Appropriate Vestibular Stimulation in Children and Adolescents—A Prerequisite for Normal Cognitive, Motor Development and Bodily Homeostasis—A Review
Abstract
:1. Introduction
2. Inner Ear Prenatal Development
3. Factors Influencing Embryonic and Postnatal Inner Ear Development
4. Central Vestibular Development
5. Development of the Vestibular Reflexes
6. Vestibular Screening—A Necessary Tool for Timely Identification of Children with an Underdeveloped Vestibular System
7. The Vestibular System-Associated Network
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beraneck, M.; Lambert, F.M.; Sadeghi, S.G. Functional Development of the Vestibular System. In Development of Auditory and Vestibular Systems; Elsevier: Amsterdam, The Netherlands, 2014; pp. 449–487. [Google Scholar]
- Duncan, J.S.; Fritzsch, B. Evolution of Sound and Balance Perception: Innovations That Aggregate Single Hair Cells into the Ear and Transform a Gravistatic Sensor into the Organ of Corti. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2012, 295, 1760–1774. [Google Scholar] [CrossRef] [PubMed]
- Highstein, S.M.; Fay, R.R.; Popper, A.N. The Vestibular System. In Springer Handbook of Auditory Research; Highstein, S.M., Fay, R.R., Popper, A.N., Eds.; Springer: New York, NY, USA, 2004; Volume 19, ISBN 978-0-387-98314-1. [Google Scholar]
- Rajagopalan, A.; Jinu, K.; Sailesh, K.; Mishra, S.; Reddy, U.; Mukkadan, J. Understanding the Links between Vestibular and Limbic Systems Regulating Emotions. J. Nat. Sci. Biol. Med. 2017, 8, 11. [Google Scholar] [CrossRef]
- Kumar Goothy, S.S.; McKeown, J. Anxiolytic Effects of Vestibular Stimulation: An Update. J. Basic Clin. Physiol. Pharmacol. 2023, 34, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Bigelow, R.T.; Semenov, Y.R.; Hoffman, H.J.; Agrawal, Y. Association between Vertigo, Cognitive and Psychiatric Conditions in U.S. Children: 2012 National Health Interview Survey. Int. J. Pediatr. Otorhinolaryngol. 2020, 130, 109802. [Google Scholar] [CrossRef] [PubMed]
- Risey, J.; Briner, W. Dyscalculia in Patients with Vertigo. J. Vestib. Res. Equilib. Orientat. 1990, 1, 31–37. [Google Scholar] [CrossRef]
- Wiener-Vacher, S.R.; Hamilton, D.A.; Wiener, S.I. Vestibular Activity and Cognitive Development in Children: Perspectives. Front. Integr. Neurosci. 2013, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Diekfuss, J.A.; Dudley, J.A.; Ahluwalia, V.; Zuleger, T.M.; Slutsky-Ganesh, A.B.; Yuan, W.; Foss, K.D.B.; Gore, R.K.; Myer, G.D.; et al. Visuo-vestibular and Cognitive Connections of the Vestibular Neuromatrix Are Conserved across Age and Injury Populations. J. Neuroimaging 2023, 33, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- Hanes, D.A.; McCollum, G. Cognitive-Vestibular Interactions: A Review of Patient Difficulties and Possible Mechanisms. J. Vestib. Res. Equilib. Orientat. 2006, 16, 75–91. [Google Scholar] [CrossRef]
- Ozkul, A.; Konukseven, O. The Development of the Cognitive Vestibular Function Scale in the Elderly Complaints of Imbalance: A Study on Validity and Reliability. Braz. J. Otorhinolaryngol. 2023, 89, 101282. [Google Scholar] [CrossRef]
- El Khiati, R.; Tighilet, B.; Besnard, S.; Chabbert, C. Vestibular Disorders and Hormonal Dysregulations: State of the Art and Clinical Perspectives. Cells 2023, 12, 656. [Google Scholar] [CrossRef]
- Kerman, I.A.; McAllen, R.M.; Yates, B.J. Patterning of Sympathetic Nerve Activity in Response to Vestibular Stimulation. Brain Res. Bull. 2000, 53, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Yates, B.J.; Bronstein, A.M. The Effects of Vestibular System Lesions on Autonomic Regulation: Observations, Mechanisms, and Clinical Implications. J. Vestib. Res. Equilib. Orientat. 2005, 15, 119–129. [Google Scholar] [CrossRef]
- Kumar, S.; Archana, R.; Mukkadan, J. Effect of Vestibular Stimulation on Spatial and Verbal Memory in College Students. Natl. Med. J. India 2017, 30, 337. [Google Scholar] [CrossRef] [PubMed]
- Levelt, C.N.; Hübener, M. Critical-Period Plasticity in the Visual Cortex. Annu. Rev. Neurosci. 2012, 35, 309–330. [Google Scholar] [CrossRef] [PubMed]
- Deroualle, D.; Lopez, C. Toward a Vestibular Contribution to Social Cognition. Front. Integr. Neurosci. 2014, 8, 16. [Google Scholar] [CrossRef]
- Matthews, C.E.; Chen, K.Y.; Freedson, P.S.; Buchowski, M.S.; Beech, B.M.; Pate, R.R.; Troiano, R.P. Amount of Time Spent in Sedentary Behaviors in the United States, 2003–2004. Am. J. Epidemiol. 2008, 167, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide Trends in Insufficient Physical Activity from 2001 to 2016: A Pooled Analysis of 358 Population-Based Surveys with 19 Million Participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef]
- Ajonijebu, D.C.; Abboussi, O.; Russell, V.A.; Mabandla, M.V.; Daniels, W.M.U. Epigenetics: A Link between Addiction and Social Environment. Cell. Mol. Life Sci. 2017, 74, 2735–2747. [Google Scholar] [CrossRef]
- Plaza-Florido, A.; Pérez-Prieto, I.; Molina-Garcia, P.; Radom-Aizik, S.; Ortega, F.B.; Altmäe, S. Transcriptional and Epigenetic Response to Sedentary Behavior and Physical Activity in Children and Adolescents: A Systematic Review. Front. Pediatr. 2022, 10, 7152. [Google Scholar] [CrossRef]
- Mittal, R.; Bencie, N.; Liu, G.; Eshraghi, N.; Nisenbaum, E.; Blanton, S.H.; Yan, D.; Mittal, J.; Dinh, C.T.; Young, J.I.; et al. Recent Advancements in Understanding the Role of Epigenetics in the Auditory System. Gene 2020, 761, 144996. [Google Scholar] [CrossRef]
- O’Reilly, R.; Grindle, C.; Zwicky, E.F.; Morlet, T. Development of the Vestibular System and Balance Function: Differential Diagnosis in the Pediatric Population. Otolaryngol. Clin. N. Am. 2011, 44, 251–271. [Google Scholar] [CrossRef] [PubMed]
- Witt, M. Anatomy and Development of the Human Taste System. Handb. Clin. Neurol. 2019, 164, 147–171. [Google Scholar] [CrossRef] [PubMed]
- Gulya, A.J. Anatomy of the Temporal Bone with Surgical Implications, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007; ISBN 9780849375972. [Google Scholar]
- Mackowetzky, K.; Yoon, K.H.; Mackowetzky, E.J.; Waskiewicz, A.J. Development and Evolution of the Vestibular Apparatuses of the Inner Ear. J. Anat. 2021, 239, 801–828. [Google Scholar] [CrossRef] [PubMed]
- Maklad, A.; Fritzsch, B. Development of Vestibular Afferent Projections into the Hindbrain and Their Central Targets. Brain Res. Bull. 2003, 60, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Ronca, A.; Fritzsch, B.; Bruce, L.L.; Alberts, J.R. Orbital Spaceflight during Pregnancy Shapes Function of Mammalian Vestibular System. Behav. Neurosci. 2008, 122, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Hamburger, V. Embryology. Science 1963, 142, 1367. [Google Scholar] [CrossRef] [PubMed]
- Hadders-Algra, M. Early Human Motor Development: From Variation to the Ability to Vary and Adapt. Neurosci. Biobehav. Rev. 2018, 90, 411–427. [Google Scholar] [CrossRef]
- Modrell, A.K.; Tadi, P. Primitive Reflexes; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Nandi, R.; Luxon, L.M. Development and Assessment of the Vestibular System. Int. J. Audiol. 2008, 47, 566–577. [Google Scholar] [CrossRef]
- Mark Pyle, G. Embryological Development and Large Vestibular Aqueduct Syndrome. Laryngoscope 2000, 110, 1837–1842. [Google Scholar] [CrossRef]
- Kenyon, G.S. Studies of Vestibular and Visual–Ocular Maturation in Normal Children; University of Edinburgh: Edinburgh, UK, 1990. [Google Scholar]
- Jahn, K.; Langhagen, T.; Schroeder, A.S.; Heinen, F. Vertigo and Dizziness in Childhood Update on Diagnosis and Treatment. Neuropediatrics 2011, 42, 129–134. [Google Scholar] [CrossRef]
- Reid, G.M. Sudden Infant Death Syndrome (SIDS): Microgravity and Inadequate Sensory Stimulation. Med. Hypotheses 2006, 66, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Eshaghi, Z.; Jafari, Z.; Shaibanizadeh, A.; Jalaie, S.; Ghaseminejad, A. The Effect of Preterm Birth on Vestibular Evoked Myogenic Potentials in Children. Med. J. Islam. Repub. Iran 2014, 28, 75. [Google Scholar] [PubMed]
- Ross, M.D.; Tomko, D.L. Effect of Gravity on Vestibular Neural Development. Brain Res. Rev. 1998, 28, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Domingues-Montanari, S. Clinical and Psychological Effects of Excessive Screen Time on Children. J. Paediatr. Child Health 2017, 53, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128·9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed]
- Childhood Obesity Facts, Overweight & Obesity, CDC. Available online: https://www.cdc.gov/obesity/data/childhood.html (accessed on 2 December 2023).
- López-Fernández, J.; López-Valenciano, A.; Mayo, X.; Liguori, G.; Lamb, M.A.; Copeland, R.J.; Jiménez, A. No Changes in Adolescent’s Sedentary Behaviour across Europe between 2002 and 2017. BMC Public Health 2021, 21, 784. [Google Scholar] [CrossRef] [PubMed]
- Battilana, F.; Steurer, S.; Rizzi, G.; Delgado, A.C.; Tan, K.R.; Handschin, C. Exercise-linked Improvement in Age-associated Loss of Balance Is Associated with Increased Vestibular Input to Motor Neurons. Aging Cell 2020, 19, e13274. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.J.; Barnes, J.D.; Tremblay, M.S.; Chaput, J.-P. Associations between Duration and Type of Electronic Screen Use and Cognition in U.S. Children. Comput. Hum. Behav. 2020, 108, 106312. [Google Scholar] [CrossRef]
- Chen, C.; Nakagawa, S. Physical Activity for Cognitive Health Promotion: An Overview of the Underlying Neurobiological Mechanisms. Ageing Res. Rev. 2023, 86, 101868. [Google Scholar] [CrossRef]
- Cullen, K.E.; Taube, J.S. Our Sense of Direction: Progress, Controversies and Challenges. Nat. Neurosci. 2017, 20, 1465–1473. [Google Scholar] [CrossRef]
- Sisson, S.B.; Church, T.S.; Martin, C.K.; Tudor-Locke, C.; Smith, S.R.; Bouchard, C.; Earnest, C.P.; Rankinen, T.; Newton, R.L.; Katzmarzyk, P.T. Profiles of Sedentary Behavior in Children and Adolescents: The U.S. National Health and Nutrition Examination Survey, 2001–2006. Int. J. Pediatr. Obes. 2009, 4, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Winter, S.S.; Mehlman, M.L.; Clark, B.J.; Taube, J.S. Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex. Curr. Biol. 2015, 25, 2493–2502. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wang, D.; Shen, H.; Yu, L.; Gao, Q.; Mao, L.; Jiang, F.; Luo, Y.; Xie, M.; Zhang, Y.; et al. Physical Activity and Health in Chinese Children and Adolescents: Expert Consensus Statement (2020). Br. J. Sports Med. 2020, 54, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Available online: https://www.who.int/initiatives/behealthy/physical-activity#:~:text=Childrenandadolescentsaged5–17yearsShoulddo,andbone%2Catleast3timesperweek (accessed on 16 November 2023).
- Lau, J.H.; Nair, A.; Abdin, E.; Kumarasan, R.; Wang, P.; Devi, F.; Sum, C.F.; Lee, E.S.; Müller-Riemenschneider, F.; Subramaniam, M. Prevalence and Patterns of Physical Activity, Sedentary Behaviour, and Their Association with Health-Related Quality of Life within a Multi-Ethnic Asian Population. BMC Public Health 2021, 21, 1939. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q. Effect of Applying Best Practices for Physical Activity and Screen Time to Family Childcare Homes. Prev. Chronic. Dis. 2023, 20, 325. [Google Scholar] [CrossRef] [PubMed]
- Beisel, K.W.; Wang-Lundberg, Y.; Maklad, A.; Fritzsch, B. Development and Evolution of the Vestibular Sensory Apparatus of the Mammalian Ear. J. Vestib. Res. Equilib. Orientat. 2005, 15, 225–241. [Google Scholar] [CrossRef]
- Wu, D.K.; Kelley, M.W. Molecular Mechanisms of Inner Ear Development. Cold Spring Harb. Perspect. Biol. 2012, 4, a008409. [Google Scholar] [CrossRef] [PubMed]
- Mann, Z.F.; Gálvez, H.; Pedreno, D.; Chen, Z.; Chrysostomou, E.; Żak, M.; Kang, M.; Canden, E.; Daudet, N. Shaping of Inner Ear Sensory Organs through Antagonistic Interactions between Notch Signalling and Lmx1a. eLife 2017, 6, e33323. [Google Scholar] [CrossRef]
- Krumlauf, R.; Wilkinson, D.G. Segmentation and Patterning of the Vertebrate Hindbrain. Development 2021, 148, dev186460. [Google Scholar] [CrossRef]
- Almasoudi, S.H.; Schlosser, G. Otic Neurogenesis in Xenopus Laevis: Proliferation, Differentiation, and the Role of Eya1. Front. Neuroanat. 2021, 15, 722374. [Google Scholar] [CrossRef]
- Burns, J.C.; On, D.; Baker, W.; Collado, M.S.; Corwin, J.T. Over Half the Hair Cells in the Mouse Utricle First Appear After Birth, with Significant Numbers Originating from Early Postnatal Mitotic Production in Peripheral and Striolar Growth Zones. J. Assoc. Res. Otolaryngol. 2012, 13, 609–627. [Google Scholar] [CrossRef] [PubMed]
- Balendran, V.; Ritter, K.E.; Martin, D.M. Epigenetic Mechanisms of Inner Ear Development. Hear. Res. 2022, 426, 108440. [Google Scholar] [CrossRef] [PubMed]
- National Human Genome Reaserch Institute. Available online: https://www.genome.gov/search?terms=epigenetics (accessed on 16 November 2023).
- Hallock, R.M.; Di Lorenzo, P.M. Effects of Electrical Stimulation of the Glossopharyngeal Nerve on Cells in the Nucleus of the Solitary Tract of the Rat. Brain Res. 2006, 1113, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Swaiman, K.F. Pediatric Neurology: Principles & Practice; Mosby, Inc.: Maryland Heights, MO, USA, 1999; ISBN 9780815130970. [Google Scholar]
- Zafeiriou, D.I. Primitive Reflexes and Postural Reactions in the Neurodevelopmental Examination. Pediatr. Neurol. 2004, 31, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Blanke, O. The Thalamocortical Vestibular System in Animals and Humans. Brain Res. Rev. 2011, 67, 119–146. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, R.; Protti, D.A.; Camp, A.J. Vestibular Interactions in the Thalamus. Front. Neural Circuits 2015, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Bandiera, S.; Molnár, Z. Development of the Thalamocortical Systems. In The Thalamus; Cambridge University Press: Cambridge, UK, 2022; pp. 139–162. [Google Scholar]
- Antón-Bolaños, N.; Espinosa, A.; López-Bendito, G. Developmental Interactions between Thalamus and Cortex: A True Love Reciprocal Story. Curr. Opin. Neurobiol. 2018, 52, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y. Development of the Thalamus: From Early Patterning to Regulation of Cortical Functions. WIREs Dev. Biol. 2019, 8, 345. [Google Scholar] [CrossRef]
- Brandt, T.; Strupp, M.; Dieterich, M. Towards a Concept of Disorders of Higher Vestibular Function. Front. Integr. Neurosci. 2014, 8, 47. [Google Scholar] [CrossRef]
- Mast, F.W.; Preuss, N.; Hartmann, M.; Grabherr, L. Spatial Cognition, Body Representation and Affective Processes: The Role of Vestibular Information beyond Ocular Reflexes and Control of Posture. Front. Integr. Neurosci. 2014, 8, 44. [Google Scholar] [CrossRef]
- Hitier, M.; Besnard, S.; Smith, P.F. Vestibular Pathways Involved in Cognition. Front. Integr. Neurosci. 2014, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, E.; Das, J.M. Neuroanatomy, Nucleus Vestibular. Available online: https://www.ncbi.nlm.nih.gov/books/NBK562261/ (accessed on 16 November 2023).
- Morton, S.M.; Bastian, A.J. Cerebellar Control of Balance and Locomotion. Neuroscientist 2004, 10, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M.; Siegelbaum, S.A.; Hudspeth, A.J. Priciples of Neural Science, 5th ed.; McGraw Hill: New York, NY, USA, 2014; ISBN 978-0-07-139011-8. [Google Scholar]
- Gogtay, N.; Nugent, T.F.; Herman, D.H.; Ordonez, A.; Greenstein, D.; Hayashi, K.M.; Clasen, L.; Toga, A.W.; Giedd, J.N.; Rapoport, J.L.; et al. Dynamic Mapping of Normal Human Hippocampal Development. Hippocampus 2006, 16, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Schautzer, F.; Hamilton, D.; Kalla, R.; Strupp, M.; Brandt, T. Spatial Memory Deficits in Patients with Chronic Bilateral Vestibular Failure. Ann. N. Y. Acad. Sci. 2003, 1004, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Fife, T.D.; Tusa, R.J.; Furman, J.M.; Zee, D.S.; Frohman, E.; Baloh, R.W.; Hain, T.; Goebel, J.; Demer, J.; Eviatar, L. Assessment: Vestibular Testing Techniques in Adults and Children: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2000, 55, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Kelsch, T.A.; Schaefer, L.A.; Esquivel, C.R. Vestibular Evoked Myogenic Potentials in Young Children: Test Parameters and Normative Data. Laryngoscope 2006, 116, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Young, Y.-H. Assessment of Functional Development of the Otolithic System in Growing Children: A Review. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Geisler, H.C.; Gramsbergen, A. Motor Development after Vestibular Deprivation in Rats. Neurosci. Biobehav. Rev. 1998, 22, 565–569. [Google Scholar] [CrossRef]
- Rapin, I. Hypoactive Labyrinths and Motor Development. Clin. Pediatr. 1974, 13, 922–937. [Google Scholar] [CrossRef]
- Andermann, A.; Blancquaert, I.; Beauchamp, S.; Déry, V. Revisiting Wilson and Jungner in the Genomic Age: A Review of Screening Criteria over the Past 40 Years. Bull. World Health Organ. 2008, 86, 317–319. [Google Scholar] [CrossRef]
- Raiser, T.M.; Flanagin, V.L.; Duering, M.; van Ombergen, A.; Ruehl, R.M.; zu Eulenburg, P. The Human Corticocortical Vestibular Network. NeuroImage 2020, 223, 117362. [Google Scholar] [CrossRef] [PubMed]
- Indovina, I.; Bosco, G.; Riccelli, R.; Maffei, V.; Lacquaniti, F.; Passamonti, L.; Toschi, N. Structural Connectome and Connectivity Lateralization of the Multimodal Vestibular Cortical Network. NeuroImage 2020, 222, 117247. [Google Scholar] [CrossRef] [PubMed]
- Nagaratnam, N.; Ip, J.; Bou-Haidar, P. The Vestibular Dysfunction and Anxiety Disorder Interface: A Descriptive Study with Special Reference to the Elderly. Arch. Gerontol. Geriatr. 2005, 40, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.; Nicholls, S.; Pattenden, C.; Kilduff, P.; Milberg, W. Galvanic Vestibular Stimulation Speeds Visual Memory Recall. Exp. Brain Res. 2008, 189, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.M.; Greenlee, M.W. The Parieto-Insular Vestibular Cortex in Humans: More than a Single Area? J. Neurophysiol. 2018, 120, 1438–1450. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Cullen, K.E. Electrical Stimulation of the Peripheral and Central Vestibular System. Curr. Opin. Neurol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Bächtold, D.; Baumann, T.; Sándor, P.S.; Kritos, M.; Regard, M.; Brugger, P. Spatial- and Verbal-Memory Improvement by Cold-Water Caloric Stimulation in Healthy Subjects. Exp. Brain Res. 2001, 136, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, G.F.; Mehnert, J.; Basedau, H.; Luedtke, K.; May, A. Brain Processing of Visual Self-Motion Stimuli in Patients with Migraine. Neurology 2021, 97, e996–e1006. [Google Scholar] [CrossRef]
- Braswell, J.; Rine, R.M. Evidence That Vestibular Hypofunction Affects Reading Acuity in Children. Int. J. Pediatr. Otorhinolaryngol. 2006, 70, 1957–1965. [Google Scholar] [CrossRef]
- Smith, P.F.; Zheng, Y.; Horii, A.; Darlington, C.L. Does Vestibular Damage Cause Cognitive Dysfunction in Humans? J. Vestib. Res. Equilib. Orientat. 2005, 15, 1–9. [Google Scholar] [CrossRef]
- Lopez, C. Making Sense of the Body: The Role of Vestibular Signals. Multisens. Res. 2015, 28, 525–557. [Google Scholar] [CrossRef] [PubMed]
- Bayat, A.; Hoseinabadi, R.; Saki, N.; Sanayi, R. Disability and Anxiety in Vestibular Diseases: A Cross-Sectional Study. Cureus 2020, 12, e11813. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R.G.; Furman, J.M. Psychiatric Consequences of Vestibular Dysfunction. Curr. Opin. Neurol. 2001, 14, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, M.; Brandt, T. Central Vestibular Networking for Sensorimotor Control, Cognition, and Emotion. Curr. Opin. Neurol. 2023. [Google Scholar] [CrossRef]
- Brandt, T.; Dieterich, M. ‘Excess Anxiety’ and ‘Less Anxiety’: Both Depend on Vestibular Function. Curr. Opin. Neurol. 2020, 33, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Heyer, G.L.; Young, J.A.; Fischer, A.N. Lightheadedness after Concussion: Not All Dizziness Is Vertigo. Clin. J. Sport Med. 2018, 28, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Bogle, J.M.; Benarroch, E.; Sandroni, P. Vestibular-Autonomic Interactions: Beyond Orthostatic Dizziness. Curr. Opin. Neurol. 2022, 35, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Nagai, M.; Scheper, V.; Lenarz, T.; Förster, C.Y. The Insular Cortex as a Vestibular Area in Relation to Autonomic Function. Clin. Auton. Res. 2021, 31, 179–185. [Google Scholar] [CrossRef]
- Mucci, V.; Hamid, M.; Jacquemyn, Y.; Browne, C.J. Influence of Sex Hormones on Vestibular Disorders. Curr. Opin. Neurol. 2022, 35, 135–141. [Google Scholar] [CrossRef]
- Smith, P.F.; Agrawal, Y.; Darlington, C.L. Sexual Dimorphism in Vestibular Function and Dysfunction. J. Neurophysiol. 2019, 121, 2379–2391. [Google Scholar] [CrossRef]
- Paula Serra, A.; De Carvalho Lopes, K.; Dorigueto, R.S.; Freitas Ganança, F. Blood Glucose and Insulin Levels in Patients with Peripheral Vestibular Disease. Braz. J. Otorhinolaryngol. 2009, 75, 701–705. [Google Scholar] [CrossRef]
- Rastoldo, G.; Tighilet, B. Thyroid Axis and Vestibular Physiopathology: From Animal Model to Pathology. Int. J. Mol. Sci. 2023, 24, 9826. [Google Scholar] [CrossRef]
- Grimm, D.; Kossmehl, P.; Shakibaei, M.; Schulze-Tanzil, G.; Pickenhahn, H.; Bauer, J.; Paul, M.; Cogoli, A. Effects of Simulated Microgravity on Thyroid Carcinoma Cells. J. Gravitational Physiol. J. Int. Soc. Gravitational Physiol. 2002, 9, P253–P256. [Google Scholar]
- Gliddon, C.M.; Smith, P.F.; Darlington, C.L. Interaction Between the Hypothalamic—Pituitary—Adrenal Axis and Behavioural Compensation Following Unilateral Vestibular Deafferentation. Acta Otolaryngol. 2003, 123, 1013–1021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Božanić Urbančič, N.; Battelino, S.; Vozel, D. Appropriate Vestibular Stimulation in Children and Adolescents—A Prerequisite for Normal Cognitive, Motor Development and Bodily Homeostasis—A Review. Children 2024, 11, 2. https://doi.org/10.3390/children11010002
Božanić Urbančič N, Battelino S, Vozel D. Appropriate Vestibular Stimulation in Children and Adolescents—A Prerequisite for Normal Cognitive, Motor Development and Bodily Homeostasis—A Review. Children. 2024; 11(1):2. https://doi.org/10.3390/children11010002
Chicago/Turabian StyleBožanić Urbančič, Nina, Saba Battelino, and Domen Vozel. 2024. "Appropriate Vestibular Stimulation in Children and Adolescents—A Prerequisite for Normal Cognitive, Motor Development and Bodily Homeostasis—A Review" Children 11, no. 1: 2. https://doi.org/10.3390/children11010002
APA StyleBožanić Urbančič, N., Battelino, S., & Vozel, D. (2024). Appropriate Vestibular Stimulation in Children and Adolescents—A Prerequisite for Normal Cognitive, Motor Development and Bodily Homeostasis—A Review. Children, 11(1), 2. https://doi.org/10.3390/children11010002