Left Ventricular Longitudinal Strain Abnormalities in Childhood Exposure to Anthracycline Chemotherapy
Abstract
:1. Introduction
2. Material and Methods
2.1. L.E.A. Protocol
2.2. Study Population
2.3. Data Collection
2.4. Clinical Data
- -
- Personal medical history;
- -
- Physical activity practices before leukemia and after remission; evaluated by tracing the number of hours per week of physical activity, including scholarly physical education;
- -
- Cardiac symptoms: dyspnea, angina pectoris, palpitations, syncope;
- -
- Physical exam: weight, height, blood pressure, and heart rate;
- -
- Resting electrocardiogram.
2.5. Echocardiographic Data
- -
- Linear measurements of left ventricular dimensions were performed, as recommended, in the parasternal long-axis view. The values of LV dimensions (diastolic interventricular septal thickness (IVS), diastolic posterior wall thickness (PWT), end-diastolic diameter (EDD), and end-systolic diameter (ESD)) were obtained perpendicular to the LV long axis and measured at or immediately below the level of the mitral valve leaflet tips. Internal dimensions were obtained with a two-dimensional (2D) echocardiography (2DE)-guided M-mode approach, or from 2D echocardiographic images (to avoid oblique sections of the ventricle).
- -
- Left ventricular global and systolic function analysis consisted of the following:
- Visual assessment of global and regional myocardial function where each segment was analyzed individually in multiple views.
- Simpson biplane left ventricular ejection fraction (LV EF) where volume measurements were based on tracings of the blood–tissue interface in the apical four- and two-chamber views.
- Left ventricular global longitudinal strain (LV GLS). LV GLS was performed after optimizing image quality, maximizing frame rate, and minimizing foreshortening in the three standard apical views (apical 2-chamber, apical 4-chamber, and apical 3-chamber views) and averaged. Age-referenced ranges of LV GLS were defined as established by Lévy et al. [7]. Values below a 95% confidence interval were considered abnormal.
- -
- Left ventricular diastolic function: early to late diastolic transmitral flow velocity (E/A) ratio (obtained in 4-chamber view with pulsed wave Doppler); early diastolic mitral annular tissue velocity (e′) (obtained in 4-chamber view with tissue Doppler imaging); E/e′ ratio and left atrial volume (LAV) using the Simpson method.
- -
- Right ventricular analysis: tricuspid annular plane systolic excursion (TAPSE), S wave velocity to the tricuspid ring, right ventricular shortening fraction (RVSF), right ventricular global longitudinal strain (RV GLS).
- -
- Systolic pulmonary artery pressure (PAP) derived from the maximum velocity of tricuspid insufficiency flow.
- -
- Visual assessment of right atrial size, tricuspid valve analysis, diameter measurement of inferior vena cava, and visual assessment of its respiratory compliance,
- -
- Visual analysis of the pericardium.
2.6. Statistical Analysis
3. Results
3.1. Demographics and Treatment
3.2. Physical Activity
3.3. Transthoracic Echocardiography Data
3.4. Risk Factors and Protective Factors
- -
- A cumulative dose of anthracyclines > 240 mg/m2;
- -
- Radiotherapy;
- -
- Regular physical activity (>14 MET.h) after treatment.
4. Discussion
Limitations of the Study
5. Conclusions
5.1. Clinical Implications
5.2. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DCM | dilated cardiomyopathy |
EDD | end-diastolic diameter |
ESD | end-systolic diameter |
IVS | interventricular septal thickness |
LAV | left atrial volume |
LVEF | left ventricular ejection fraction |
LV GLS | left ventricular global longitudinal strain |
LVM | left ventricular mass |
LVSF | left ventricular shortening fraction |
MET.h | Metabolic Equivalent of Task |
PAP | pulmonary artery pressure |
PWT | posterior wall thickness |
RV GLS | right ventricular global longitudinal strain |
RVSF | right ventricular shortening fraction |
TAPSE | tricuspid annular plane systolic excursion |
References
- Zamorano, J.L.; Lancellotti, P.; Rodriguez Muñoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. Heart J. 2016, 37, 2768–2801. [Google Scholar] [CrossRef]
- Cardinale, D.; Colombo, A.; Bacchiani, G.; Tedeschi, I.; Meroni, C.A.; Veglia, F.; Civelli, M.; Lamantia, G.; Colombo, N.; Curigliano, G.; et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 2015, 131, 1981–1988. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Lipsitz, S.R.; Sallan, S.E.; Simbre, V.C., 2nd; Shaikh, S.L.; Mone, S.M.; Gelber, R.D.; Colan, S.D. Long-Term Enalapril Therapy for Left Ventricular Dysfunction in Doxorubicin-Treated Survivors of Childhood Cancer. J. Clin. Oncol. 2002, 20, 4517–4522. [Google Scholar] [CrossRef]
- Chow, E.J.; Leger, K.J.; Bhatt, N.S.; Mulrooney, D.A.; Ross, C.J.; Aggarwal, S.; Bansal, N.; Ehrhardt, M.J.; Armenian, S.H.; Scott, J.M.; et al. Paediatric cardio-oncology: Epidemiology, screening, prevention, and treatment. Cardiovasc. Res. 2019, 115, 922–934. [Google Scholar] [CrossRef]
- Shankar, S.M.; Marina, N.; Hudson, M.M.; Hodgson, D.C.; Adams, M.J.; Landier, W.; Bhatia, S.; Meeske, K.; Chen, M.H.; Kinahan, K.E.; et al. Monitoring for cardiovascular disease in survivors of childhood cancer: Report from the Cardiovascular Disease Task Force of the Children’s Oncology Group. Pediatrics 2008, 121, e387–e396. [Google Scholar] [CrossRef]
- Butte, N.F.; Watson, K.B.; Ridley, K.; Zakeri, I.F.; McMurray, R.G.; Pfeiffer, K.A.; Crouter, S.E.; Herrmann, S.D.; Bassett, D.R.; Long, A.; et al. A Youth Compendium of Physical Activities: Activity Codes and Metabolic Intensities. Med. Sci. Sports Exerc. 2018, 50, 246–256. [Google Scholar] [CrossRef]
- Levy, P.T.; Machefsky, A.; Sanchez, A.A.; Patel, M.D.; Rogal, S.; Fowler, S.; Yaeger, L.; Hardi, A.; Holland, M.R.; Hamvas, A.; et al. Reference Ranges of Left Ventricular Strain Measures by Two-Dimensional Speckle-Tracking Echocardiography in Children: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2016, 29, 209–225.e6. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef]
- Pettersen, M.D.; Du, W.; Skeens, M.E.; Humes, R.A. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: An echocardiographic study. J. Am. Soc. Echocardiogr. 2008, 21, 922–934. [Google Scholar] [CrossRef] [PubMed]
- Foster, B.J.; Khoury, P.R.; Kimball, T.R.; Mackie, A.S.; Mitsnefes, M. New Reference Centiles for Left Ventricular Mass Relative to Lean Body Mass in Children. J. Am. Soc. Echocardiogr. 2016, 29, 441–447.e2. [Google Scholar] [CrossRef] [PubMed]
- Bhatla, P.; Nielsen, J.C.; Ko, H.H.; Doucette, J.; Lytrivi, I.D.; Srivastava, S. Normal values of left atrial volume in pediatric age group using a validated allometric model. Circ. Cardiovasc. Imaging 2012, 5, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Koestenberger, M.; Ravekes, W.; Everett, A.D.; Stueger, H.P.; Heinzl, B.; Gamillscheg, A.; Cvirn, G.; Boysen, A.; Fandl, A.; Nagel, B. Right ventricular function in infants, children and adolescents: Reference values of the tricuspid annular plane systolic excursion (TAPSE) in 640 healthy patients and calculation of z score values. J. Am. Soc. Echocardiogr. 2009, 22, 715–719. [Google Scholar] [CrossRef]
- Koestenberger, M.; Nagel, B.; Ravekes, W.; Avian, A.; Heinzl, B.; Cvirn, G.; Fritsch, P.; Fandl, A.; Rehak, T.; Gamillscheg, A. Reference values of tricuspid annular peak systolic velocity in healthy pediatric patients, calculation of z score, and comparison to tricuspid annular plane systolic excursion. Am. J. Cardiol. 2012, 109, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Levy, P.T.; Sanchez Mejia, A.A.; Machefsky, A.; Fowler, S.; Holland, M.R.; Singh, G.K. Normal ranges of right ventricular systolic and diastolic strain measures in children: A systematic review and meta-analysis. J. Am. Soc. Echocardiogr. 2014, 27, 549–560.e3. [Google Scholar] [CrossRef]
- Moon, T.J.; Miyamoto, S.D.; Younoszai, A.K.; Landeck, B.F. Left ventricular strain and strain rates are decreased in children with normal fractional shortening after exposure to anthracycline chemotherapy. Cardiol. Young 2014, 24, 854–865. [Google Scholar] [CrossRef]
- Yu, A.F.; Raikhelkar, J.; Zabor, E.C.; Tonorezos, E.S.; Moskowitz, C.S.; Adsuar, R.; Mara, E.; Huie, K.; Oeffinger, K.C.; Steingart, R.M.; et al. Two-Dimensional Speckle Tracking Echocardiography Detects Subclinical Left Ventricular Systolic Dysfunction among Adult Survivors of Childhood, Adolescent, and Young Adult Cancer. Biomed. Res. Int. 2016, 2016, 9363951. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, G.T.; Joshi, V.M.; Ness, K.K.; Marwick, T.H.; Zhang, N.; Srivastava, D.; Griffin, B.P.; Grimm, R.A.; Thomas, J.; Phelan, D.; et al. Comprehensive Echocardiographic Detection of Treatment-Related Cardiac Dysfunction in Adult Survivors of Childhood Cancer: Results from the St. Jude Lifetime Cohort Study. J. Am. Coll. Cardiol. 2015, 65, 2511–2522. [Google Scholar] [CrossRef]
- Sawaya, H.; Sebag, I.A.; Plana, J.C.; Januzzi, J.L.; Ky, B.; Tan, T.C.; Cohen, V.; Banchs, J.; Carver, J.R.; Wiegers, S.E.; et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ. Cardiovasc. Imaging 2012, 5, 596–603. [Google Scholar] [CrossRef]
- Pignatelli, R.H.; Ghazi, P.; Reddy, S.C.; Thompson, P.; Cui, Q.; Castro, J.; Okcu, M.F.; Jefferies, J.L. Abnormal Myocardial Strain Indices in Children Receiving Anthracycline Chemotherapy. Pediatr. Cardiol. 2015, 36, 1610–1616. [Google Scholar] [CrossRef]
- Hu, H.M.; Zhang, X.L.; Zhang, W.L.; Huang, D.S.; Du, Z.D. Detection of Subclinical Anthracyclines’ Cardiotoxicity in Children with Solid Tumor. Chin. Med. J. 2018, 131, 1450–1456. [Google Scholar] [CrossRef]
- Toro-Salazar, O.H.; Lee, J.H.; Zellars, K.N.; Perreault, P.E.; Mason, K.C.; Wang, Z.; Hor, K.N.; Gillan, E.; Zeiss, C.J.; Gatti, D.M.; et al. Use of integrated imaging and serum biomarker profiles to identify subclinical dysfunction in pediatric cancer patients treated with anthracyclines. Cardiooncology 2018, 4, 4. [Google Scholar] [CrossRef]
- Adams, M.J.; Lipsitz, S.R.; Colan, S.D.; Tarbell, N.J.; Treves, S.T.; Diller, L.; Greenbaum, N.; Mauch, P.; Lipshultz, S.E. Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J. Clin. Oncol. 2004, 22, 3139–3148. [Google Scholar] [CrossRef]
- Steindorf, K. The role of physical activity in primary cancer prevention. Eur. Rev. Aging Phys. Act. 2013, 10, 33–36. [Google Scholar] [CrossRef]
- Lee, W. Jones, Catherine M Alfano. Exercise-oncology research: Past, present, and future. Acta Oncol. 2013, 52, 195–215. [Google Scholar]
- Scott, J.M.; Li, N.; Liu, Q.; Yasui, Y.; Leisenring, W.; Nathan, P.C.; Gibson, T.; Armenian, S.H.; Nilsen, T.S.; Oeffinger, K.C.; et al. Association of exercise with mortality in adult survivors of childhood cancer. JAMA Oncol. 2018, 4, 1352–1358. [Google Scholar] [CrossRef]
- Jones, L.W.; Liu, Q.; Armstrong, G.T.; Ness, K.K.; Yasui, Y.; Devine, K.; Tonorezos, E.; Soares-Miranda, L.; Sklar, C.A.; Douglas, P.S.; et al. Exercise and risk of major cardiovascular events in adult survivors of childhood hodgkin lymphoma: A report from the childhood cancer survivor study. J. Clin. Oncol. 2014, 32, 3643–3650. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.E.R.; Bredin, S.S.D. Health benefits of physical activity: A systematic review of current systematic reviews. Curr. Opin. Cardiol. 2017, 32, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Dimitri, P.; Joshi, K.; Jones, N.; Moving Medicine for Children Working Group. Moving more: Physical activity and its positive effects on long term conditions in children and young people. Arch. Dis. Child. 2020, 105, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Nuzum, H.; Stickel, A.; Corona, M.; Zeller, M.; Melrose, R.J.; Wilkins, S.S. Potential Benefits of Physical Activity in MCI and Dementia. Behav. Neurol. 2020, 2020, 7807856. [Google Scholar] [CrossRef] [PubMed]
- Katz, P.; Andonian, B.J.; Huffman, K.M. Benefits and promotion of physical activity in rheumatoid arthritis. Curr. Opin. Rheumatol. 2020, 32, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Czenczek-Lewandowska, E.; Grzegorczyk, J.; Mazur, A. Physical activity in children and adolescents with type 1 diabetes and contem-porary methods of its assessment. Pediatr. Endocrinol. Diabetes Metab. 2018, 24, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Hallal, P.C.; Victora, C.G.; Azevedo, M.R.; Wells, J.C. Adolescent physical activity and health: A systematic review. Sports Med. 2006, 36, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Merkx, R.; Leerink, J.M.; de Baat, E.C.; Feijen, E.A.M.; Kok, W.E.M.; Mavinkurve-Groothuis, A.M.C.; Loonen, J.; van der Pal, H.J.H.; Bellersen, L.; de Korte, C.L.; et al. Asymptomatic systolic dysfunction on contemporary echocardiography in anthracycline-treated long-term childhood cancer survivors: A systematic review. J. Cancer Surviv. 2022, 16, 338–352. [Google Scholar] [CrossRef]
Population Characteristics | n = 38 |
---|---|
Sex ratio | 28 ♂/10 ♀ |
Age, median [IQR] | 14.5 [11–18.5] years |
Age at start of treatment, median [IQR] | 5 [3–8] years |
Mean cumulative dose (doxorubicin-equivalent), median [IQR] | 187 [120–250] mg/m2 |
Total body irradiation 12 Gray, n (%) | 7/38 (18.4%) |
Characteristics | n = 38 |
---|---|
IVS thinning, n (%) | 2 (5.2%) |
ESD enlargement, n (%) | 1 (2.6%) |
EDD enlargement, n (%) | 0 |
Abnormal PWT, n (%) | 0 |
Decreased LVM, n (%) | 6 (15.8%) |
Decreased LVSF, n (%) | 3 (7.9%) |
Decreased LVEF, n (%) | 3 (7.9%) |
Abnormal LV GLS, n (%) | 11 (28.9%) |
Increased LAV, n (%) | 3 (7.9%) |
LV diastolic dysfunction, n (%) | 4 (10.5%) |
Altered TAPSE, n (%) | 5 (13.2%) |
Altered S wave velocity, n (%) | 0 |
Decreased RVSF, n (%) | 2 (5.3%) |
Valvular disease, n (%) | 0 |
Pericardial abnormality, n (%) | 0 |
LVM indexed, median [IQR] | 54.2 g/m2 [48.6–65.5] |
LVSF, median [IQR] | 34% [29–40] |
LVEF, mean ± SD | 61.2 ± 5.7% |
LV GLS, mean ± SD | −20.5 ± 2.8% |
RV GLS, mean ± SD | −25.1 ± 4.3% |
Parameters | Abnormal LV GLS n = 11 | Normal LV GLS n = 27 | p |
---|---|---|---|
Age in years, mean ± SD | 13.0 ± 6.9 | 15.4 ± 4.8 | 0.294 |
Age at leukemia diagnosis in years, mean ± SD | 5.86 ± 3.9 | 6.01 ± 4.1 | 0.915 |
Time from treatment to TEE in years, mean ± SD | 7.1 ± 6.4 | 9.4 ± 5.3 | 0.314 |
Male gender, n (%) | 7 (63.6) | 21 (77.8) | 0.305 |
Cumulative dose, mean ± SD | 242.3 ± 112.9 | 176.4 ± 104.1 | 0.074 |
Cumulative dose >240 mg/m2, n (%) | 6 (54.5) | 5 (18.5) | 0.036 |
Radiotherapy, n (%) | 4 (36.4) | 3 (11.1) | 0.014 |
Physical activity before treatment, mean ± SD | 7.6 ± 12.6 | 12.4 ± 18.7 | 0.374 |
Physical activity after treatment, mean ± SD | 17.1 ± 13.8 | 36.6 ± 22.8 | 0.003 |
Physical activity after treatment >14 MET.h/week, n (%) | 7 (63.6) | 25 (92.6) | 0.026 |
Factors | OR | 95% | p |
---|---|---|---|
Cumulative anthracyclines dose > 240 mg/m2 | 4.36 | [0.48–39.49] | 0.190 |
Total body irradiation of 12 Gy | 1.26 | [1.01–1.57] | 0.036 |
Physical activity after treatment > 14 MET.h/week | 0.03 | [0.002–0.411] | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rique, A.; Cautela, J.; Thuny, F.; Michel, G.; Ovaert, C.; El Louali, F. Left Ventricular Longitudinal Strain Abnormalities in Childhood Exposure to Anthracycline Chemotherapy. Children 2024, 11, 378. https://doi.org/10.3390/children11030378
Rique A, Cautela J, Thuny F, Michel G, Ovaert C, El Louali F. Left Ventricular Longitudinal Strain Abnormalities in Childhood Exposure to Anthracycline Chemotherapy. Children. 2024; 11(3):378. https://doi.org/10.3390/children11030378
Chicago/Turabian StyleRique, Arnaud, Jennifer Cautela, Franck Thuny, Gérard Michel, Caroline Ovaert, and Fedoua El Louali. 2024. "Left Ventricular Longitudinal Strain Abnormalities in Childhood Exposure to Anthracycline Chemotherapy" Children 11, no. 3: 378. https://doi.org/10.3390/children11030378
APA StyleRique, A., Cautela, J., Thuny, F., Michel, G., Ovaert, C., & El Louali, F. (2024). Left Ventricular Longitudinal Strain Abnormalities in Childhood Exposure to Anthracycline Chemotherapy. Children, 11(3), 378. https://doi.org/10.3390/children11030378