The Potential Impact of the Gut Microbiota on Neonatal Brain Development and Adverse Health Outcomes
Abstract
:1. Introduction
2. Literature Review
Early Brain Development: An Additional Potential for the Transmissions of Microbiota
3. Materials and Methods
4. Results
4.1. Network Analysis
4.2. Bibliometric Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nikodemova, M.; Kimyon, R.S.; De, I.; Small, A.L.; Collier, L.S.; Watters, J.J. Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week. J. Neuroimmunol. 2015, 278, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Ahern, S.M.; Caton, S.J.; Bouhlal, S.; Hausner, H.; Olsen, A.; Nicklaus, S.; Møller, P.; Hetherington, M.M. Eating a Rainbow. Introducing vegetables in the first years of life in 3 European countries. Appetite 2013, 71, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Mosley, P.E.; Moodie, R.; Dissanayaka, N. Caregiver Burden in Parkinson Disease: A Critical Review of Recent Literature. J. Geriatr. Psychiatry Neurol. 2017, 30, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Ruiz, A.; Mosley, M.; George, A.J.; Mussaji, L.F.; Fullerton, E.F.; Ruszkowski, E.M.; Jacobs, A.J.; Gewirtz, A.T.; Chassaing, B.; Forger, N.G. The microbiota influences cell death and microglial colonization in the perinatal mouse brain. Brain, Behav. Immun. 2018, 67, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Delgado Palacio, S.; Arboleya Montes, S.; Mancabelli, L.; et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. 2017, 81, e00036-17. [Google Scholar] [CrossRef] [PubMed]
- Hoffiz, Y.C.; Castillo-Ruiz, A.; Hall, M.A.L.; Hite, T.A.; Gray, J.M.; Cisternas, C.D.; Cortes, L.R.; Jacobs, A.J.; Forger, N.G. Birth elicits a conserved neuroendocrine response with implications for perinatal osmoregulation and neuronal cell death. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sumich, A.; Heym, N.; Lenzoni, S.; Hunter, K. Gut microbiome-brain axis and inflammation in temperament, personality and psychopathology. Curr. Opin. Behav. Sci. 2022, 44, 101101. [Google Scholar] [CrossRef]
- Hu, J.; Wang, C.; Li, Q.; Jiao, W.; Chen, X.; Ma, B.; Du, L. Lycium barbarum polysaccharide ameliorates radiation-induced brain injury by regulating gut microbiota. J. Tradit. Chin. Med. Sci. 2023, 10, 42–51. [Google Scholar] [CrossRef]
- Lu, J.; Martin, C.R.; Claud, E.C. Neurodevelopmental outcome of infants who develop necrotizing enterocolitis: The gut-brain axis. Semin. Perinatol. 2023, 47, 151694. [Google Scholar] [CrossRef]
- Sharvin, B.L.; Aburto, M.R.; Cryan, J.F. Decoding the neurocircuitry of gut feelings: Region-specific microbiome-mediated brain alterations. Neurobiol. Dis. 2023, 179, 106033. [Google Scholar] [CrossRef]
- Carbia, C.; Bastiaanssen, T.F.; Iannone, L.F.; García-Cabrerizo, R.; Boscaini, S.; Berding, K.; Strain, C.R.; Clarke, G.; Stanton, C.; Dinan, T.G.; et al. The Microbiome-Gut-Brain axis regulates social cognition & craving in young binge drinkers. EBioMedicine 2023, 89, 104442. [Google Scholar] [CrossRef] [PubMed]
- Ritter, K.; Vetter, D.; Wernersbach, I.; Schwanz, T.; Hummel, R.; Schäfer, M.K. Pre-traumatic antibiotic-induced microbial depletion reduces neuroinflammation in acute murine traumatic brain injury. Neuropharmacology 2023, 237, 109648. [Google Scholar] [CrossRef] [PubMed]
- Derbyshire, K.M.; Gray, T.A. Distributive Conjugal Transfer: New Insights into Horizontal Gene Transfer and Genetic Exchange in Mycobacteria. Microbiol. Spectr. 2014, 2, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Damiani, F.; Cornuti, S.; Tognini, P. The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology 2023, 231, 109491. [Google Scholar] [CrossRef] [PubMed]
- Green, S.M.; Donegan, E.; McCabe, R.E.; Streiner, D.L.; Furtado, M.; Noble, L.; Agako, A.; Frey, B.N. Cognitive Behavior Therapy for Women With Generalized Anxiety Disorder in the Perinatal Period: Impact on Problematic Behaviors. Behav. Ther. 2021, 52, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tan, Y.; Cheng, H.; Zhang, D.; Feng, W.; Peng, C. Functions of Gut Microbiota Metabolites, Current Status and Future Perspectives. Aging Dis. 2022, 13, 1106–1126. [Google Scholar] [CrossRef] [PubMed]
- Mollgaard, K.; Saunders, N.R. The development of the human blood-brain and blood-csf barriers. Neuropathol. Appl. Neurobiol. 1986, 12, 337–358. [Google Scholar] [CrossRef] [PubMed]
- Sarubbo, L.A.; Silva, M.d.G.C.; Durval, I.J.B.; Bezerra, K.G.O.; Ribeiro, B.G.; Silva, I.A.; Twigg, M.S.; Banat, I.M. Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochem. Eng. J. 2022, 181, 108377. [Google Scholar] [CrossRef]
- Salvo, E.; Stokes, P.; Keogh, C.E.; Brust-Mascher, I.; Hennessey, C.; Knotts, T.A.; Sladek, J.A.; Rude, K.M.; Swedek, M.; Rabasa, G.; et al. A murine model of pediatric inflammatory bowel disease causes microbiota-gut-brain axis deficits in adulthood. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 319, G361–G374. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Lu, T.; Chen, W.; Yan, W.; Yuan, K.; Shi, L.; Liu, X.; Zhou, X.; Shi, J.; et al. The microbiota-gut-brain axis in sleep disorders. Sleep Med. Rev. 2022, 65, 101691. [Google Scholar] [CrossRef]
- Li, Z.; Lu, T.; Li, M.; Mortimer, M.; Guo, L.-H. Direct and gut microbiota-mediated toxicities of environmental antibiotics to fish and aquatic invertebrates. Chemosphere 2023, 329, 138692. [Google Scholar] [CrossRef] [PubMed]
- Ratsika, A.; Pereira, J.S.C.; Lynch, C.M.; Clarke, G.; Cryan, J.F. Microbiota-immune-brain interactions: A lifespan perspective. Curr. Opin. Neurobiol. 2023, 78, 102652. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, S.; Hajrasouliha, S.; Vaseghi, S.; Yekta, B.G. Interaction effect of crocin and citalopram on memory and locomotor activity in rats: An insight into BDNF and synaptophysin levels in the hippocampus. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.M.; Cowan, C.S.; Bastiaanssen, T.F.; Moloney, G.M.; Theune, N.; van de Wouw, M.; Zanuy, E.F.; Ventura-Silva, A.P.; Codagnone, M.G.; Villalobos-Manríquez, F.; et al. Critical windows of early-life microbiota disruption on behaviour, neuroimmune function, and neurodevelopment. Brain Behav. Immun. 2023, 108, 309–327. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xu, X.; Lu, D.; Chen, K.; Wu, Y.; Yang, X.; Xiong, W.; Chen, X.; Lan, L.; Li, W.; et al. Repeated early-life exposure to anaesthesia and surgery causes subsequent anxiety-like behaviour and gut microbiota dysbiosis in juvenile rats. Br. J. Anaesth. 2023, 130, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wang, Y.; Sun, Y.; Peng, G. Neuroinflammation as a Potential Therapeutic Target in Alzheimer’s Disease. Clin. Interv. Aging 2022, 17, 665–674. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, B.; Cutts, R.J.; Liu, Y.; Hrebien, S.; Huang, X.; Fenwick, K.; André, F.; Loibl, S.; Loi, S.; Garcia-Murillas, I.; et al. The Genetic Landscape and Clonal Evolution of Breast Cancer Resistance to Palbociclib plus Fulvestrant in the PALOMA-3 Trial. Cancer Discov. 2018, 8, 1390–1403. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, A.R.; Pedroso, C.M.; Gueiros LA, M.; Ríordáin, R.N.; Kerr, A.R.; Farag, A.; Lodi, G. Mapping the Legacy of the World Workshop on Oral Medicine: A 35-Year Global Bibliometric Analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2024. Epub Ahead of Print. [Google Scholar] [CrossRef]
- Ping, L.; Rui, F.; Jiawei, H.; Ze, L.; Yue, Z.; Yong, Y.; Shaowu, C. Patents research and development prospects of spleen-invigorating health food with the homology of medicine and food from 2000 to 2022: A bibliometric analysis. Digit. Chin. Med. 2023, 6, 357–368. [Google Scholar] [CrossRef]
- Yang, K.-L.; Jin, X.-Y.; Gao, Y.; Xie, J.; Liu, M.; Zhang, J.-H.; Tian, J.-H. Bibliometric analysis of researches on traditional Chinese medicine for coronavirus disease 2019 (COVID-19). Integr. Med. Res. 2020, 9, 100490. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, K.; Luo, E.; Wang, T.; Wang, S.; Yang, Y.; Zhu, X.; Ding, R. Medical long-tailed learning for imbalanced data: Bibliometric analysis. Comput. Methods Prog. Biomed. 2024, 247, 108106. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 372. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Hua, F.; Dan, S.; Zhong, Y.; Levey, C.; Song, Y. Reporting quality of systematic review abstracts in operative dentistry: An assessment using the PRISMA for Abstracts guidelines. J. Dent. 2020, 102, 103471. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.C.; Mateos, A.C.; Due, A.S.; Bergström, J.; Nordentoft, M.; Clemmensen, L.; Glenthøj, L.B. Immersive virtual reality in the treatment of auditory hallucinations: A PRISMA scoping review. Psychiatry Res. 2024, 334, 115834. [Google Scholar] [CrossRef] [PubMed]
- Murlanova, K.; Pletnikov, M.V. Modeling psychotic disorders: Environment x environment interaction. Neurosci. Biobehav. Rev. 2023, 152, 105310. [Google Scholar] [CrossRef] [PubMed]
- Furer, P.; Alcolado, G.; Reynolds, K.; Hebert, E.A. Group cognitive-behavioural therapy for perinatal anxiety disorders: Treatment development, content, and pilot results. J. Affect. Disord. Rep. 2021, 6, 100195. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.; Sandhu, K.V.; Bastiaanssen, T.F.; Boehme, M.; Dinan, T.G. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef]
- Lan, Z.; Tang, X.; Lu, M.; Hu, Z.; Tang, Z. The role of short-chain fatty acids in central nervous system diseases: A bibliometric and visualized analysis with future directions. Heliyon 2024, 10, e26377. [Google Scholar] [CrossRef]
- Mayer, E.A.; Tillisch, K.; Gupta, A. Gut/brain axis and the microbiota. J. Clin. Investig. 2015, 125, 926–938. [Google Scholar] [CrossRef]
- Sharon, G.; Sampson, T.R.; Geschwind, D.H.; Mazmanian, S.K. The Central Nervous System and the Gut Microbiome. Cell 2016, 167, 915–932. [Google Scholar] [CrossRef]
- Schroeder, B.O.; Bäckhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 2016, 22, 1079–1089. [Google Scholar] [CrossRef]
- Kang, D.-W.; Adams, J.B.; Gregory, A.C.; Borody, T.; Chittick, L.; Fasano, A.; Khoruts, A.; Geis, E.; Maldonado, J.; McDonough-Means, S.; et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome 2017, 5, 1–16. [Google Scholar] [CrossRef]
- Buffington, S.A.; Di Prisco, G.V.; Auchtung, T.A.; Ajami, N.J.; Petrosino, J.F.; Costa-Mattioli, M. Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring. Cell 2016, 165, 1762–1775. [Google Scholar] [CrossRef]
- Dong, X.; Liu, Y.; Yang, X.; Li, T. Extracellular vesicle miRNAs as key mediators in diet-gut microbiome-host interplay. Trends Food Sci. Technol. 2023, 136, 268–281. [Google Scholar] [CrossRef]
- Meisner, A.; Wepner, B.; Kostic, T.; van Overbeek, L.S.; Bunthof, C.J.; de Souza, R.S.C.; Olivares, M.; Sanz, Y.; Lange, L.; Fischer, D.; et al. Calling for a systems approach in microbiome research and innovation. Curr. Opin. Biotechnol. 2022, 73, 171–178. [Google Scholar] [CrossRef]
- Kraaij, R.; Schuurmans, I.K.; Radjabzadeh, D.; Tiemeier, H.; Dinan, T.G.; Uitterlinden, A.G.; Hillegers, M.; Jaddoe, V.W.; Duijts, L.; Moll, H.; et al. The gut microbiome and child mental health: A population-based study. Brain Behav. Immun. 2023, 108, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Lee-Sarwar, K.; Kelly, R.S.; Lasky-Su, J.A.; Litonjua, A.A.; Weiss, S.T.; Liu, Y.-Y. Revealing the importance of prenatal gut microbiome in offspring neurodevelopment in humans. EBioMedicine 2023, 90, 104491. [Google Scholar] [CrossRef] [PubMed]
- Singha, B.; Rawat, B.S.; Venkataraman, R.; Nair, T.; Rosenn, E.H.; Soni, V. Gut microbiome associated dysbiosis: Limited regimens and expanding horizons of phage therapy. Asp. Mol. Med. 2023, 2, 100029. [Google Scholar] [CrossRef]
- Susmitha, G.; Kumar, R. Role of microbial dysbiosis in the pathogenesis of Alzheimer’s disease. Neuropharmacology 2023, 229, 109478. [Google Scholar] [CrossRef]
- Brown, E.M.; Clardy, J.; Xavier, R.J. Gut microbiome lipid metabolism and its impact on host physiology. Cell Host Microbe 2023, 31, 173–186. [Google Scholar] [CrossRef]
- Darch, H.; McCafferty, C.P. Gut microbiome effects on neuronal excitability & activity: Implications for epilepsy. Neurobiol. Dis. 2022, 165, 105629. [Google Scholar] [CrossRef]
- Tiwari, P.; Dwivedi, R.; Bansal, M.; Tripathi, M.; Dada, R. Role of Gut Microbiota in Neurological Disorders and Its Therapeutic Significance. J. Clin. Med. 2023, 12, 1650. [Google Scholar] [CrossRef]
- Mitra, S.; Dash, R.; Al Nishan, A.; Habiba, S.U.; Moon, I.S. Brain modulation by the gut microbiota: From disease to therapy. J. Adv. Res. 2023, 53, 153–173. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, J.B.; Ross, D.A. Modern Microglia: Novel Targets in Psychiatric Neuroscience. Biol. Psychiatry 2016, 80, e47–e49. [Google Scholar] [CrossRef]
- Turkin, A.; Tuchina, O.; Klempin, F. Microglia Function on Precursor Cells in the Adult Hippocampus and Their Responsiveness to Serotonin Signaling. Front. Cell Dev. Biol. 2021, 9, 665739. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Chi, J.; LoMonaco, K.; Boon, A.; Gu, H. Recent review on selected xenobiotics and their impacts on gut microbiome and metabolome. TrAC Trends Anal. Chem. 2023, 166, 117155. [Google Scholar] [CrossRef] [PubMed]
- Galley, J.D.; Mashburn-Warren, L.; Blalock, L.C.; Lauber, C.L.; Carroll, J.E.; Ross, K.M.; Hobel, C.; Coussons-Read, M.; Schetter, C.D.; Gur, T.L. Maternal anxiety, depression and stress affects offspring gut microbiome diversity and bifidobacterial abundances. Brain, Behav. Immun. 2023, 107, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, Y.; Wang, Z.; Wang, R.; Dong, Y. Lactiplantibacillus plantarum CR12 attenuates chronic unforeseeable mild stress induced anxiety and depression-like behaviors by modulating the gut microbiota-brain axis. J. Funct. Foods 2023, 107, 105710. [Google Scholar] [CrossRef]
- Buchenauer, L.; Haange, S.-B.; Bauer, M.; Rolle-Kampczyk, U.E.; Wagner, M.; Stucke, J.; Elter, E.; Fink, B.; Vass, M.; von Bergen, M.; et al. Maternal exposure of mice to glyphosate induces depression- and anxiety-like behavior in the offspring via alterations of the gut-brain axis. Sci. Total. Environ. 2023, 905, 167034. [Google Scholar] [CrossRef]
- Leung, C.Y.; Weiss, S.J. The gut microbiome of youth who have behavioral and mental health problems: A scoping review. Ment. Health Prev. 2023, 31, 200288. [Google Scholar] [CrossRef]
- Lane, J.M.; Wright, R.O.; Eggers, S. The interconnection between obesity and executive function in adolescence: The role of the gut microbiome. Neurosci. Biobehav. Rev. 2023, 153, 105337. [Google Scholar] [CrossRef]
- Chen, G.; Li, F.; Du, J. Change of gut microbiome structure in preterm infants with hypoxic ischemic encephalopathy induced by apnea. Pediatr. Neonatol. 2023, 64, 455–464. [Google Scholar] [CrossRef]
- Tartaglione, A.; Pazienza, V.; Calamandrei, G.; Ricceri, L. A snapshot of gut microbiota data from murine models of Autism Spectrum Disorder: Still a blurred picture. Neurosci. Biobehav. Rev. 2023, 147, 105105. [Google Scholar] [CrossRef]
- Brugha, T.S.; Spiers, N.; Bankart, J.; Cooper, S.-A.; McManus, S.; Scott, F.J.; Smith, J.; Tyrer, F. Epidemiology of autism in adults across age groups and ability levels. Br. J. Psychiatry 2016, 209, 498–503. [Google Scholar] [CrossRef] [PubMed]
Step | Keyword Search |
---|---|
1 | ((“microbioma”) AND (“infants”)) |
2 | ((“microbioma” OR “microbiome”) AND (“infants” OR “neonatal”)) |
3 | ((“microbioma” OR “microbiome” OR “gut microbiome”) AND (“infants” OR “neonatal”)) |
4 | ((“microbioma” OR “microbiome” OR “gut microbiome”) AND (“infants” OR “neonatal”) AND (“gut brain axis”)) |
5 | ((“microbioma” OR “microbiome” OR “gut microbiome”) AND (“infants” OR “neonatal”) AND “gut brain axis” OR “brain development”)) |
6 | ((“microbioma” OR “microbiome” OR “gut microbiome”) AND (“infants” OR “neonatal”) AND “gut brain axis” OR “brain development”) AND (“neuroscience”)) |
7 | ((“microbioma” OR “microbiome” OR “gut microbiome”) AND (“infants” OR “neonatal”) AND “gut brain axis” OR “brain development”) AND (“neuroscience” OR “neurological disorder”)) |
8 | ((“microbioma” OR “microbiome” OR “gut microbiome”) AND (“infants” OR “neonatal”) AND “gut brain axis” OR “brain development”) AND (“neuroscience” OR “neurological disorder” OR “cognitive neuroscience”)) |
9 | ((“microbioma” OR “microbiome” OR “gut microbiome”) AND (“infants” OR “neonatal”) AND “gut brain axis” OR “brain development”) AND (“neuroscience” OR “neurological disorder” OR “cognitive neuroscience” OR “nutritional neuroscience”)) |
10 | ((“microbioma” OR “microbiome” OR “gut microbiome”) AND (“infants” OR “neonatal”) AND “gut brain axis” OR “brain development”) AND (“neuroscience” OR “neurological disorder” OR “cognitive neuroscience” OR “nutritional neuroscience”)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (PUBSTAGE, “final”) OR LIMIT-TO (PUBSTAGE, “aip”)) AND (LIMIT-TO (SRCTYPE, “j”)) |
Sources | Articles | Subject Area | H-Index | SJR List |
---|---|---|---|---|
Nutrients | 40 | Nursing | 178 | Q1 |
International Journal of Molecular Sciences | 20 | Biochemistry, Genetics, and Molecular Biology | 230 | Q1 |
Frontiers in Microbiology | 14 | Immunology and Microbiology | 201 | Q1 |
Frontiers in Neuroscience | 14 | Neuroscience | 136 | Q2 |
Neuroscience and Biobehavioral Reviews | 13 | Neuroscience | 271 | Q1 |
Brain Behavior and Immunity | 12 | Neuroscience | 184 | Q1 |
Frontiers on Psychiatry | 12 | Psychiatry and Mental Health | 96 | Q1 |
Frontiers in Cellular and Infection Microbiology | 11 | Immunology and Microbiology | 105 | Q1 |
Microorganisms | 10 | Immunology and Microbiology | 66 | Q2 |
Gut Microbes | 9 | Immunology and Microbiology | 96 | Q1 |
Paper | Total Citations | TC per Year |
---|---|---|
The Microbiota-Gut-Brain Axis [37] | 2036 | 339 |
Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life [38] | 1918 | 192 |
What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases [39] | 1615 | 269 |
Current understanding of the human microbiome [40] | 1322 | 189 |
The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication [41] | 1094 | 219 |
Gut/brain axis and the microbiota [42] | 962 | 96 |
The Central Nervous System and the Gut Microbiome [43] | 895 | 99 |
Signals from the gut microbiota to distant organs in physiology and disease [44] | 877 | 97 |
Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study [45] | 849 | 106 |
Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring [46] | 747 | 83 |
Affiliations | Country | Articles |
---|---|---|
University College Cork | Ireland | 256 |
Utrecht University | The Netherlands | 53 |
University Of California | USA | 49 |
Baylor College Of Medicine | USA | 44 |
University Of Granada | Spain | 40 |
Jiangnan University | China | 31 |
Xuzhou Medical University | China | 30 |
McMaster University | Canada | 26 |
Nanjing Medical University | China | 26 |
University Of California San Diego | USA | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzitiridou-Chatzopoulou, M.; Kountouras, J.; Zournatzidou, G. The Potential Impact of the Gut Microbiota on Neonatal Brain Development and Adverse Health Outcomes. Children 2024, 11, 552. https://doi.org/10.3390/children11050552
Tzitiridou-Chatzopoulou M, Kountouras J, Zournatzidou G. The Potential Impact of the Gut Microbiota on Neonatal Brain Development and Adverse Health Outcomes. Children. 2024; 11(5):552. https://doi.org/10.3390/children11050552
Chicago/Turabian StyleTzitiridou-Chatzopoulou, Maria, Jannis Kountouras, and Georgia Zournatzidou. 2024. "The Potential Impact of the Gut Microbiota on Neonatal Brain Development and Adverse Health Outcomes" Children 11, no. 5: 552. https://doi.org/10.3390/children11050552
APA StyleTzitiridou-Chatzopoulou, M., Kountouras, J., & Zournatzidou, G. (2024). The Potential Impact of the Gut Microbiota on Neonatal Brain Development and Adverse Health Outcomes. Children, 11(5), 552. https://doi.org/10.3390/children11050552