.; Fan, Q.; He, B.; Smit, G. Can Lactoferrin, a Natural Mammalian Milk Protein, Assist in the Battle against COVID-19? Nutrients 2022, 14, 5274. [Google Scholar] [CrossRef]
- Karav, S.; German, J.B.; Rouquie, C.; le Parc, A.; Barile, D. Studying Lactoferrin N-Glycosylation. Int. J. Mol. Sci. 2017, 18, 870. [Google Scholar] [CrossRef]
- Artym, J.; Zimecki, M. Antimicrobial and Prebiotic Activity of Lactoferrin in the Female Reproduc-tive Tract: A Comprehensive Review. Biomedicines 2021, 9, 1940. [Google Scholar] [CrossRef]
- Liepke, C.; Adermann, K.; Raida, M.; Mägert, H.J.; Forssmann, W.G.; Zucht, H.D. Human milk provides peptides highly stimulating the growth of bifidobacteria. Eur. J. Biochem. 2002, 269, 712–718. [Google Scholar] [CrossRef]
- D’Amico, F.; Decembrino, N.; Muratore, E.; Turroni, S.; Muggeo, P.; Mura, R.; Perruccio, K.; Vitale, V.; Zecca, M.; Prete, A.; et al. Oral Lactoferrin Supplementation during Induction Chemotherapy Promotes Gut Microbiome Eubiosis in Pediatric Patients with Hematologic Malignancies. Pharmaceutics 2022, 14, 1705. [Google Scholar] [CrossRef]
- Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; et al. Alterations in Gut Microbiota of Patients with COVID-19 during Time of Hospitalization. Gastroenterology 2020, 159, 944–955.e948. [Google Scholar] [CrossRef]
- Yeoh, Y.K.; Zuo, T.; Lui, G.C.Y.; Zhang, F.; Liu, Q.; Li, A.Y.L.; Chung, A.C.K.; Cheung, C.P.; Tso, E.Y.K.; Fung, K.S.C.; et al. Gut Microbiota Composition Reflects Disease Severity and Dysfunctional Immune Responses in Patients with COVID-19. Gut 2021, 70, 698–706. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, S.; Chen, Y.; Lu, H.; Shi, D.; Guo, J.; Wu, W.R.; Yang, Y.; Li, Y.; Xu, K.J.; et al. Letter: Six-Month Follow-up of Gut Microbiota Richness in Patients with COVID-19. Gut 2022, 71, 222. [Google Scholar] [CrossRef]
- de Oliveira, G.L.V.; Oliveira, C.N.S.; Pinzan, C.F.; de Salis, L.V.V.; Cardoso, C.R.d.B. Microbiota Modulation of the Gut-Lung Axis in COVID-19. Front. Immunol. 2021, 12, 635471. [Google Scholar] [CrossRef]
- Buccigrossi, V.; de Marco, G.; Bruzzese, E.; Ombrato, L.; Bracale, I.; Polito, G.; Guarino, A. Lac-toferrin Induces Concentration Dependent Functional Modulation of Intestinal Proliferation and Differentiation. Pediatr. Res. 2007, 61, 410–414. [Google Scholar] [CrossRef]
- Troost, F.J.; Saris, W.; Brummer, R.-J. Original Communication Recombinant Human Lactoferrin Ingestion Attenuates. Indomethacin-Induced Enteropathy In Vivo in Healthy Volunteers. Eur. J. Clin. Nutr. 2003, 57, 1579–1585. [Google Scholar] [CrossRef]
- Yonker, L.M.; Gilboa, T.; Ogata, A.F.; Senussi, Y.; Lazarovits, R.; Boribong, B.P.; Bartsch, Y.C.; Loiselle, M.; Rivas, M.N.; Porritt, R.A.; et al. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J. Clin. Investig. 2021, 131, e149633. [Google Scholar] [CrossRef]
- Long Covid: Drug Trial Results to Watch in 2022 and Beyond. Available online: https://www.clinicaltrialsarena.com/features/long-covid-19-drug-trial-results-to-watch-in-2022/ (accessed on 6 November 2023).
- Ianiro, G.; Niro, A.; Rosa, L.; Valenti, P.; Musci, G.; Cutone, A. To Boost or to Reset: The Role of Lactoferrin in Energy Metabolism. Int. J. Mol. Sci. 2023, 24, 15925. [Google Scholar] [CrossRef]
- Ling, C.-J.; Xu, J.-Y.; Li, Y.-H.; Tong, X.; Yang, H.-H.; Yang, J.; Yuan, L.-X.; Qin, L.-Q. Lactoferrin promotes bile acid metabolism and reduces hepatic cholesterol deposition by inhibiting the farnesoid X receptor (FXR)-mediated enterohepatic axis. Food Funct. 2019, 10, 7299–7307. [Google Scholar] [CrossRef]
- Caterino, M.; Gelzo, M.; Sol, S.; Fedele, R.; Annunziata, A.; Calabrese, C.; Fiorentino, G.; D’Abbraccio, M.; Dell’Isola, C.; Fusco, F.M.; et al. Dysregulation of lipid metabolism and pathological inflammation in patients with COVID-19. Sci. Rep. 2021, 11, 2941. [Google Scholar] [CrossRef]
- Wu, D.; Shu, T.; Yang, X.; Song, J.-X.; Zhang, M.; Yao, C.; Liu, W.; Huang, M.; Yu, Y.; Yang, Q.; et al. Plasma metabolomic and lipidomic alterations associated with COVID-19. Natl. Sci. Rev. 2020, 7, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
- Fiorucci, S.; Urbani, G.; Biagioli, M.; Sepe, V.; Distrutti, E.; Zampella, A. Bile acids and bile acid activated receptors in the treatment of COVID-19. Biochem. Pharmacol. 2023, 115983. [Google Scholar] [CrossRef] [PubMed]
- Spick, M.; Campbell, A.; Baricevic-Jones, I.; von Gerichten, J.; Lewis, H.-M.; Frampas, C.F.; Longman, K.; Stewart, A.; Dunn-Walters, D.; Skene, D.J.; et al. Multi-Omics Reveals Mechanisms of Partial Modulation of COVID-19 Dysregulation by Glucocorticoid Treatment. Int. J. Mol. Sci. 2022, 23, 12079. [Google Scholar] [CrossRef] [PubMed]
Study Population (n = 1244) | Without Lactoferrin for at Least Three Months at 6 Months FUP (n = 1186) | With Lactoferrin for at Least Three Month at 6 Months FUP (n = 58) | p | |
---|---|---|---|---|
Female, n (%) | 594 (47.7%) | 560 (47.2%) | 34 (58.6%) | 0.09 |
Vaccinated, n (%) | 246 (19.8%) | 227 (19.1%) | 19 (32.8%) | 0.01 |
Comorbidities, n (%) | 143 (11.5%) | 133 (11.2%) | 10 (17.2%) | 0.16 |
Severity acute COVID, n (%) Asymptomatic Mild Moderate | 108 (8.7%) 1113 (89.5%) 23 (1.8%) | 107 (9%) 1058 (89.2%) 21 (1.8%) | 1 (1.7%) 55 (94.8%) 2 (3.4%) | 0.11 |
COVID variant, n (%) Alfa Delta Omicron Wild | 72 (5.8) 246 (19.8) 889 (71.5) 37 (3.0) | 70 (5.9%) 231 (19.5%) 849 (71.6%) 36 (3.0%) | 2 (3.4%) 15 (25.9%) 40 (69.0%) 1 (1.7%) | 0.55 |
Hospitalized, n (%) | 26 (2.1%) | 25 (2.1%) | 1 (1.7%) | 1 |
Intensive care unit hospitalization, n (%) | 1 (0.1%) | 1 (0.1%) | 0 (%) | 1 |
Gastrointestinal symptoms during acute infection, n (%) | 175 (14.1%) | 160 (13.5%) | 15 (25.9%) | 0.008 |
3 Month Follow-Up (n = 1244) | 6 Month Follow-Up (n = 1223) | 12 Month Follow-Up (n = 180) | 18 Month Follow-Up (n = 86) | 24 Month Follow-Up (n = 3) | |
---|---|---|---|---|---|
GI symptoms, n (%) | 54 (4.34%) | 23 (1.88%) | 6 (3.33%) | 2 (2.32%) | 0 (0%) |
Patients with GI symptoms taking Lactoferrin since three months, n (%) | 0 (0%) | 3 (0.3%) | 1 (0.5%) | 0 | 0 |
Nausea, n (%) | 10 (0.80%) | 4 (0.25%) | 2 (1.1%) | 0 (0%) | 0 (0%) |
Diarrhea, n (%) | 13 (1.04%) | 10 (0.82%) | 4 (2.22%) | 1 (1.16) | 0 (0%) |
Abdominal pain, n (%) | 34 (2.73%) | 9 (0.73%) | 0 (0%) | 0 (0%) | 0 (0%) |
Stool abnormalities, n (%) | 5 (0.40%) | 1 (0.08%) | 0 (0%) | 0 (0%) | 0 (0%) |
Poor feeding, n (%) | 4 (0.32%) | 1 (0.08%) | 0 (0%) | 0 (0%) | 0 (0%) |
Gastroesophageal reflux, n (%) | 2 (0.16%) | 2 (0.16%) | 0 (0%) | 0 (0%) | 0 (0%) |
Vomit, n (%) | 1 (0.08%) | 1 (0.08%) | 0 (0%) | 1 (1.16%) | 0 (0%) |
Other symptoms, n (%) | 1 (0.08%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariani, F.; Rainaldi, S.; Dall’Ara, G.; De Rose, C.; Morello, R.; Buonsenso, D. Persisting Gastrointestinal Symptoms in Children with SARS-CoV-2: Temporal Evolution over 18 Months and Possible Role of Lactoferrin. Children 2024, 11, 105. https://doi.org/10.3390/children11010105
Mariani F, Rainaldi S, Dall’Ara G, De Rose C, Morello R, Buonsenso D. Persisting Gastrointestinal Symptoms in Children with SARS-CoV-2: Temporal Evolution over 18 Months and Possible Role of Lactoferrin. Children. 2024; 11(1):105. https://doi.org/10.3390/children11010105
Chicago/Turabian StyleMariani, Francesco, Saveena Rainaldi, Giulia Dall’Ara, Cristina De Rose, Rosa Morello, and Danilo Buonsenso. 2024. "Persisting Gastrointestinal Symptoms in Children with SARS-CoV-2: Temporal Evolution over 18 Months and Possible Role of Lactoferrin" Children 11, no. 1: 105. https://doi.org/10.3390/children11010105
APA StyleMariani, F., Rainaldi, S., Dall’Ara, G., De Rose, C., Morello, R., & Buonsenso, D. (2024). Persisting Gastrointestinal Symptoms in Children with SARS-CoV-2: Temporal Evolution over 18 Months and Possible Role of Lactoferrin. Children, 11(1), 105. https://doi.org/10.3390/children11010105