Broadening the PHIP-Associated Neurodevelopmental Phenotype
Abstract
:1. Introduction
2. Case Description
2.1. Clinical Findings
2.2. Molecular Data
2.3. Protein Modeling
2.4. DeepGestalt Analysis
2.5. Clinical Review and Comparison with the PHIP-Related Phenotype and PTHS Clinical Score
Features | Conti 2023 [14] (n = 2) % | Kampmeier 2023 [15] (n = 23) % | Kaur 2021 [13] (n = 1) % | Craddock 2019 [12] (n = 10) % | Jansen 2018 [1] (n = 23) % | Webster 2016 [11] (n = 2) % | de Ligt 2012 [10] (n = 1) % | This Patient |
---|---|---|---|---|---|---|---|---|
ID | 100% | 91% | 100% | 100% | 78% | 100% | 100% | + |
DD | 100% | 96% | N.A. | 100% | N.A. | 100% | N.A. | + |
Behavioral disturbances | N.A. | 87% | 100% | 88% | 78% | 50% | N.A. | − |
Upturned/short nose | 100% | 23% | 100% | N.A. | 68% | N.A. | N.A. | − |
Thick alae nasi | N.A. | 26% | N.A. | N.A. | 68% | N.A. | N.A. | − |
High forehead | N.A. | N.A. | 100% | 70% | 67% | N.A. | N.A. | − |
Large/fleshy earlobes | N.A. | 61% | 100% | 40% | 64% | 100% | N.A. | − |
Thick helices | N.A. | N.A. | 100% | 30% | 50% | N.A. | N.A. | − |
Thick earlobes | N.A. | N.A. | 100% | 10% | 50% | N.A. | N.A. | − |
Anormal eyebrows | N.A. | 61% | 0% | 10% | 59% | N.A. | 100% | − |
Anteverted nares | N.A. | 52% | N.A. | 40% | N.A. | N.A. | N.A. | − |
Broad nasal tip | N.A. | 17% | N.A. | 20% | N.A. | N.A. | N.A. | + |
Thin/full lips | 100% | N.A. | 0% | 60% | 36% | N.A. | 100% | + |
Up-turned upper lip | N.A. | N.A. | N.A. | N.A. | N.A. | 50% | N.A. | − |
Long/short/smooth/prominent philtrum | 100% | 30% | 100% | 40% | 45% | 50% | 100% | − |
Upslanting palpebral fissures/almond-shaped eyes | N.A. | 13% | 100% | 50% | 59% | N.A. | N.A. | − |
Synophrys | 100% | 13% | 0% | 30% | 59% | N.A. | N.A. | − |
Deep set eyes | N.A. | 17% | N.A. | N.A. | N.A. | 50% | N.A. | − |
Short/small nose | 100% | 30% | N.A. | 20% | N.A. | 50% | N.A. | − |
Epicanthus | N.A. | 9% | 100% | 10% | 27% | N.A. | N.A. | − |
Tapering fingers | N.A. | 43% | 0% | N.A. | 76% | N.A. | 100% | − |
Clinodactyly 5th fingers | N.A. | 30% | 100% | 50% | 64% | N.A. | 100% | + |
Syndactyly 2/3 toe | N.A. | 26% | N.A. | 20% | 30% | N.A. | N.A. | − |
Brachydactyly | N.A. | 30% | 100% | N.A. | N.A. | N.A. | N.A. | + |
Vision problems | N.A. | 48% | 100% | 80% | 65% | 50% | 100% | + |
Fatigue | N.A. | 9% | 100% | 90% | 56% | N.A. | N.A. | − |
Overweight/obesity | N.A. | 70% | 100% | 20% | 74% | 100% | 100% | − |
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jansen, S.; Hoischen, A.; Coe, B.P.; Carvill, G.L.; Van Esch, H.; Bosch, D.G.M.; Andersen, U.A.; Baker, C.; Bauters, M.; Bernier, R.A.; et al. A genotype-first approach identifies an intellectual disability-overweight syndrome caused by PHIP haploinsufficiency. Eur. J. Hum. Genet. 2018, 26, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Amiel, J.; Rio, M.; de Pontual, L.; Redon, R.; Malan, V.; Boddaert, N.; Plouin, P.; Carter, N.P.; Lyonnet, S.; Munnich, A.; et al. Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am. J. Hum. Genet. 2007, 80, 988–993. [Google Scholar] [CrossRef]
- Zweier, C.; Peippo, M.M.; Hoyer, J.; Sousa, S.; Bottani, A.; Clayton-Smith, J.; Reardon, W.; Saraiva, J.; Cabral, A.; Göhring, I.; et al. Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins syndrome). Am. J. Hum. Genet. 2007, 80, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Zollino, M.; Zweier, C.; Van Balkom, I.D.; Sweetser, D.A.; Alaimo, J.; Bijlsma, E.K.; Cody, J.; Elsea, S.H.; Giurgea, I.; Macchiaiolo, M.; et al. Diagnosis and management in Pitt-Hopkins syndrome: First international consensus statement. Clin. Genet. 2019, 95, 462–478. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Bertoni, D.; Magana, P.; Paramval, U.; Pidruchna, I.; Radhakrishnan, M.; Tsenkov, M.; Nair, S.; Mirdita, M.; Yeo, J.; et al. AlphaFold Protein Structure Database in 2024: Providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 2024, 52, 368–375. [Google Scholar] [CrossRef]
- Valley, C.C.; Cembran, A.; Perlmutter, J.D.; Lewis, A.K.; Labello, N.P.; Gao, J.; Sachs, J.N. The methionine-aromatic motif plays a unique role in stabilizing protein structure. J. Biol. Chem. 2012, 287, 34979–34991. [Google Scholar] [CrossRef]
- Lim, J.M.; Kim, G.; Levine, R.L. Methionine in Proteins: It’s Not Just for Protein Initiation Anymore. Neurochem. Res. 2019, 44, 247–257. [Google Scholar] [CrossRef]
- Gurovich, Y.; Hanani, Y.; Bar, O.; Nadav, G.; Fleischer, N.; Gelbman, D.; Basel-Salmon, L.; Krawitz, P.M.; Kamphausen, S.B.; Zenker, M.; et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat. Med. 2019, 25, 60–64. [Google Scholar] [CrossRef]
- Reiter, A.M.V.; Pantel, J.T.; Danyel, M.; Horn, D.; Ott, C.-E.; Mensah, M.A. Validation of 3 Computer-Aided Facial Phenotyping Tools (DeepGestalt, GestaltMatcher, and D-Score): Comparative Diagnostic Accuracy Study. J. Med. Internet Res. 2024, 26, e42904. [Google Scholar] [CrossRef]
- De Ligt, J.; Willemsen, M.H.; Van Bon, B.W.; Kleefstra, T.; Yntema, H.G.; Kroes, T.; Vulto-van Silfhout, A.T.; Koolen, D.A.; De Vries, P.; Gilissen, C.; et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 2012, 367, 1921–1929. [Google Scholar] [CrossRef]
- Webster, E.; Cho, M.T.; Alexander, N.; Desai, S.; Naidu, S.; Bekheirnia, M.R.; Lewis, A.; Retterer, K.; Juusola, J.; Chung, W.K. De novo PHIP-predicted deleterious variants are associated with developmental delay, intellectual disability, obesity, and dysmorphic features. Cold Spring Harb. Mol. Case Stud. 2016, 2, a001172. [Google Scholar] [CrossRef] [PubMed]
- Craddock, K.E.; Okur, V.; Wilson, A.; Gerkes, E.H.; Ramsey, K.; Heeley, J.M.; Juusola, J.; Vitobello, A.; Dupeyron, M.-N.B.; Faivre, L.; et al. Clinical and genetic characterization of individuals with predicted deleterious PHIP variants. Cold Spring Harb. Mol. Case Stud. 2019, 5, a004200. [Google Scholar] [CrossRef]
- Kaur, H.; Panigrahi, I. Chung-Jansen Syndrome with obesity. Obes. Res. Clin. Pract. 2021, 15, 303–305. [Google Scholar] [CrossRef] [PubMed]
- Conti, B.; Rinaldi, B.; Rimoldi, M.; Villa, R.; Iascone, M.; Gangi, S.; Porro, M.; Ajmone, P.F.; Colli, A.M.; Mosca, F.; et al. Chung-Jansen syndrome can mimic Cornelia de Lange syndrome: Another player among chromatinopathies? Am. J. Med. Genet. A 2023, 191, 1586–1592. [Google Scholar] [CrossRef]
- Kampmeier, A.; Leitão, E.; Parenti, I.; Beygo, J.; Depienne, C.; Bramswig, N.C.; Hsieh, T.-C.; Afenjar, A.; Beck-Wödl, S.; Grasshoff, U.; et al. PHIP-associated Chung-Jansen syndrome: Report of 23 new individuals. Front. Cell Dev. Biol. 2023, 10, 1020609. [Google Scholar] [CrossRef]
- Farhang-Fallah, J.; Randhawa, V.K.; Nimnual, A.; Klip, A.; Bar-Sagi, D.; Rozakis-Adcock, M. The pleckstrin homology (PH) domain-interacting protein couples the insulin receptor substrate 1 PH domain to insulin signaling pathways leading to mitogenesis and GLUT4 translocation. Mol. Cell. Biol. 2002, 22, 7325–7336. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, D.; Jin, T. Insulin alters the expression of components of the Wnt signaling pathway including TCF-4 in the intestinal cells. Biochim. Biophys. Acta 2010, 1800, 344–351. [Google Scholar] [CrossRef]
- Desbois-Mouthon, C.; Cadoret, A.; Eggelpoël, M.-J.B.-V.; Bertrand, F.; Cherqui, G.; Perret, C.; Capeau, J. Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene 2001, 20, 252–259. [Google Scholar] [CrossRef]
- Playford, M.P.; Bicknell, D.; Bodmer, W.F.; Macaulay, V.M. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proc. Natl. Acad. Sci. USA 2000, 97, 12103–12108. [Google Scholar] [CrossRef]
- Verras, M.; Sun, Z. Beta-catenin is involved in insulin-like growth factor 1-mediated transactivation of the androgen receptor. Mol. Endocrinol. 2005, 19, 391–398. [Google Scholar] [CrossRef]
- Cruz, E.; Descalzi, G.; Steinmetz, A.; Scharfman, H.E.; Katzman, A.; Alberini, C.M. CIM6P/IGF-2 Receptor Ligands Reverse Deficits in Angelman Syndrome Model Mice. Autism Res. 2021, 14, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Huttlin, E.L.; Bruckner, R.J.; Navarrete-Perea, J.; Cannon, J.R.; Baltier, K.; Gebreab, F.; Gygi, M.P.; Thornock, A.; Zarraga, G.; Tam, S.; et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 2021, 184, 3022–3040. [Google Scholar] [CrossRef]
Main PTHS Features | This Patient |
---|---|
Severe ID | + (moderate) |
Microcephaly | + |
Narrow forehead | − |
Thin lateral eyebrows | − |
Wide nasal bridge/ridge/tip | + |
Flared nasal alae | + |
Full cheeks/prominent midface | + |
Wide mouth/full lips/cupid bow upper lip | + |
Thickened/overfolded helices | − |
Breathing regulation anomalies (intermittent hyperventilation and/or apnea) | − |
Myopia | + |
Constipation | not acquired. |
Slender fingers and/or abnormal palmar creases | − |
Unstable gait | + (moderate) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascolini, G.; Scaglione, G.L.; Chandramouli, B.; Castiglia, D.; Di Zenzo, G.; Didona, B. Broadening the PHIP-Associated Neurodevelopmental Phenotype. Children 2024, 11, 1395. https://doi.org/10.3390/children11111395
Pascolini G, Scaglione GL, Chandramouli B, Castiglia D, Di Zenzo G, Didona B. Broadening the PHIP-Associated Neurodevelopmental Phenotype. Children. 2024; 11(11):1395. https://doi.org/10.3390/children11111395
Chicago/Turabian StylePascolini, Giulia, Giovanni Luca Scaglione, Balasubramanian Chandramouli, Daniele Castiglia, Giovanni Di Zenzo, and Biagio Didona. 2024. "Broadening the PHIP-Associated Neurodevelopmental Phenotype" Children 11, no. 11: 1395. https://doi.org/10.3390/children11111395
APA StylePascolini, G., Scaglione, G. L., Chandramouli, B., Castiglia, D., Di Zenzo, G., & Didona, B. (2024). Broadening the PHIP-Associated Neurodevelopmental Phenotype. Children, 11(11), 1395. https://doi.org/10.3390/children11111395